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Transient radiative transfer
equation applied to oceanographic lidar

Kunal Mitra and James H. Churnside

We estimate the optical signal for an oceanographic lidar from the one-dimensional transient ~time-
dependent! radiative transfer equation using the discrete ordinates method. An oceanographic lidar
directs a pulsed blue or green laser into the ocean and measures the time-dependent backscattered light.
A large number of parameters affect the performance of such a system. Here the optical signal that is
available to the receiver is calculated, rather than the receiver output, to reduce the number of param-
eters. The effects of albedo of a uniform water column are investigated. The effects of a school of fish
in the water are also investigated for various school depths, thicknesses, and densities. The attenuation
of a lidar signal is found to be greater than the diffuse attenuation coefficient at low albedo and close to
it at higher albedo. The presence of fish in the water is found to have a significant effect on the signal
at low to moderate albedo, but not at high albedo.

OCIS codes: 010.4450, 010.3640, 030.5620.
1,2
1. Introduction

Most of the research in radiative transfer in the ocean
has been directed toward understanding the propaga-
tion of sunlight.1 For these applications, the tran-
sient ~time-dependent! term in the radiative transfer
quation can be neglected. The justification for this
ssumption is that changes in the incident illumina-
ion are much slower than the changes imposed by the
ropagation of the light field through the medium.
he assumption is satisfied clearly for solar illumina-

ion. However, lidar systems can use pulses that are
horter than the attenuation distance of seawater di-
ided by the speed of light in water. Because of mul-
iple scattering, light will be present at any given
epth after the unscattered pulse has gone past. Un-
erstanding the lidar signal, therefore, requires a so-
ution of the time-dependent radiative transfer
quation.
Different numerical and approximate methodologies

uch as the Monte Carlo, spherical harmonics expan-
ion, discrete ordinates, and the direct numerical inte-
ration technique are commonly used for steady-state
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radiative transport in the ocean. The Monte Carlo
method has proved to be an extremely powerful tech-
nique. It is well suited to use of empirical values for
the properties of the medium. The errors in the
results are unbiased and well understood, and imple-
mentation of this technique is relatively straightfor-
ward. However, it also has a couple of shortcomings.
It tends to be computationally intensive—especially
for lidar applications—because few of the initial pho-
tons contribute to the signal. In some cases, the rel-
ative importance of various processes is difficult to
infer from a Monte Carlo calculation. The discrete
ordinates method has also been used by researchers to
analyze the steady-state radiative transfer in a cou-
pled atmosphere–ocean system.3

Different techniques such as those used to solve the
steady-state radiative transfer equation have been de-
veloped for the transient formulation in analyzing the
lidar transport through scattering absorbing media.
These include spherical harmonics expansion, discrete
ordinates, and direct numerical integration. Some of
this development has been stimulated by the problems
of time-resolved optical tomography4,5 of living tissues
and organs using short laser pulses. This technology
has the potential to provide physiological and morpho-
logical information to medical practitioners without
some of the problems associated with harmful radia-
tion, as in the case of x rays, or with harmful chemicals,
as in the case of positron tomography and single-
photon-emission tomography. Like seawater, biolog-
ical tissue is a propagation medium that both scatters
20 February 1999 y Vol. 38, No. 6 y APPLIED OPTICS 889
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and absorbs visible light. For the case of a short-
pulse laser, the radiation signal of interest is the scat-
tered intensity that persists for long periods because of
multiple scattering after the initial pulse has been
shut off. The advantage of performing transient
analysis is the additional information about medium
properties that is obtained from the measured signal.6

In this paper we consider the discrete ordinates so-
lution to the transient radiative transfer equation in
one dimension. A pulse shape that is typical of a
Q-switched laser is used. Two general problems are
treated. The first case corresponds to a uniform
ocean with various scattering parameters. The
Delta–Eddington distribution is used to approximate
the scattering phase function of the seawater contain-
ing particles,7 and the effects of different albedo are
investigated. The approximation is based on mea-
surements made with green light. Because penetra-
tion into the water column requires that a lidar use
green or blue wavelengths, it is a reasonable approxi-
mation. According to the results of this model, it is
demonstrated that the lidar attenuation coefficient is
greater than the diffuse attenuation coefficient, al-
though it can be less than the diffuse attenuation co-
efficient for high-albedo cases. This last result is not
expected. At most, we calculated the lidar attenua-
tion coefficient to be 2% less than the calculated diffuse
attenuation coefficient, and this feature may not be
present in a more sophisticated model. However, the
effect is not a numerical artifact based on the current
model, and there are preliminary reports of measure-
ments that demonstrate the same effect.8

