TVINVIA S/ dOLVIHddO

Want to get going? Go to the Quickstart (p. 35) section.

CR1000 Datalogger

Revision: 2/18

Copyright © 2000 - 2018
Campbell Scientific, Inc.

Warranty

The CR1000 Measurement and Control Datalogger is warranted for three (3)
years subject to this limited warranty:

Limited Warranty: Products manufactured by CSI are warranted by CSI to be free
from defects in materials and workmanship under normal use and service for
twelve months from the date of shipment unless otherwise specified in the
corresponding product manual. (Product manuals are available for review online
at www.campbellsci.com.) Products not manufactured by CSI, but that are resold
by CSI, are warranted only to the limits extended by the original manufacturer.
Batteries, fine-wire thermocouples, desiccant, and other consumables have no
warranty. CSI's obligation under this warranty is limited to repairing or replacing
(at CSI's option) defective Products, which shall be the sole and exclusive remedy
under this warranty. The Customer assumes all costs of removing, reinstalling,
and shipping defective Products to CSI. CSI will return such Products by surface
carrier prepaid within the continental United States of America. To all other
locations, CSI will return such Products best way CIP (port of entry) per
Incoterms ® 2010. This warranty shall not apply to any Products which have been
subjected to modification, misuse, neglect, improper service, accidents of nature,
or shipping damage. This warranty is in lieu of all other warranties, expressed or
implied. The warranty for installation services performed by CSI such as
programming to customer specifications, electrical connections to Products
manufactured by CSI, and Product specific training, is part of CSI's product
warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by
applicable law, any and all warranties and conditions with respect to the Products,
whether express, implied or statutory, other than those expressly provided herein.

Assistance

Products may not be returned without prior authorization. The following contact
information is for US and International customers residing in countries served by
Campbell Scientific, Inc. directly. Affiliate companies handle repairs for
customers within their territories. Please visit www.campbellsci.com to determine
which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-9000. After a support engineer determines
the nature of the problem, an RMA number will be issued. Please write this
number clearly on the outside of the shipping container. Campbell Scientific's
shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and
Decontamination” form and comply with the requirements specified in it. The
form is available from our web site at www.campbellsci.com/repair. A completed
form must be either emailed to repair@campbellsci.com or faxed to
435-227-9106. Campbell Scientific is unable to process any returns until we
receive this form. If the form is not received within three days of product receipt
or is incomplete, the product will be returned to the customer at the customer's
expense. Campbell Scientific reserves the right to refuse service on products that
were exposed to contaminants that may cause health or safety concerns for our
employees.

Precautions

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING,
USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS,
TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH
AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE
TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE,
USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND
FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH,
ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT
FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE
HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY
COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED
PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for
which they are designed. Do not exceed design limits. Be familiar and comply
with all instructions provided in product manuals. Manuals are available at
www.campbellsci.com or by telephoning 435-227-9000 (USA). You are
responsible for conformance with governing codes and regulations, including
safety regulations, and the integrity and location of structures or land to which
towers, tripods, and any attachments are attached. Installation sites should be
evaluated and approved by a qualified engineer. If questions or concerns arise
regarding installation, use, or maintenance of tripods, towers, attachments, or
electrical connections, consult with a licensed and qualified engineer or
electrician.

General

e Prior to performing site or installation work, obtain required approvals
and permits. Comply with all governing structure-height regulations,
such as those of the FAA in the USA.

e Use only qualified personnel for installation, use, and maintenance of
tripods and towers, and any attachments to tripods and towers. The use of
licensed and qualified contractors is highly recommended.

e Read all applicable instructions carefully and understand procedures
thoroughly before beginning work.

e Wear a hardhat and eye protection, and take other appropriate safety
precautions while working on or around tripods and towers.

e Do not climb tripods or towers at any time, and prohibit climbing by
other persons. Take reasonable precautions to secure tripod and tower

sites from trespassers.

e Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

e You can be killed or sustain serious bodily injury if the tripod, tower, or
attachments you are installing, constructing, using, or maintaining, or a
tool, stake, or anchor, come in contact with overhead or underground
utility lines.

e Maintain a distance of at least one-and-one-half times structure height, or
20 feet, or the distance required by applicable law, whichever is greater,
between overhead utility lines and the structure (tripod, tower,
attachments, or tools).

e Prior to performing site or installation work, inform all utility companies
and have all underground utilities marked.

e Comply with all electrical codes. Electrical equipment and related
grounding devices should be installed by a licensed and qualified
electrician.

Elevated Work and Weather
e Exercise extreme caution when performing elevated work.
e Use appropriate equipment and safety practices.

e During installation and maintenance, keep tower and tripod sites clear of
un-trained or non-essential personnel. Take precautions to prevent
elevated tools and objects from dropping.

e Do not perform any work in inclement weather, including wind, rain,
snow, lightning, etc.

Maintenance

e Periodically (at least yearly) check for wear and damage, including
corrosion, stress cracks, frayed cables, loose cable clamps, cable
tightness, etc. and take necessary corrective actions.

e Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST
DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE
CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING
FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF
TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS
SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Table of Contents

1. Introduction ... 29
LT HELLO ittt 29

1.2 TYPOZIAPIY .ottt 30

1.3 Capturing CRBasic Codeccceevuieiiriiniinieiienceeee e 30

2. Precautionscceeciiiiimmmenininr s 31
3. Initial Inspection........cccooiiiiiriiirrr s 33
4. Quickstart.........cooiim e ——— 35
4.1 Sensors — QUICKSTAIT.........oooeeuiiiieiie e 35

