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Abstract—Ocean gravity waves can be rather steep and even 
breaking depending on wind speed. Analytical modeling of both 
the evolution of such strongly nonlinear waves and 
electromagnetic (EM) scattering from them is currently 
impossible.  At the same time, numerical modeling of these 
processes poses a significant challenge in terms of the complexity 
of codes and computational time. In this study, we employ an 
efficient and fast numerical solver which is based on a uniform 
approach equally convenient when dealing with both 
hydrodynamic and EM parts of the problem.  As a result, a 
sequence of large-scale wave profiles is produced that follows 
through all stages of wave breaking. The small-scale roughness 
is treated statistically by employing the Pierson-Moskowitz 
spectrum, and it is added on top of smooth gravity waves. Using 
the EM code, the scattering problem is solved assuming an 
impedance boundary condition. The same spline description of 
the surface profiles of gravity waves is used in both 
hydrodynamic and EM codes. Backscattering cross sections and 
corresponding Doppler spectra were the subjects of this study. 
The numerical calculations demonstrate spike events, with the 
backscattered signal at horizontal polarization exceeding the 
backscattering signal at vertical polarization. 

 
 

I.    INTRODUCTION 
 

Radar sea spikes with a high horizontal-to-vertical 
polarization ratio are commonly observed at moderate and 
low-grazing-angle (LGA) incidence and are usually attributed 
to scattering from breaking waves [1, 2]. However, analytical 
models, such as a two-scale model, or numerical models 
based on the small-slope approximation and similar 
approaches do not reproduce such features [3]. This is not 
unusual since those models describe the ocean gravity waves 
as rather gentle undulations which only moderately affect 
Bragg radar scattering from small-scale waves. In reality, 
depending on the wind speed, gravity waves could be rather 
steep and even breaking. Rigorous analytical modeling of 
such strongly nonlinear waves and electromagnetic (EM) 
scattering from them is currently impossible.    

Numerical modeling of EM scattering from breaking 
waves has been considered previously (see, e.g. [4], [5]). In 
those works, the profiles of breaking waves were taken from 
the experiment or generated independently. In our work, both 
hydrodynamic and EM components were calculated using 
related codes based on the same wave-profile approximations 
using cubic splines. The solver consists of three blocks.  In 

the first one, the hydrodynamic equations are solved for 
potential 2-D surface waves (including surface tension but 
without viscosity). As a result, a sequence of large-scale 
wave profiles is produced that includes all stages of wave 
breaking: steepening, cresting, involution, and jetting. The 
two last stages produce non-single-valued profiles, which is a 
substantial obstacle for many existing analytical and 
numerical approaches but poses no difficulty for our 
approach. The second block deals with 2-D bistatic EM 
scattering from those profiles, assuming their periodicity and 
the impedance boundary conditions for two orthogonal 
polarizations. Finally, in the third block, using surface fields 
previously obtained as sources, the Bragg scattering cross 
section from the small-scale waves is calculated and added to 
the cross sections from breaking waves. Small-scale 
roughness is treated statistically by employing the Pierson-
Moskowitz spectrum with a cutoff wave number three times 
smaller than that of the EM wave. 

 
II.    MODELING OF BREAKING WAVES 

 
The equations describing the evolution of surface gravity-

capillary waves in 2-D are taken in the Lagrangian form: 
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Here, parameter s marks individual fluid particles on the 
fluid surface; it is assumed to be an arch length. All 
derivatives of the velocity potential in (1-2) are calculated at 
the surface points. Equation (1) represents the kinematic 
boundary condition and (2) is the Bernoulli equation (note the 
change of sign of term ( ) 2/2ϕ∇  due to use of the Lagrangian 
description.) Thus, the surface profile is given here in the 
parametric form and it can be non-single-valued in ( )zx,  
Cartesian coordinates. 

Potential ϕ  satisfies the Laplace equation. If functions 

( )stx , , ( )stz , , and ( )st,ϕ  are known at a certain moment of 
time, one can solve the Dirichlet boundary problem and 
calculate the Dirichlet-to-Neumann (DtN) linear operator 
which maps the value of surface potential ( )st,ϕ  onto the 



normal derivative of the potential, n∂∂ /ϕ , at the surface 
points. Since potential ϕ  along the surface is known, the 
DtN operator allows us to calculate the gradient of the 
potential (i.e., the velocity vector) at the surface points. Those 
values are substituted into the right-hand side of (1) and (2), 
and now one can calculate the surface profile and values of 
the surface potential at the next moment of time. Marching in 
time in numerical simulations is accomplished according to 
the Runge-Kutta scheme. 