The second problem is one in which a discrete layer
is present in the ocean having different optical prop-
erties. As an example, properties representative of a
school of small fish are considered. The scattering
properties of fish are assumed to be the same as diffuse
spheres of an equivalent cross-sectional area. Aerial
lidar is being considered for fish detection and for bio-
mass surveys because of the difficulties and expenses
encountered with more traditional surveying such as
ichthyoplankton sampling, trawling, and acoustic sur-
veying.9,10 Aerial detection of fish has been demon-
trated, and single-scattering and Monte Carlo models
ave been applied to analyze lidar performance.2,11,12

In the tuna industry, improved techniques for locating
schools of fish that are not associated with dolphins
can reduce dolphin mortality during fishing opera-
tions. In epipelagic fisheries, such as those for ancho-
vies, sardines, menhaden, and herring, the increasing
costs of traditional ship-based survey techniques and
the increasing requirements for accurate stock mea-
surements are generating interest in lidar as a fisher-
ies management tool. The results of our study show
that fish can have a noticeable effect on the backscat-
tered signal, depending on the number density of fish
within a school, on its depth and thickness, and on the
turbidity of the water.

2. Theoretical Development

The physical case under consideration is a one-
dimensional scattering and absorbing layered ocean
90 APPLIED OPTICS y Vol. 38, No. 6 y 20 February 1999
medium with depth D, infinite horizontal extent, and
azimuthal symmetry. As an example, fish layers
having different properties from those of small parti-
cles ~including mineral sediments, phytoplankton, and
zooplankton! are present in the ocean between a depth
f D1 and D1 1 D2 from the ocean surface ~see Fig. 1!.
or simplicity, the boundaries of the medium are con-
idered to be nonreflecting and nonrefracting. This
eometry is the simplest possible and therefore is cho-
en to examine the effects of various approximations
ith the least additional mathematical complexity.
he radiative transfer equation in this geometry, as-
uming azimuthal symmetry and constant properties,
s written as13

1
c

]L~z, m, t!
]t

1 m
]L~z, m, t!

]z
5 2ke L~z, m, t!

1
ks

2 *
21

1

L~z, m9, t!p~m93 m!dm9 1 S~z, m, t), (1)

where L is the intensity ~Wm22 sr21!, c is the speed of
light in the medium, z is the Cartesian distance, t is the
time, ke is the extinction coefficient, ks is the scattering
coefficient, m is the cosine of u where u is the polar angle
measured from the positive z axis ~positive being the
direction of laser propagation, see Fig. 1!, and p is the
scattering phase function. Equation ~1! is an inte-
grodifferential equation in which the partial differen-
tials represent a hyperbolic form of the equation. The
scattering phase function, similar to that given in the
literature,1 satisfies the normalization

1
2 *

0

p

p~u!sin u d u 5 1. (2)

The phase function in general can be represented
n terms of a series of Legendre polynomials Pm as14

p~Q! 5 (
m50

M

am Pm~cos Q!, (3a)

where Q is the scattering angle, M is the order of
anisotropy, and am are the coefficients in the expan-
sion. The advantage of this formulation is that, for
the one-dimensional plane-parallel geometry and azi-

Fig. 1. Schematic of the problem under consideration.
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muthal symmetry, the phase function depends on only
the initial and final values of the polar angle, as15

1
2p *

0

2p

Pm~cos Q!dc 5 Pm~m9!Pm~m!,

cos Q 5 mm9 1 Î1 2 m2Î1 2 m92 cos~c 2 c9!, (3b)

here c is the azimuthal angle.
The phase function for particulates that are present

in the ocean has been approximated by the Delta–
Eddington approximation as15

pp~Q! 5 2fd~1 2 cos Q! 1 ~1 2 f !p*~Q!, (4a)

r equivalently

pp~m9, f93 m, f! 5 2fd~m 2 m9!d~f 2 f9!