4.2 Datalogger — QUICKSAIt.......cceevieiieriiiiieiieee e 36

4.2.1 CRI000 MOAUIEoomieiieiiieiieiieieeeie et 36

4.2.1.1 Wiring Panel — Quickstart...........cccvreveriervenieirnienennns 36

4.3 Power Supplies — QUICKSLArtccceveeriieriiiieiierieneee e 37

4.3.1 Internal Battery — QUICKStartcceecvvreverierienieiieie e, 38

4.4 Data Retrieval and Comms — QuicKStartccoeeevveeeerenreeennennns 38

4.5 Datalogger Support Software — Quickstart............ccceevvereerreecrernenns 39

4.6 Tutorial: Measuring a Thermocouple..........ccceeevevcierienieneeneeieeeenns 40

4.6.1 What You Will Need........cooeeiiinieiiiieeescece e 40

4.6.2 Hardware SETUDccueeuerieiienieieee et 40

4.6.2.1 Connect External Power Supply.......cccccoooeninniiiininnens 41

4.6.2.2 Connect COMIMSccooueerueeriieniieeniieeieenieeeiee et eee e 41

4.6.3 PC200W Software Setup.......ccceevuerrierrierieeiesiierie e 42

4.6.4 Write CRBasic Program with Short Cutccccocceeiiniininnncns 43

4.6.4.1 Procedure: (Short Cut Steps 110 5) cvevvvevvieviveviieieeienenns 44

4.6.42 Procedure: (Short Cut Steps 6 10 7) ceevvvervvevueeeeeierienenns 44

4.6.43 Procedure: (Short Cut Step 8)..ceccvvvverierieiieiieieeeeiens 45

4.6.4.4 Procedure: (Short Cut Steps 910 12) cceevvvevieiieienienens 45

4.6.4.5 Procedure: (Short Cut Steps 13 t0 14) ...ccvevvvevieieeienns 46

4.6.5 Send Program and Collect Datacccoevierieeriecieniinieeees 46

4.6.5.1 Procedure: (PC200W Step 1)..cceeeerieiieieieeeeeieseees 47

4.6.5.2 Procedure: (PC200W Steps 2 t04) ...cccveereveevreeiieeereenne 47

4.6.5.3 Procedure: (PC200W Step 5)..ccceeeviveenieeireeieeeieeeeee e 48

4.6.5.4 Procedure: (PC200W Step 6)...cccevevveevreeriieerieeeieeeieeene 49

4.6.5.5 Procedure: (PC200W Steps 7 t0 10) .ccceeeeevveeveeerieeieennee, 50

4.6.5.6 Procedure: (PC200W Steps 11 t0 12)...cevveveveceveireienns 51

4.6.5.7 Procedure: (PC200W Steps 13 t0 14)...cccvevvevrveireiennns 51

4.7 Data Acquisition Systems — Quickstartccooeverrerievirecreniennnnns 52

LT O 1V =Y Y/ =, . 1.

5.1 Datalogger — OVEIVIEW.....cceevuieiieeieeieeeiesieeieeeeere e ssaenseeseeseennes 56
5.1.1 Wiring Panel — OVEIVIEWc.cccveviereieriieiieieeiesienieeeeeee e 57
5.1.1.1 Switched Voltage Output — OVerviewcceevvenneene. 60

5.1.1.2 Voltage Excitation — OVErvieW.......c.cceceecververuenennenne. 60

5.1.1.3 Power Terminals.......c.ccooeeriieiiniinienieeeiece e 61
5.1.1.3.1 Power In Terminals..........cccceevurniinienienieineeee, 61

5.1.1.3.2 Power Out TerminalS.........cccccovvveiiiviiiiniiieeceinnns 61

10

Table of Contents

5.1.1.4 Communication Ports — OVervieW.........ccceevververerenenne. 62
51.1.41 CST/O POTtcccuiciiiiiiiiiiiiiceeceeeeeeeeeee 63
51.1.42 RS-232 POItS c.cevienieriiniirieiieieniese et 63
5.1.1.4.3 Peripheral Portccoocvevimniieiiniie e, 63
S5.1.1.4.4 SDI-12 POIES cveveeriieiieiieieierie e 64
S.1.145 SDM POIt.cciiiiiiieeieeieieeee st 64
5.1.1.4.6 CPI Port and CDM Devices — Overview 64
5.1.1.47 Ethernet Portcccoooiiiiiiiiiiiee e 64

5.1.1.5 Grounding — OVEIVIEWcceoiroieiieiieniienieieeie e 64

5.2 Measurements — OVEIVIEWcc.eeiuieruieriiiieiieiienieenieeie e eieesieeseens 65
5.2.1 Time Keeping — OVEIVIEWcccceeruerierienieniienieeieeeeeiieeeeeeans 65
5.2.2 Analog Measurements — OVEIVIEWccceervverveeveeeeneenneneeens 66

5.2.2.1 Voltage Measurements — OVEIVIEW.........ccceevveevereennnnns 66
5.2.2.1.1 Single-Ended Measurements — Overview........... 68
5.2.2.1.2 Differential Measurements — Overview.............. 69

5.2.2.2 Current Measurements — OVEIVIEWccceevveevereennnnns 69

5.2.2.3 Resistance Measurements — OVEIVIEWcccecveevennnns 70
5.2.2.3.1 Voltage EXcCitationcccoeveeeeerierieriereeeee 70

5.2.2.4 Strain Measurements — OVEIVIEWcccveeereerveeeveennne. 71

5.2.3 Pulse Measurements — OVEIVIEWccceeeveeevreeeirieerreesreeeneennnes 71

5.2.3.1 Pulses Measuredcccceevrieniienrieeieecreeeieecvee e 72

5.2.3.2 Pulse Input Channelsccoecerierienienieeeeeeeeee 72

5.2.3.3 Pulse Sensor Wiring........ccceccveervveeriienieenieenieenveesveenenes 73

5.2.4 Period Averaging — OVEIVIEWc.cceerreervieieiieeeeseeenreereenenns 74
5.2.5 Vibrating Wire Measurements — OVEIVIEWcceevveerveenee. 74
5.2.6 Reading Smart Sensors — OVEIrvieWccecveervierveenveenveene. 75
5.2.6.1 SDI-12 Sensor Support — OVETVIEWccevveerereerevennnen. 75
52.6.2 RS-232 — OVEIVIEW ...eoevureiieiieeieeiieiieieeie e see e neeens 76
5.2.7 Field Calibration — OVeIVIEWc.c.ceouirierieniieiieieeieeieeeenieans 77
5.2.8 Cabling Effects — OVEIVIEWccceviiiieniinieniieieeieeieeeeieens 77
5.2.9 Synchronizing Measurements — OVeIview...........ccccevveereenncnns 77

5.2.9.1 Synchronizing Measurements in the CR1000 —
OVEIVIEW ..ttt ettt et naens 77

5.2.9.2 Synchronizing Measurements in a Datalogger

NEetWork — OVEIVIEWcuevuieeieieieniinienieeiceieeieeseee 77
5.3 Data Retrieval and Comms — OVEIVIEWccceevverirereeeenreniennnns 77
5.3.1 Data File Formats in CR1000 Memoryccccvevvrevenienerennnnns 78
5.3.2 Data Format on COMPULETccceerverrriieriieeiieeiie e siee e 78
5.3.3 Mass-Storage DEVICE.....cccvevuievieierieiieiienieeieeeeeveseeesreesseeseeens 78
5.3.4 Memory Card (CRD: Drive) — OVervieW........ccceceereeneeenuranenns 78
5.3 4.1 COMIMS...uiiiiiiiiieeeiieee et eetee et e e e ee e e e e eaeeesnaeeeens 79
5.3.42 Direct with Adapter to PCcocoooiiiiiiiiiiees 79
5.3.5 Comms ProtocColsccccevuieeiieiiiieeiie ettt 79
5.3.5.1 PakBus Comms — OVEIrvVieWc.ccceveervierererveesneennnes 79
5.3.6 Alternate Comms Protocols — OVerview..........ccceeevveeveerreenne. 80
5.3.6.1 Modbus — OVEIVIEW.....cc.erueruiruireieiieieienienie e 81
5.3.6.2 DNP3 — OVEIVIEW....cooeeiiieieriieiieieeiieeiesie et 81
5.3.6.3 TCP/IP — OVEIVIEW.....cerueiiieniiniieieeiieieriese e 81
5.3.7 Comms Hardware — OVEIVIEWcc.ceveveuerierieneeneenieeieeeenns 82
5.3.8 Keyboard/Display — OVEIVIEWcceevuieviiieiierieenieesreereeenenns 82
5.3.8.1 Character Set......ccccceviiiiriinieniieniieieeieeeeereee e 83