The problem is thus reduced to the calculation of the DtN 
operator, which should be effective and accurate. Here, the 
surface profile is assumed to be periodic, and after conformal 
mapping ( )[ ]izxiizx +=+ exp00 , the whole 2-D lower half-

space is transformed into an area bounded by a closed 
contour on the ( )zx ′′, plane (the depth of the fluid is supposed 
to be infinite.) A solution of the Laplace equation is sought in 
the form of a double potential: 
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where rrG ln)(0 = , and s is an arc length; µ(s) is the surface 

density of dipoles. Details on a numerical solution of this 
equation can be found in [6]. 

The accuracy of the solution including the stage of the 
incipient overturning of the wave was controlled by the 
energy conservation relative accuracy, which was held up to 
10-5 –10-4 . 

The evolution of the profiles that ended in breaking was 
obtained by using the superposition of two waves as an initial 
condition. Each of these waves represents an individually 
stable, moderately nonlinear Stokes wave. However, after the 
crests of two waves propagating at different speeds overlap, 
the wave starts to overturn. Immediately after overturning, 
the wave profile looses smoothness, the spline approximation 
becomes inadequate, some accuracy control criteria are 
violated, and the program stops. 

The evolution of such a wave over the first 0.54 seconds 
has been examined and then used for EM scattering 
simulations. The initial surface wave length was 1 m. Figure 
1 illustrates the wave evolution over the first 0.5 seconds. It 
was observed that at t = 0.45 s, the front face of the wave 
becomes almost vertical, and then the wave breaks. 

 
III.    MODELING OF RADAR SCATTERING 

 
The calculation of scattering of an EM wave from a 

periodic 2-D surface reduces to the solution of a scalar 
Helmholtz equation ( ) 0// 22222 =Ψ+∂∂+∂∂ Kzx  with 
boundary condition 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10
t = 0.040 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10
t = 0.194 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10
t = 0.347 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10
t = 0.501 s

x (m)

z 
(c

m
)

Figure 1. The evolution of a gravity wave. 
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  The value of impedance Z depends on the polarization: Z 
= 1/1 +ε  for vertical, and Z = 1−ε  for horizontal 
polarization. The problem reduces to the solution of the 
following integral equation with respect to the surface value 
of the total field (s) [7]: 

 
 
 
 
 
Here, 00 sinθKk = , 00 cosθKq =  are horizontal and 

vertical components of the wave vector of the incident wave 
and 

 
 
 

is a Green function. By extracting the phase factor associated 
with the incident wave from the surface field we introduce a 
new unknown function [7]: 
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In terms of Ψ~ , after simple calculations (5) becomes as 

follows: 
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The surface profile ( )sx , ( )sz , and surface field ( )sΨ~  are 
represented with the help of the same spline approximation as 
in the hydrodynamic solver. To calculate the interaction 
matrix, one should be able to calculate the Hankel functions. 
An effective way to make such a calculation appears to be 
tabulating of the values of the Hankel functions on a 
sufficiently dense grid (say, 1000 values) between 0 and 100, 
and using an asymptotic expansion for larger arguments. 
Between grid points, they can be calculated using a power 
expansion whose coefficients immediately follow from the 
differential equation for Bessel functions. 

This allows us to achieve machine accuracy of 10-15 rather 
quickly. When r ′  tends to r , the Hankel function includes a 
logarithmic singularity that has to be handled separately. For 
periodic surfaces, the scattered field consists of discrete 
spectra: 
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where Lnkkn /20 π+= , 22
nn kKq −= , and L is the period 

of the surface along the x-axis. The values of spectra can be 
easily expressed in terms of the surface field. 

The contribution from the small-scale roughness can be 
calculated using the following expression [7]: 
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where )2,(ˆ lsw ksW  is the local spectral density of small-scale 

roughness, and  
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is a scattering coefficient that accounts for all shadowing 
effects. 