1 ~1 2 f !p*~m9, f93 m, f!, (4b)

here f is the forward-scattering fraction of the un-
cattered intensity, d is the Dirac delta function, and
* is the new approximate smooth phase function that
escribes the scattered intensity and satisfies the re-
ation

1
2 *

0

p

p*~u!sin u d u 5 1. (4c)

Figure 2 shows the comparison between the phase
unction obtained by Eq. ~4! and developed by Mob-

ley.7 This function is an average of three measure-
ments made at a wavelength of 514 nm in the San
Diego, California, harbor; the water component is
subtracted to obtain a typical particle function. Pet-
zold’s measurements, reported in Ref. 7, show that
the phase functions of different waters are remark-
ably similar in shape, if not in absolute value, for
green light. For example, the ratio of backscatter to
forward scatter ~at 0.1 deg! is 1.8 3 1026 for the
Mobley particle phase function, 1.7 3 1026 for the
urbid harbor measurement reported, 1.1 3 1026 for
he coastal ocean case reported, and 4.1 3 1026 for

Fig. 2. Comparison of the phase function obtained by Mobley to
its Delta–Eddington approximation.
the clear ocean, all after subtracting the seawater
component. The differences between these phase
functions are not significant for our purposes. From
Fig. 2, we can see that the Delta–Eddington approx-
imation agrees with that of the Mobley phase func-
tion to about the same level of approximation as when
the Mobley function is used for different waters.
Other forms of analytical expressions for phase func-
tions of oceanic water can be found in the litera-
ture,16,17 but the Delta–Eddington form of the phase
function as given by Eqs. ~4! is used here for a rela-
tively simpler numerical implementation and solu-
tion of Eq. ~1!. Generally, this function tends to

nderestimate the backscatter of various waters, es-
ecially of clear ocean water. Phase functions have
een measured in coastal ocean and in clear ocean
ases and could have been used here. However, the
ifferences are expected to be small compared with
he effects of different albedos, and we use a single
unction in all cases for numerical simplicity.

For the case of fish, the phase function can be rep-
esented adequately by Eq. ~3a!. The coefficients am

are calculated as given by Ref. 18 using the phase
function distribution for large diffusing spheres de-
rived from geometric optics theory15:

pf~u! 5
8

3p
~sin Q 2 Q cos Q!. (5)

Clearly, fish are not large diffusing spheres. They
re longer than they are wide, which will introduce an
zimuthal dependence to the phase function. The
kin is generally composed of discrete scales covered by
mucas layer and is probably not completely diffusing.
he scattering is complicated further by the presence
f flat structures, such as fins and a tail. We know of
o measurements of the full phase function of schools
f fish, and therefore we must make some assump-
ions; the simplest representation is that of a large
iffusing sphere. In the one-dimensional geometry,
he phase function is averaged over the azimuthal an-
le, so there is no reason to choose an elongated geom-
try such as ellipsoid over a sphere. Lacking any
pecific information about scattering properties, it
eems reasonable to assume that the scattering is dif-
use on the average. We recognize that individual
cattering components may be far from this. We use
arge diffusing spheres because the calculations are
elatively simple and because there are no measure-
ents to suggest any better model.
For analysis, the total phase function in the fish

ayer is given by1

p~cos Q! 5
ksp

ks
pp~Q! 1

ksf

ks
pf~Q!, (6)

where ksp and ksf are the scattering coefficients of
articles present in the water and in fish, respec-
ively. Here ks is the summation of the scattering

coefficients of particles and fish.
In the traditional transient radiative transport

equation, the first term on the left in Eq. ~1! is ne-
20 February 1999 y Vol. 38, No. 6 y APPLIED OPTICS 891
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glected because of the large value of c. The intensity
L remains time dependent, but the time variation is
introduced traditionally through only the time-
dependent boundary conditions or the time-dependent
source.

The equation of transfer @Eq. ~1!# is complicated
because of the integral on the right side correspond-
ing to the inscattering gain term. To reduce the
integral to a simpler form, different approximations
such as the spherical harmonics expansion, the dis-
crete ordinates method, and the direct numerical in-
tegration technique were used. But it was found
during computation that the spherical harmonics
method yielded unrealistic results for the individual
components of the intensity in any particular direc-
tion ~for example, the direct backscatter component
or the lidar!, but was quite accurate for prediction of
he integrated values of the intensity over all back-
cattered directions. Because in a lidar one is inter-
sted in the backscatter component u 5 p, the

spherical harmonics method is not used for analysis
of this problem. Direct numerical integration is
found to be expensive from a computational point of
view compared with the discrete ordinates method
because of the higher number of angular directional
nodes required to obtain the correct solution. The
discrete ordinates method is based on a weighted,
nonuniform discrete representation of the directional
variation of the radiation intensity; therefore accu-
rate solutions are obtained using fewer angular di-
rectional nodes. Therefore the focus in this paper is
on the discrete ordinates method of solving the tran-
sient radiative transfer equation.