5.3.8.2 Custom Menus — OVEIVIEWccceeevureeeieieniieeiieeeeeennen 83

5.4 Measurement and Control Peripherals — Overviewc..cccceeeuee 84
5.5 Power Supplies — OVETVIEWcoceeieriiniiriinenieniieieienienesie e eieeenens 85
5.6 CRI1000 Setup — OVEIVIEWeouerueeuieiiieriinienieeieeiteeenieneesiesieeieennens 85

Table of Contents

5.7 CRBasic Programming — OVEIVIEWccccevvevvieueeieniienieeveeeennes 85
5.8 SCCUILY — OVEIVIEW ...vvevieniieiieieeie e eetesieeeeeteeeveseeessaenseeseensesnnes 86
59 Maintenance — OVETVIEW....c..ccevuerueruieieienienienienieeiesieeeteeeneenieseennes 87
5.9.1 Protection from Moisture — OVEIVIEW.........ccceveeuveeenuenuennennenn. 87
5.9.2 Protection from Voltage Transients — Overview...................... 88
5.9.3 Factory Calibration — OVeIVIEWccceeveeruernenieiienienieeiene 88
5.9.4 Internal Battery — OVEIVIEWcceeiiieniieiiiienie e 88
5.10 Datalogger Support Software — OVervieW.......ccceeeereereenceneeneenne 89
5.11 PLC Control — OVEIVIEWccoueeiieiieiieniieniienieeie et 89
5.12 Auto Self-Calibration — OVeIrVIEW........ccceevierierieeieeie e 91
513 MemOry — OVEIVIEWeovuiiriieiieiieieeiieetiesiee sttt seee e e e 91
6. Specifications.........cccccceeiiimircccirr s 95
7. Installation..........ccomiciiiiii s 97
7.1 Enclosures — Detailscocoooeeiiiiieniiiieieeeeeee e 97
7.2 Power Supplies — DetailS........cceevueeriiriiiieniieeieeciee e 98
7.2.1 CRI1000 Power Requirement.............cceecuerveerieerueneeseeseeneeeneenns 98
7.2.2 Calculating Power Consumption...........cceceerveeeeervesveneeeneeenneenns 99
7.2.3 POWET SOUICES ..cueeruiiiieniieiietieitenieenteeieete e sere s siee e eae e 99
7.2.3.1 Vehicle Power Connections..........c.ccocevererereeeenenennenn 99
7.2.4 Uninterruptable Power Supply (UPS)cccooviivieriiiiieieiees 100
7.2.5 External Power Supply Installation...........ccccoooeeviiiininancnns 100
7.2.6 External Alkaline Power Supplycccocceiieniiniiiiiiiecees 100
7.3 Grounding — Detailscooceiiiiiiiieee e 100
7.3.1 ESD Protection......ccccceiieiienieiieieeiesieesieee e 101
7.3.1.1 Lightning Protectionccccceevrvereeneenienieeeeeeeeenn 102
7.3.2 Single-Ended Measurement Referencec.ccooceveeevienieins 103
7.3.3 Ground Potential Differences.........c.ccoceeeeveevieneninieneneneenne 104
7.3.3.1 Soil Temperature Thermocouplecccevvverreerrernennen. 104
7.3.3.2 External Signal Conditioner..............cccceevververeerrennennn. 104
7.3.4 Ground Looping in lonic Measurements............cccoeeveevererennnnns 105
7.4 Protection from Moisture — Detailsccccoeveninencniniiencncnenne, 106
7.5 CRI1000 Setup — Detailscc.eecveereeieiieieeie e 106
7.5.1 TOOIS — SEIUP..ceiiiieiieieeieeieeteeeee et 107
7.5.1.1 DevConfig — Setup Toolsceceeirieniinieieeeeee, 107
7.5.1.2 Network Planner — Setup Toolscccoceevieiirienennnn. 108
7.5.1.2.1 Overview — Network Planner...............cc.......... 109
7.5.1.2.2 Basics — Network Planner............cc.ccoooeeneeene. 110
7.5.1.3 Info Tables and Settings — Setup Toolsc.ccceeueeeee. 111
7.5.1.4 CRBasic Program — Setup ToolScccevvevrerennennen. 112
7.5.1.5 Executable CPU: Files — Setup Tools..........c.eecvrrueeneen. 112
7.5.1.5.1 Default.crl File.....cccoevieiienininiiiiinieieeiene 113
7.5.1.5.2 "Include" File.....cooeriiieiiinininiiiiinceieeene 113
7.5.1.5.3 Executable File Run Prioritiesccccccevueuennene 117
7.5.2 Setup TasKS ..cceevuieiieiiee e 117
7.5.2.1 Operating System (OS) — Details.......c..ccccvevvrrrreennen. 118
7.5.2.1.1 OS Update with DevConfig Send OS Tab.......... 119
7.5.2.1.2 OS Update with File Controlcccccceerueuennene 120
7.5.2.1.3 OS Update with Send Program Command 120

7.5.2.1.4 OS Update with External Memory and
PowerUp.ini Filecccoeeiviiiiiiiieiieciieies 122

7.5.2.2 Factory Defaults — Installation..........ccccceeevueeereenneennne. 123

12

Table of Contents

7.5.2.3 Saving and Restoring Configurations — Installation 123

7.6 CRBasic Programming — Details.........c.cccoevverireciincienieieeeeen, 124
7.6.1 Program StrUCLUTE..........ceoeeriiieeriieiiieeiee ettt s 124
7.6.2 Writing and Editing Programs............cccccvevvveciincienieneeneeneeen. 127