 
III.    DISCUSSION OF RESULTS 

 
Using a sequence of 180 wave profiles obtained for every 

0.003 s, the normalized backscattering cross section (NBCS) 
was calculated based on the numerical technique presented 
above. For calculations, the EM wavelength  = 4.65 cm, and 
the scattering order n = -40 have been chosen, which 
corresponds to an incident angle of 68.466°. The case 
considered here was for an “upwind” orientation with respect 
to the breaking wave, i.e., the incident EM wave vector is 
pointed toward the face slope of the wave. To model cases of 
various orthogonal polarizations, two extreme values of 
complex impedance Z have been chosen. For HH 
polarization, it is Z = 0+ i103 and for VV polarization, it is Z 
= 0+ i10-3. 

The results of NBCS calculations as a function of time are 
presented in Figures 2–4. It is seen that generally, the cross 
section grows with time for all polarizations as the wave 
becomes steeper.  

Figure 2 shows the result of our calculations for 
normalized backscattering cross section at HH- and VV-
polarization at 68.5 degree incidence for strongly nonlinear 
waves alone. Because wave slopes are gentle enough for the 
first 0.25 s, the curves represent just the numerical noise. 
After that, signals start to increase. During the last 0.1 s the 
signal at VV-polarization is reaching the level of ~ -30 dB, 
and the signal at HH-polarization is reaching the level of -20 
dB, with the HH-polarized signal finally exceeding the level 
of the VV-polarized signal by about 10 dB.  
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Figure 2. HH- and VV-polarization NBCS at 68.5° incidence for nonlinear 
waves alone. 

 
Using surface EM fields obtained at the first step of 

calculation of backscattering from a large-scale nonlinear 
wave as sources for the small-perturbation theory, Bragg-type 
scattering on the small-scale roughness is calculated. In 
Figure 3, the VV-polarization signal of Bragg-scattering 
origin is compared with the signal from a breaking wave that 
does not have those Bragg-scattering ripples. One can see that 
even for the case of a strongly nonlinear breaking wave, 
Bragg scattering at VV-polarization still exceeds scattering at 
VV-polarization from a breaking wave.  
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Figure 3. VV-polarization NBCS at 68.5° incidence a nonlinear breaking 
wave and for small-scale roughness. 



Similarly, using the small-perturbation theory, we 
calculated Bragg-type scattering on the small-scale roughness 
for HH-polarization. In Figure 4, the HH-polarization signal 
of Bragg-scattering origin is compared with the signal from 
the breaking wave that does not have those Bragg-scattering 
ripples. One can see that for this case of a strongly nonlinear 
breaking wave, scattering for a breaking wave at HH-
polarization exceeds the level of Bragg scattering during the 
final stage of wave breaking.  
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Figure 4. HH-polarization NBCS at 68.5° incidence for a nonlinear breaking 
wave and for small-scale roughness. 

 
 
In Figure 5, we combined the cross sections caused by 

steep breaking waves and by Bragg scattering. This plot 
demonstrates that the total signal at HH-polarization finally 
exceeds the total signal at VV-polarization. This is an 
example of sea spike with HH > VV that resembles the one 
observed in sea radar clutter at low grazing angles.  

 

 
 

Figure 5. Comparisons between total NBCS on two polarizations at 68.5° 
incidence for a breaking wave with small-scale roughness on it. 

 
The most radical, spike-like increase, as expected, occurs 

when HH-polarization dominates VV-polarization during the 

last 0.1 seconds, when the wave is passing through the 
cresting and involution stages. The onset of jetting leads to a 
relative decrease of backscatter, with HH-polarization 
becoming smaller than VV-polarization 

Figure 6 shows Doppler spectra at two polarizations 
calculated over the last 0.154 s, when the sea spike took 
place. One can see pronounced peaks at positive frequencies 
due the upwind orientation, with HH-polarization dominating 
VV-polarization.  

In conclusion, the simulated NBSC and Doppler spectra 
correspond well to the known features of radar scattering 
from ocean breaking waves [1, 2]. 
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Figure 6. Doppler spectra of the sea spike for HH- and VV-polarization at 
68.5° incidence and in an upwind direction. 
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