The method of discrete ordinates replaces the inte-
gral in Eq. ~1! by a quadrature, such as Gaussian,
Lobatto, or Chebyshev.19,20 If mi’s are the quadrature
points between the limits of integration, 21 to 1, cor-
esponding to a 2K-order quadrature, and wi’s are the

corresponding weights, Eq. ~1! is reduced to the follow-
ing system of coupled hyperbolic partial differential
equations:

1
c

]Li~z, t!
]t

1 mi

]Li~z, t!
]z

5 2ke Li~z, t!

1
ks

2 (
j52K

K

wjLj~z, t!p~mj 3 mi! 1 S~z, mi, t!, i, j Þ 0,

(7)

where Li~z, t! 5 L~z, mi, t!. The Lobatto quadrature of
even order is used to avoid the value m 5 0. The
hyperbolic wave speed along the z direction of Li cor-
responding to the discrete ordinate mi has the magni-
tude of mi c.

A. Source Pulse and Boundary Conditions

The propagating pulsed source considered in this
study is a pulsed laser with a fast rise and an expo-
nentially decaying tail, which is typical of a Q-switched
aser. The intensity in the medium can be separated
nto a collimated component, corresponding to the in-
ident source, and a scattered intensity. If the colli-
92 APPLIED OPTICS y Vol. 38, No. 6 y 20 February 1999
mated intensity is Lc then L is the remaining part that
an be described by Eq. ~1!. The collimated compo-
ent of the intensity Lc for the case of nadir beam entry

is represented by

Lc~z, m, t! 5 Lincident exp~2ke z!~t 2 zyc!exp

3 @2~t 2 zyc!yt#H~t 2 zyc!d~m 2 1!,
(8a)

where Lincident is the peak power at the surface, H~t! is
the Heaviside step function, and t is defined as 0.408
imes the pulse-width at half-maximum. In this pa-
er the pulse-width at half-maximum is equal to 10 ns,
o t 5 4.08 ns.

The source function S for the scattered intensity
eld is then given by

S~z, m, t! 5
ks

2 *
21

1

Lc~z, m9, t!p~m93 m!m9. (8b)

The boundary conditions are such that the intensities
pointing inward at z 5 0 and z 5 D are zero, yielding

L~z 5 0, m . 0, t! 5 L~z 5 D, m , 0, t! 5 0. (9)

The intensities at the interfaces z 5 D1 and z 5 D2
are assumed to be continuous.

B. Optical Properties of Fish

The scattering and absorbing properties of fish are
calculated using the following relations:

ksf 5 2RAN, (10a)

kaf 5 2~1 2 R!AN, (10b)

where A is the cross-sectional area, N is the school
density, and R is the reflectivity. In this analysis we
used R 5 6.5% and A 5 22.5 cm2, which are typical of
15-cm-long sardines.10 The number density is varied
from 3 to 100 cm23. The reflectivity of the unpolar-
ized light R is calculated from the measurements of
opolarized and cross-polarized values.10

The optical properties of the water depend on the
type of ocean water used. For this analysis various
types of ocean water ranging from clear water ~lower
albedo! to turbid water ~high albedo! are considered.7

3. Results and Discussion

The numerical solutions for the discrete ordinates
method are obtained with the subroutine PDECOL.21

For all simulations, the grid sizes for both time and
space variables are varied by one order in either direc-
tion from the used values, and the results are found to
be stable and converging.

The results and discussion are divided broadly into
two categories. First, the effects of the various types
of ocean water on the lidar signal are investigated.
The other aspect of the research deals with the effects
on the signals of the presence of schools of fish having
different number density, location, and width. The
actual measured lidar signal will depend on a large
number of factors, including aircraft altitude, telescope
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diameter, optical filter characteristics, receiver field of
view, detector characteristics, electronics bandwidth,
background light levels, electronic noise, and the radi-
ance of the laser light in the backscattered direction
~i.e., m 5 21! at the surface. To investigate the effects
f various water types and fish, we use this radiance to
epresent the signal. The actual signal out of a lidar
eceiver can be calculated from these values, within
he limits of the one-dimensional model used here.