7.6.2.1 Short Cut Programming Wizardcceeeververerennnnne. 127
7.6.2.2 CRBasic Editorccccoovieiiiienieieeeece e 127
7.6.2.2.1 Inserting Comments into Program...................... 128
7.6.2.2.2 Conserving Program Memory..........c.ccceceveenen. 129
7.6.3 Programming SYNtaXccceeoerierieneenieeieeienienieeieeeeeee e 129
7.6.3.1 Program Statementscccceereereerieriienienee e 129
7.6.3.1.1 Multiple Statements on One Linec.......... 130
7.6.3.1.2 One Statement on Multiple Lines 130
7.6.3.2 Single-Statement Declarations.............cceccvevevereerieennenne. 130
7.6.3.3 Declaring Variablesccccevvevieciencienierieneeie e 131
7.6.3.3.1 Declaring Data TYpPesc.ccccevvverrerreeceinienrennens 132
7.6.3.3.2 Dimensioning Numeric Variables....................... 136
7.6.3.3.3 Dimensioning String Variables..............c..cocu... 137
7.6.3.3.4 Declaring Flag Variablesccccocceevreeniencn. 137
7.6.3.4 Using Variable Pointers..........ccceooveverienienieneeree 138
7.6.3.5 Declaring ATTays.......ccoeeeeeeereienieeieeieeee e see e enee e 139
7.6.3.5.1 Advanced Array Declarationccceceerueennenne 140
7.6.3.6 Declaring Local and Global Variables..........c..c.c......... 141
7.6.3.7 Initializing Variables...........cccceevevrrevierieniereeieeie e 141
7.6.3.8 Declaring Constants..........cccceeeveerveereeesveeneeenreeneennns 142
7.6.3.8.1 Predefined Constantsccoceevervuereencencenncnne 143
7.6.3.9 Declaring Aliases and UnitS..........cceeevveerveeneesniveeneennns 143
7.6.3.10 Numerical FOrmatscc..ccoceevuiriinienienienencnieneee 144
7.6.3.11 Multi-Statement Declarationscceceeveevevncreennene. 145
7.6.3.11.1 Declaring Data Tables.......c..cccccocererinereneenennee 146
7.6.3.11.2 Declaring Subroutines.............ceeevereverververeeennenne 153
7.6.3.11.3 Declaring Subroutines............cceeververeereereeennnnns 154
7.6.3.11.4 Declaring Incidental Sequences...........c..ccccueunee. 154
7.6.3.12 Execution and Task Priority.......cccccoeeeeviiiciiiniinceneenn 155
7.6.3.12.1 Pipeline Mode.........cocveeerieiiiieeciieeieeiee e 156
7.6.3.12.2 Sequential Modeccceevivreiercierieieiee e 157
7.6.3.13 Execution Timingccceeeveeveneenieeneeieeseeseeseeeneeenns 158
7.6.3.13.1 Scan() / NeXtSCanceevreverververierieereevenenns 158
7.6.3.13.2 SlowSequence / EndSequence..............ccvevennenn. 159
7.6.3.13.3 SubScan() / NextSubScan...........ccceceervervrrrrennen. 160
7.6.3.13.4 Scan Priorities in Sequential Mode..................... 160
7.6.3.14 Programming InStructions...........ccceereereeneeroeenceneennenne 162
7.6.3.14.1 Measurement and Data Storage Processing 162
7.6.3.14.2 Argument TYPeS......cocceervueirrierieerneenieeiieeeieens 163
7.6.3.14.3 Names in Arguments.ccoeeeereereeneeenenieennns 163
7.6.3.15 Expressions in ArgUMENtSccceereereeereeeeeseeneenneenns 164
7.6.3.16 Programming EXpression TyPes.......ccocveevevevereenieennenne. 165
7.6.3.16.1 Floating-Point Arithmeticceevvevrrecreevennnnns 165
7.6.3.16.2 Arithmetic Operations.............cceevverveerveecreevennnens 166
7.6.3.16.3 Expressions with Numeric Data Types............... 166
7.6.3.16.4 Logical EXPressions........ccceeeveeereerieenreeivenvennens 168
7.6.3.16.5 String EXPressionscccceeeereereenreenreeiveevennens 171
7.6.3.17 Programming Access to Data Tables...........cc.ccereennene. 172
7.6.3.18 Programming to Use Signaturesc.cceceeeeeeevenuennenn 174
7.6.3.19 Functions (with a capital F)ccccooovviiniiiiiiee 174
7.6.4 Sending CRBasic Programsc..ccceevevenenenicnicneeneencnennens 175

Table of Contents

7.6.4.1 Preserving Data at Program Send...........ccoocvevvenieenennen. 175
7.7 Programming Resource Librarycccccceeveeviircieniienienieeeeienenns 176
7.7.1 Advanced Programming Techniquesccccccorverrrecrrnrennnnns 176
7.7.1.1 Capturing EVentscccocevverienieciieieeiesieeeie e 176
7.7.1.2 Conditional Outputccerverierirerieieeieriereeie e 177
7.7.1.3 Groundwater Pump Test.......ccccevvriiniiniinienceeeeeee, 178
7.7.1.4 Miscellaneous Features.........cccceevevieienieniencnenenee, 181
7.7.1.5 PulseCountReset InsStruction............cceceveeveenenennennen. 183
7.7.1.6 Scaling AITAYccoueeieiieiieieee e 184
7.7.1.7 Signatures: Example Programs.........c.cccocceveevencennenen. 185
7.7.1.7.1 Text Signature........ccoeceeveeeneenieeienieiee e 185
7.7.1.7.2 Binary Runtime Signature.............ccccccervverveennnne. 185
7.7.1.7.3 Executable Code Signaturescccccvervrennenne. 185
7.7.1.8 Use of Multiple Scans..........cccovevveeeeeieneereeieereenennnn 186
7.7.2 Data Input: Loading Large Data Sets.......c..ccceeveveircrerienvennnnns 187
7.7.3 Data Input: Array-Assigned EXpression.........cceevvveveevenniennenns 188
7.7.4 Data Output: Calculating Running Average............ccccceeevvennns 192
7.7.5 Data Output: Two Intervals in One Data Table........................ 195
7.7.6 Data Output: Triggers and Omitting Samples.............cecueenenne 197
7.7.7 Data Output: Using Data Type Bool8cccoovviiiinieiens 198
7.7.8 Data Output: Using Data Type NSEC.........cccocenininininceennn. 202
7.7.8.1 NSEC OPHONSeovveeienienieieeiieiieiieieieiesiesseesesseeeeenneneas 202
7.7.9 Data Output: Wind VECtOrccevvuveerieriiieeiiieeiieeieesieeeieenane 206
7.7.9.1 OutputOpt Parameterscccceevveerveerieenveenreerveenee 206
7.7.9.2 Wind Vector Processingccceecveerveerveenreenveenneennnes 207
7.7.9.2.1 Measured Raw Data........c.cccoceevieninnenicncnnene. 207
7.7.9.2.2 Calculationsccccceveeviiiinienienieieeeeeeeee 208

7.7.10 Data Output: Writing High-Frequency Data to Memory
L 1 LSRR 211
7.7.10.1 TableFile() with Option 64ceccvevveriieieeieeie e 212
7.7.10.2 TableFile() with Option 64 Replaces CardOut()............ 212
7.7.10.3 TableFile() with Option 64 Programming 213
7.7.10.4 Converting TOB3 Files with CardConvert.................... 214
7.7.10.5 TableFile() with Option 64 Q & Aocvvveieieeene. 214
7.7.11 Displaying Data: Custom Menus — Detailsccoccuvrerennene 216
7.7.12 Field Calibration — Detailscceceevverienineninineeieieneen, 223
7.7.12.1 Field Calibration CAL Filesccccccevinenininoeeicnienene. 223
7.7.12.2 Field Calibration Programmingcccccverververenenen. 224
7.7.12.3 Field Calibration Wizard Overview..........c..coceeveveneenne. 225
7.7.12.4 Field Calibration Numeric Monitor Procedures............. 225
7.7.12.4.1 One-Point Calibrations (Zero or Offset).............. 226
7.7.12.4.2 Two-Point Calibrations (gain and offset)............ 227
7.7.12.4.3 Zero Basis Point Calibration..............cccccevueeneenne. 227
7.7.12.5 Field Calibration Examplesccooceeveeiieninienenen. 227
7.7.12.5.1 FieldCal() Zero or Tare (Opt 0) Example 228
7.7.12.5.2 FieldCal() Offset (Opt 1) Example 230
7.7.12.5.3 FieldCal() Slope and Offset (Opt 2) Example..... 232
7.7.12.5.4 FieldCal() Slope (Opt 3) Example...................... 235
7.7.12.5.5 FieldCal() Zero Basis (Opt 4) Example............... 237
7.7.12.6 Field Calibration Strain Examples..........cccccceevvevreenennen. 238
7.7.12.6.1 FieldCalStrain() Shunt Calibration Concepts...... 238
7.7.12.6.2 FieldCalStrain() Shunt Calibration Example 239

7.7.12.6.3 FieldCalStrain() Quarter-Bridge Shunt

Example......ccooooveiivienieieceeee e 241

7.7.12.6.4 FieldCalStrain() Quarter-Bridge Zero................. 241

14

Table of Contents

7.7.13 Measurement: Fast Analog Voltageccoecveevevvenienieenenen. 242
7.7.13.1 Tips — Fast Analog Voltagecccceevereievceereeneenen, 247
7.7.14 Measurement: Excite, Delay, Measure..........c.cocevverveereennnennen. 249
7.7.15 Serial I/O: SDI-12 Sensor Support — Details............cccueeeene. 250
7.7.15.1 SDI-12 Transparent Modecccoevuveeverrerveneereeenennn 250
7.7.15.1.1 SDI-12 Transparent Mode Commands 251
7.7.15.2 SDI-12 Recorder Mode..........ccceeviieienieiienieneeiceee 255
7.7.15.2.1 Alternate Start Concurrent Measurement
Commandccoceeveeniieniieieeee e 257
7.7.15.2.2 SDI-12 Extended Command Support.................. 262
7.7.15.3 SDI-12 Sensor Modeccoeeeueeeenienienieeeeeeeeeeeeeene 263
7.7.15.4 SDI-12 Power Considerations..........cc.cceeverereneeeennenn 265
7.7.16 Compiling: Conditional Code...........cccervverrerienieiieieeieeieennn 266
7.7.17 Measurement: RTD, PRT, PT100, PT1000.............cccceeuvvvne.... 268
7.7.17.1 Measurement Theory (PRT)cccoeeeevieviieneeienieenne, 269
7.7.17.2 General Procedure (PRT)........cccoeevvvierienieieieeie e 270
7.7.17.3 Example: 100 Q PRT in Four-Wire Half Bridge with
Voltage Excitation (PT100 / BrHalf4W())................ 272
7.7.17.4 Example: 100 Q PRT in Three-Wire Half Bridge with
Voltage Excitation (PT100 / BrHalf3W())................ 276
7.7.17.5 Example: 100 Q PRT in Four-Wire Full Bridge with
Voltage Excitation (PT100 / BrFull()) ..cccovevvveeeenennne 280
7.7.17.6 PRT Callendar-Van Dusen Coefficients...............c....... 285
7.7.17.7 Self-Heating and Resolution...........cccecveevivieeieneeennnn 289
7.7.18 Serial I/O: Capturing Serial Datacccoccvvevveiiieeiieiieeeienns 289
7.7.18.1 INtroduction......c.cceveeviieieeienienieieeeee et 289
77182 T/O POTES. .ottt 290
7.7.18.3 ProtoCOlS ..cc.eevueeniieiieiiiieeeeteeeeee e 291
7.7.18.4 Glossary of Serial /O Terms.........ccccoeververevereeneeennne. 292
7.7.18.5 Serial I/O CRBasic Programming............c.c.cceevereeennenne. 294
7.7.18.5.1 Serial I/O Programming Basics..............cceecvennene 295
7.7.18.5.2 Serial I/O Input Programming Basics.................. 296
7.7.18.5.3 Serial I/O Output Programming Basics............... 298
7.7.18.5.4 Serial I/O Translating Bytes.........cccccecceevereneene 299
7.7.18.5.5 Serial /O Memory Considerations 300
7.7.18.5.6 Serial /O Example Lc.ccvvevivienieiieiieienne 300
7.7.18.6 Serial I/O Application Testing..........cceevevvereeervereeennnnn. 302
7.7.18.6.1 Configure HyperTerminal...........c.cccooevvevvrnirnnn. 302
7.7.18.6.2 Create Send-Text Fileccoceveviiiiincncncnene. 304
7.7.18.6.3 Create Text-Capture File..........coceveeiiiiininnnnn. 304
7.7.18.6.4 Serial /O Example IT........cccoooiiiininiiiiieee 305
7.7.18.7 Serial /O Q & A ..ooeieeeeeeee e 310
7.7.19 String OPerations.......cceeveerueereerierienieeneeeeeeeeeeeesieenieenee e enees 313
7.7.19.1 String OPerators.......ccceecueeeeeierienieenieeeeeee e seeeseee e 313
7.7.19.2 String Concatenation.............cceeeerueereenuereeseeneeneeeneeenns 314
7.7.19.3 String NULL Charactercccceevvevieeeieeiereeneeneeenenns 316
7.7.19.4 Inserting String Characterscceeveeveriereeneenieenennn, 317
7.7.20 SUDTOULINESc.veviteiieiieiieieie ettt ettt eeee e 317