First we consider the simulated backscattered signal
for the case of ocean water containing no fish. Twelve
discrete ordinates are used; increasing this number
increased the computation time without a significant
increase in numerical accuracy. As is usual in lidar,
elapsed time is converted to depth using the speed of
light in water. This is not strictly valid in highly
multiple-scattering conditions, in which the path trav-
eled by a photon can be greater than its depth. Thus
the effective scattering depth at any particular time
can be less than the depth used in the figures. The
lidar signal is assumed to be proportional to the solu-
tion at m 5 21, which is the most backward direction
of the Lobatto quadrature. In reality, the lidar will
receive light from any angle within its field of view.
However, the returned light is not sharply peaked in
the backward direction, and this is a reasonable ap-
proximation. The field of view also introduces an er-
ror in the time to depth conversion. For example, a
lidar with a field of view of 100 mrad at an altitude of
300 m will receive light up to 50 mrad off nadir, which

Fig. 3. Comparison of the backscattered signal as a function of
depth for various types of ocean water using the discrete ordinates
method.

Table 1. Optical Properties of Di

Albedo v

Absorption
Coefficient
kap ~m21!

Beam
Attenuation
Coefficient
kap 1 ksp

~m21!

Lid
Attenu
Coeffi
10–15

~m2

0.245 0.114 0.151 0.1
0.454 0.120 0.220 0.1
0.551 0.179 0.398 0.2
0.833 0.366 2.190 0.3
travels 37 cm farther than light from nadir, with a
delay of approximately 1 ns relative to the on-axis
light. For our purposes, all these effects can be ne-
glected.

A. Effect of Various Types of Ocean Water on the
Measured Signal

Figure 3 represents the comparison of the backscat-
tered signal at m 5 21 for various types of ocean
water, ranging from lower to higher optical albedo,
but all using the same phase function. The four dif-
ferent types of ocean water considered have the fol-
lowing optical properties: ~i! ksp 5 0.037 m21, kap 5
0.114 m21 ~v 5 0.245!; ~ii! ksp 5 0.1 m21, kap 5 0.12
m21 ~v 5 0.454!; ~iii! ksp 5 0.219 m21, kap 5 0.179
m21 ~v 5 0.551!; ~iv! ksp 5 1.824 m21, kap 5 0.366
m21 ~v 5 0.833!. The varieties of water mentioned
above represent a wide spectrum ranging from clear
ocean to turbid harbor, as given in the literature.7
The magnitude of the backscattered signal for higher
albedo is higher than that of the lower albedo near
the surface, but it drops more sharply with depth
because the source pulse decays correspondingly
faster for higher albedo. The slopes of the curves
plotted in Fig. 3 yield the lidar attenuation coeffi-
cients ~a! for the different types of ocean water and
re given in Table 1. The lidar attenuation de-
reases with depth because of the increase of the
ngular distribution of the photons with depth.
The diffuse attenuation coefficient kd is defined as

the rate of change of downwelling intensity with
depth.22 For this calculation, the time-averaged
forward-directed intensities are calculated at differ-
ent depths for different types of water. The results
of the diffuse attenuation coefficient obtained by time
averaging of the transient model at each depth match
the results obtained by the steady-state calculations.
The diffuse attenuation coefficient also varies with
depth but less significantly compared with the lidar
attenuation coefficient. The value of kd presented in
Table 1 is calculated between a depth of 20–25 m.
The diffuse attenuation coefficient k̂d is also calcu-
lated on the basis of the quasi-single-scattering ap-
proximation.23 This is represented as the sum of the
absorption coefficient kap and the backscatter coeffi-
cient bb obtained by integrating the volume-
scattering phase function from m 5 21 to 0. Thus k̂d
is an inherent optical property, and we might expect

t Types of Water for Green Light

Lidar
Attenuation
Coefficient
20–25 m a

~m21!

Diffuse
Attenuation
Coefficient
20–25 m kd

~m21!

Quasi-Single-
Scattering

Diffuse
Attenuation
Coefficient
k̂d ~m21!

0.131 0.116 0.134
0.159 0.124 0.170
0.218 0.183 0.288
0.367 0.374 1.277
ar
ation
cient
m a
1!

33
63
46
77
20 February 1999 y Vol. 38, No. 6 y APPLIED OPTICS 893
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some relationship between it and the lidar attenua-
tion, which does not depend on the solar illumination.
From Table 1, we can see that a and k̂d do agree fairly
well at low albedo. At higher albedo, however, a
becomes closer to kd, and, in fact, becomes slightly
lower than kd at the highest albedo used. It is lower
by less than 2%, which is more than the numerical
uncertainty, but could be within the uncertainty in-
troduced by approximations in the model. Note also
that k̂d is a better approximation to kd at lower al-
bedo. At higher albedo, multiple scattering becomes
more important ~more photons survive multiple in-
teractions!, and a quasi-single-scattering calculation

ould be expected to be a poorer approximation.