8. Operation.......ccooeeiiiciiiirrcrrcrrrcr e e 321

8.1 Measurements — Details..........ccoecverierienieienie e 321
8.1.1 Time Keeping — Details.........ccerieriirveriienienienreieeieeieins 321
.1.1.1 Time StAMPS ..eecveeveeierirereeeriieriieieereereeeeesseeieeseeneesenes 321

8.1.2 Analog Measurements — Details.........ccccereerieriieniieienieenns 323

Table of Contents

8.2

8.3

8.4

8.1.2.1 Voltage Measurement Qualityccccecereeierenenennns 324
8.1.2.2 Thermocouple Measurements — Details...........c.cccc... 341
8.1.2.2.1 Thermocouple Error Analysis...........ccccverurennenne. 342
8.1.2.2.2 Use of External Reference Junction.................... 352
8.1.2.3 Resistance Measurements — Details..........cccccoeevenennene 353
8.1.2.3.1 Ac EXCitationccceveeiieiiiiiiiiie e 356
8.1.2.3.2 Accuracy — Resistance Measurements.............. 356
8.1.2.4 Auto Self-Calibration — Detailsccccooceerercrnenncn. 358
8.1.2.4.1 Auto Self-Calibration Process...........cccecceruveene. 358
8.1.2.5 Strain Measurements — Detailscccccoveriirinenncn. 364
8.1.2.6 Current Measurements — Details...........ccccoerrcinnnncn. 366
8.1.2.7 Voltage Measurements — DetailScccoeververrennnnns 366
8.1.2.7.1 Voltage Measurement Limitations...................... 366
8.1.2.7.2 Voltage Measurement Mechanics....................... 369
8.1.2.7.3 Voltage Measurement Qualityc..cceeevrenenne. 374
8.1.3 Pulse Measurements — DetailS........ccevevereneneninienienenenne, 391
8.1.3.1 Pulse Measurement Terminals...........c.ccocevererennenennns 394
8.1.3.2 Low-Level Ac Measurements — Details 394
8.1.3.3 High-Frequency Measurements..........c.cceeeeeveereeeneeennnne 395
8.1.3.3.1 Frequency Resolutionccceceeveenienenienennne. 396
8.1.3.3.2 Frequency Measurement Q & Accceeeveennnee. 397
8.1.3.4 Switch Closure and Open-Collector Measurements 397
8.1.3.5 Edge TiMINgGc..ccvevieirierieiieie e 398
8.1.3.6 Edge Countingccccveevveeieeeerieieenreereereeneesesseennens 399
8.1.3.7 Timer Input on I/O NAN Conditions..........ccccecveerevennee. 399
8.1.3.8 Pulse Measurement TipsS.......cccceevveerveeniiencieenieeneeenene. 399
8.1.3.8.1 Pay Attention to Specifications.............ccoeeuvennee.. 401
8.1.3.8.2 Input Filters and Signal Attenuation................... 402
8.1.4 Vibrating Wire Measurements — Detailsc.ccocerereeeennen 404
8.1.4.1 Time-Domain Measurement.............cceeeereeeruenueneenneens 404
8.1.5 Period Averaging — Detailsccceriiiiinieniiiiieeeeees 405
8.1.6 Reading Smart Sensors — Detailscccceveeiiiiiiiiniinenes 406
8.1.6.1 RS-232 and TTL — Details.......cceeoeerierieiiiiiiieiens 406
8.1.6.2 SDI-12 Sensor Support — Details..........cccceveeerieneencn. 407
8.1.7 Field Calibration — OVETVIEWcc.ceceeeerenienienienienieniceieeenen 407
8.1.8 Cabling Effects — Details........c.occvrverienienieiesie e 408
8.1.8.1 Analog Sensor Cabling...........ccceceerverierireviieienienieennnn 408
8.1.8.2 Pulse Sensor Cablingcceceveverienieniieieeieeiesieenenn 408
8.1.8.3 RS-232 Sensor Cabling...........cccocvereereerieecieeienienieennns 408
8.1.8.4 SDI-12 Sensor Cabling........cccoeveerieneeieeiieieneeieenene 408
8.1.9 Synchronizing Measurements — Detailsccocceevieirnns 409

8.1.9.1 Synchronizing Measurement in the CR1000 —
Details ..o 409

8.1.9.2 Synchronizing Measurements in a Datalogger

Network — Detailsooeeveieriieiieieeiereeeee e 409
Switched-Voltage Output — DetailS.........cccoeevveievienienieieeieeeens 410
8.2.1 Switched-Voltage EXCItation..........cccvvvververeerieriieieereeveeenns 411
8.2.2 Continuous-Regulated (5V Terminal)........cccceevveevvernieennnenne. 412
8.2.3 Continuous-Unregulated Voltage (12V Terminal)................... 412
8.2.4 Switched-Unregulated Voltage (SW12 Terminal) 412
PLC Control — Detailscooeiierieniiniiiiiiieieieieeeeeeee e 413
8.3.1 Terminals Configured for Control........c..ccccocevereriecienicncnenne. 414
Measurement and Control Peripherals — Detailscc.cccccoeenenene 415
8.4.1 Analog Input Modules..........cccceererieviininininineneeceeeneee 415
8.4.2 Analog Output Modulesceceveeeeiiniinenineneneeieeeeneenne 416

15

16

Table of Contents

8.4.3 PLC Control Modules — OVerview.........cccceevereeeeienienennenn 416
8.4.3.1 Relays and Relay Driversccccveevvecieeienienieieeeeen. 416

8.4.3.2 Component-Built Relays..........cccccoevvirciiniinienieieeeeen, 416

8.4.4 Pulse Input ModULeS........cccveviiriieiieieeieeie et 417
8.4.4.1 Low-Level Ac Input Modules — Overview 417

8.4.5 Serial I/O Modules — Detailscccceeouerierienieniiiiieieces 418
8.4.6 Terminal-Input Modules..........cccceririiriniieniiniee e 418
8.4.7 Vibrating Wire Modules.........ccccoeviriinieiienieniiceeececeees 418

8.5 Datalogger Support Software — Detailsccceeveeiiiiiniiniene 418
8.6 Program and OS File Compression Q and A........ccccceeieirienrenene 419
8.7 Security — Detailscccceeriiiiiieiee e 422
8.7.1 VUuInerabilitiesccceoueieierereniiieeeceeee e 423
8.7.2 Pass-Code LoCKOUL.......c.cccueriiriiriiininiciececcceeee 424
8.7.3 PaSSWOIMS ...eeiiiiiiiiiiieieeiteeese et 425
8.7.3.1 .CSIPASSW ..ecvvieerieeieeiieiieieeie ettt 425

8.7.3.2 PakBus INStructionscceceeereeienieneneneneneeieeenen 425

8.7.3.3 TCP/IP INStrUCtiONS. ...cuveveveriireeriieiieieiesie et eieeeenes 426

8.7.3.4 Settings — Passwords..........ccoecveeieeienienieneeeee e 426

8.7.4 File ENCryption.......ccoecuieiiniieniieiiee e 426
8.7.5 Communication ENCryption.........cccceeeeeveeerienienieieeieeeeeeens 427
8.7.6 Hiding Filescccieiiriiiieieieeee et 427
8.7. 7 SIZNALUIES ..c.veveiureniiiiiieieeieeieetetet ettt 427
8.7.8 Read Only Variablescccocveevieierieiienieeie et 427

8.8 Memory — DetailSc.covcuiieiiieeiieeieeciie e 428
8.8.1 Storage Mediacceeevuiiiiiieiiieieciie e 428
8.8.1.1 Memory Drives — On-Board..........c.ccceeevvervreenciiennenns 431
8.8.1.1.1 Data Table SRAM.......cccoooeririimeenirecceeenee 431

8.8.1.1.2 CPU: DIIVE et 431

8.8.1.1.3 USR: DIIVE .evieiiiieieiiiesie et 432

8.8.1.1.4 USB: DIIVE .euieuieiiiieiiiesie e 432

8.8.1.2 Memory Card (CRD: Drive).....ccccoecieienienieneeiceenne. 433

8.8.2 Data File FOrmatscccceceriiniinieniieiie e 435
8.8.3 Memory Cards and Record Numbersccccceeveerieiinniencnns 439
8.8.4 Resetting the CR1000..........ccceiiiiiiiiiiiii e 440
8.8.4.1 Full Memory Resetccccvervieriieriieiieieeieieeieee e 441

8.8.4.2 Program Send Reset........cccovveviveiieiinienieieieee e, 441

8.8.4.3 Manual Data-Table Resetccceeevinenininenieiennne, 442

8.8.44 Formatting DIivesS........ccoovvevieriiecieeieeienieeieeie e 442

8.8.5 File Management in CR1000 Memory.........cccovervrerenrvenrrenenns 442
8.8.5.1 File AttribULesoouveeveeeieieiiee e 444

8.8.5.2 Files Managerccceevueeiuieiieiiieieeiesce et 445

8.8.5.3 Data Preservation.........ccoceeveeeeeieneenienieeeee e 446

8.8.5.4 Powerup.ini File — Detailsccoceviiiieiiniieee 446
8.8.5.4.1 Creating and Editing Powerup.ini....................... 447

8.8.5.5 File Management Q & Accooovveiieieiieiieeee e 450

8.8.60 File NaAMES. ...cceiiiiiiiiieiieieieeee e 451
8.8.7 File System EITOrS......c.cccvevieiiieiieiicieceesie et 451
8.8.8 Memory Q & A .oooeiieiieeeeeeeeee e 452

8.9 Data Retrieval and Comms — Details........c..ccocceveeviniiniincnennn. 453
8.9.1 ProtoCOlS....ccueiriiiiiiiiiiiniteieceee e 453
8.9.2 Conserving Bandwidth............coooeeviviiiiiiniiiiciieieeeeeeeeee 453
8.9.3 Initiating Comms (Callback)ccccocerverereecienienininencncneene 453
8.10 Alternate Comms Protocols..........cceecerierieiienienieeeeeeeeeeeee 454
8.10.1 TCP/IP — DetailS......ccveeeieiieeieiieieieeieeieeie ettt eenns 455
8.10.1.1 FYIs — O82; OS28 ...cveieiirieieierieiee et 455

Table of Contents

8.10.1.2 DHOECP ittt 456
8.10.1.3 DNS Lttt 456
8.10.1.4 FTP SeIVer....ccocieoiieiiniieniieiicieeieeereeseeeeere e 456
8.10.1.5 FTP ClENt....coiiiiiiriirieriieiicicieiestese et 456
8.10.1.6 HTTP Web Servercocceoueieieneninenininceieieenenans 456
8.10.1.6.1 Default HTTP Web Server.........ccccceevereeneenee 456
8.10.1.6.2 Custom HTTP Web Server........cccccoeereneennne. 457

8.10.1.7 Micro-Serial Servercccceriererieiiienienieieeeeeeeene 460
8.10.1.8 ModbUS TCP/IPoceieieiieiieieieiesieee e 460
8.10.1.9 PakBus Over TCP/IP and Callbackcccceeurrennns 461
8.10.1.10 Ping (TP).c.eeeueeieiee ettt 461
L0111 SNMP i 461
810112 TeIN@L ...veeeeiieiieieiesieet e 461
810113 SMTP .. 462
8.10.1.14 Web API ..o 462
8.10.1.15 Web API — Detailscceeeeeeieieniiniencnenceieeeene 462
8.10.2 DNP3 — Details....ceeieieiiieriieiiriieiieieeie e 462
8.10.3 Modbus — Detailscceecieiiieierieiieriereee e 463
8.10.3.1 Modbus Terminologycceccvreereerienieieeieeieseeieens 463
8.10.3.1.1 Glossary of Modbus Terms...........cccccververerenennne 464

8.10.3.2 Programming for Modbus...........cccceevierieniiiinienceee 464
8.10.3.2.1 Declarations (Modbus Programming)................. 464
8.10.3.2.2 CRBasic Instructions (Modbus)..........cceceveneeee. 465
8.10.3.2.3 Addressing (ModbusAddr)ccceevvevreerrennnnne. 466
8.10.3.2.4 Supported Modbus Function Codes.................... 466
8.10.3.2.5 Reading Inverse Format Modbus Registers......... 467
8.10.3.2.6 TIMING..c.eeuiemieiiiiiieieeteeiieiete et 467