B. Effects of Fish in the Ocean

The effects of number density, thickness of schools of
fish, and distance of schools of fish from the ocean
surface on the backscattered signal are analyzed in
this subsection. The optical properties of the ocean
water used are ksp 5 0.1 m21 and kap 5 0.12 m21; the
school density of fish N is 30 m23 unless otherwise
pecified.

In Fig. 4 the backscattered signal is plotted as a
unction of depth for different number densities N of

fish. A school of fish thickness of 5 m, present at a

Fig. 4. Comparison of the backscattered signal as a function of
depth for different number density of fish using the discrete ordi-
nates method.

Fig. 5. Comparison of the backscattered signal as a function of
depth for different thicknesses of schools of fish using the discrete
ordinates method.
94 APPLIED OPTICS y Vol. 38, No. 6 y 20 February 1999
depth of 10 m from the ocean surface ~D1 5 10 m, D2
5 5 m! is considered. The different values of N used
are 3, 30, and 100 m23. The higher the value of N, the
higher the scattering coefficient, as can be seen from
Eqs. ~10a! and ~10b!. Consequently, the magnitude of
the backscattered signal increases because of the in-
creased scattering events. But at the same time, be-
cause of a higher value of attenuation coefficient for
the higher value of N, the source pulse decays faster,
and correspondingly the backscattered signal drops off
rapidly. In Fig. 4, the plot of the backscattered signal
from ocean water containing no fish ~N 5 0! is also
shown. The measured signal remains the same as
that of the no fish case until the signal reaches the
school of fish.

Figure 5 shows the backscattered signal distribution
for different widths of fish schools ~D2 5 1, 5, and 10
m!. The smaller the school width, the less is the pulse
spreading and magnitude of the signal. The nondi-
mensional backscattered signal is plotted in Fig. 6 as a
function of depth for different regions where schools of
fish are present from the surface of the ocean D1. In
his case the values of D1 used are 5, 10, and 15 m.
he first significant change in signal is observed cor-
esponding to the depth of the fish from the ocean’s
urface. The closer the fish to the surface, the faster
he decay of the corresponding backscattered signal.

The calculations with fish are repeated for the turbid
ater case ~ksp 5 1.824, kap 5 0.366!. For these

cases, no noticeable change between the curves with
fish and without fish are observed. This suggests
that detection of fish in highly turbid water would be
difficult.

4. Conclusions

The present study is the first in the literature, to our
knowledge, to detect a school of fish using transient
radiative transfer formulation for signals obtained
from oceanographic lidar. The significance of this
comprehensive study examining the theoretical and
numerical modeling of the transient radiative trans-
port through ocean water is its implications for effec-
tive management and control of fisheries. This study

Fig. 6. Comparison of the backscattered signal as a function of
depth for different depths from the ocean surface where schools of
fish are present using the discrete ordinates method.
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highlights the fact that the lidar attenuation coeffi-
cient is greater than the diffuse attenuation coefficient
except for high-albedo water. The findings will prove
to be a valuable tool for efficient analysis of lidar op-
eration.

This research contains a number of limitations, ap-
proximations, and assumptions. These include the
limitation of the one-dimensional geometry, simplified
representations of both particulate and fish phase
functions, the approximation that depth can be in-
ferred directly from the time delay and the speed of
light in water without taking multiple scattering into
account, the assumption that surface effects can be
neglected, and the assumption that the radiance at the
surface can be used to infer lidar performance. This
last assumption implies that we can design a lidar
with low-noise and high-background rejection so that
the features that we see in the calculations would ac-
tually be measured. Further research is being con-
ducted into each of these areas.

Appendix A: Nomenclature

A Cross-sectional area of fish,
am terms in expansion of phase function,

c speed of light in the medium,
D depth of the medium,
f forward-scattering fraction,

h Heaviside step function,
ka absorption coefficient,
kd diffuse attenuation coefficient,
ke extinction coefficient ~5 ka 1 ks!,
ks scattering coefficient,
L scattered radiation intensity,

Lc collimated component of intensity,
l fish length,

M degree of anisotropy,
N density of fish,
p scattering phase function,
m Legendre polynomials,
R fish reflectivity,
S source pulse,
t time,
z Cartesian coordinate,
a lidar attenuation coefficient,
m cos u,
u polar angle measured from the positive x axis,
c azimuthal angle,
v scattering albedo ~5 ksyke!,
Q scattering angle.

This research was performed partly while Kunal
Mitra held a National Research Council–National
Oceanic and Atmospheric Administration Research
Associateship.
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