8.10.3.3 Troubleshooting (Modbus)cccceeveerieerieenrienreennenn 467
8.10.3.4 Modbus OVEr IPcoocveiieiieieciececeee e 467
8.10.3.5 ModbUS SECUTILY ...covvervieiieiirieeiieeiiesieeie e eeeeseeeeens 468
8.10.3.6 Modbus Over RS-232 7/E/T ..ccceoiiiiiiieieieieeeee 468
8.10.3.7 Converting Modbus 16-Bit to 32-Bit Longs.................. 469
8.11 Keyboard/Display — Detailsccccerveriiriiiniinieneeceieeieeieieene 469
8.11.1 Character Stccceeuerierienieeieee ettt 470
8.11.2 Data DiSplay......ccccceeierierieiieieeie e siee e eere e seneneeens 472
8.11.2.1 Real-Time Tables and Graphscccccvevverrvrreniennnns 473
8.11.2.2 Real-Time CUuStOmM.......cceruiruieieieiinieninieneeieeieeeeienaens 473
8.11.2.3 Final-Storage Data..........ccccevviirieiienieieieere e 475
8.11.3 Run/Stop Program...........ccceeeveeeeerierienienieeneeie e e eeeeseeeieens 476
8.11.4 File Management..........cccecueeueeuenienienieenieeie e 477
B.11.4.1 File Edit..ceoieuieieieiiiiie e 477
8.11.5 PCCard (Memory Card) Managementccceceeveenueenueencns 479
8.11.6 Port Status and Status Table..........cccceeiieririiiiiiereceeee 479
8117 SEUINES ...eeeeeeiieeiieitiestt ettt ettt ettt st e e ene 480
8.11.7.1 CRI1000KD: Set Time / Date........cccevvereerereeeerreieannen 481
8.11.7.2 CRI1000KD: PakBus Settingsccccervverreevenverreennenn 481
8.11.8 Configure DISPlaycceevverrieriieiieieniiesieesie e eeesee e sse e 481
8.12 CPI Port and CDM Devices — Detailsccceevereneninencnieenne. 481

9. Maintenance — Detailsc.ccoveiveimiiirieireieirreens... 483

9.1 Protection from Moisture — DetailSccceeveercverienienieieeieeeenns 483
9.2 Internal Battery — DetailSs........c.cccevierieriieneiie e 483
9.3 Factory Calibration or Repair Procedure.............ccocverirvvecrrnnnnnnnne 487

Table of Contents

10. Troubleshooting.......ccccccoimrmiiiricciiircccrrece . 489

10.1 Troubleshooting — Essential TOOIScceevevirecienienienieieeieeen. 489
10.2 Troubleshooting — Basic Procedure...........ccceeveriveirecienienieiennn. 489
10.3 Troubleshooting — Error SOUICES.........ceecverieriieriieieeieeieeeeieene 490
10.4 Troubleshooting — Status Table...........ccooevevierieriieiieieceeeeee, 491
10.5 Troubleshooting — CRBasic Programsccoccvevvveeveeienvennnenne. 491
10.5.1 Program Does Not Compilecccevcverierieriieciieiecieeieeieenne. 491
10.5.2 Program Compiles / Does Not Run Correctlycccccevueeneeeee. 492
10.5.3 NAN and £INF ..o 492
10.5.3.1 Measurements and NAN........cccccerirmirrinieiienceneeeenn 493
10.5.3.1.1 Voltage Measurements............cceceereeereeereeneennenns 493

10.5.3.1.2 SDI-12 Measurementscceceerveereeerveennueenns 493

10.5.3.2 Floating-Point Math, NAN, and +INFc..ccccceennen. 493

10.5.3.3 Data Types, NAN, and £INFcccceevrvercinrieriene, 493
10.5.3.4 Output Processing and NAN........ccccccvevvirvveicienienieenene, 495

10.5.4 Status Table as Debug ReSourceccccveeveveveriereeneenreennene, 496
10.5.4.1 CompileResults........ccceevrieiieiiniinieieeieeie e 497
10.5.4.2 SKIppedScanccccoeevvieeieienieniieieere e e seee e enis 498

10.5.4.3 SkippedSystemScan.ccceereereeiierienieneeneee e 499

10.5.4.4 SkippedRecord..........ccovirrieiieiieiieeeece e 499

10.5.4.5 ProgEITOTS.....covuiiiiiiiniieieecieeeeeeeee e 499
10.5.4.6 MeMOTYFTEE ..c..eeviiiiiiiiiiiiiiieiceeeeeeeeeeeee e 499
10.5.4.7 VarOutOfBounds.........ccceeceeeieriieniieiieieeeeseeeeee e 499

10.5.4.8 Watchdog EITOTScceviviriniiieiiicnicncnceecceeeecenne 500
10.5.4.8.1 Status Table WatchdogErrorsc..cceeveeeennen. 500

10.5.4.8.2 Watchdoginfo.txt Fileccceeevevrienreeniieniens 501

10.6 Troubleshooting — Operating SyStemS.........ccceevveercreeerreercreensreennnes 501
10.7 Troubleshooting — Auto Self-Calibration Errorsccccceveeneenne. 501
10.8 Troubleshooting — CommuUNICAtiONS.......c.ceecvveerreerreeerieeeieeeieennnes 502
LO.8.1 RS-232. ittt 502
10.8.2 Communicating with Multiple PCS.........cccceeviniininininnee, 502
10.8.3 Comms Memory EITOrS.cooueiierienieiiiieeieiceeeeee e 503
10.9 Troubleshooting — Power Supplies........ccccoeerviriinienienieeeeee, 503
10.9.1 Troubleshooting Power Supplies — Overviewccccceeee.ee. 503
10.9.2 Troubleshooting Power Supplies — Examples..........cccccc.ee..... 504
10.9.3 Troubleshooting Power Supplies — Procedures....................... 504
10.9.3.1 Battery TeSt...ueeueeeriieeiieeiieeiieeiee ettt 504
10.9.3.2 Charging Regulator with Solar Panel Test..................... 505
10.9.3.3 Charging Regulator with Transformer Test................... 507
10.9.3.4 Adjusting Charging Voltagecccceevvvvciervereenneennenne 508

10.10 Troubleshooting — Using Terminal Modeccceevevveneenieennnnne. 509
10.10.1 Serial Talk Through and Comms Watchccoccoeienieninnen. 512
10.11 Troubleshooting — Using LOGSccceevierieiiiiiieieeieeeeeie e 512
10.12 Troubleshooting — Data Recovery.........ccevvrvirinieiieieeeeeeee, 512
10.13 Troubleshooting — Miscellaneous Errors..........cccceeveieeiveieenennen. 513
10.13.1 Voltage Calibration Error!...........cocceeiieiiiiinieeeeeeeeeen 513
10.14 Troubleshooting — Rebootingccccceevieviieiiniinieieeeie e, 514
11, GlOSSArY......coiiieeeecir e rrreerr e e e e e e e e e e e e e eees 515
0 B N 4 o' SO PSSR 515
L1.2 COMCEPLS -eeeueieeniieeiee ettt ettt sttt sttt st st e st esabeenaeees 549

11.2.1 Accuracy, Precision, and Resolution.........c..c.ccecevceeienicncncnnene 549

Table of Contents

12, AttribUtionsS......c.ceieieiiiiircecrcecrerre e e re e eanes DD

Appendices

A. Info Tables and Settings..........ccccceeeevirmreeecnneeeneenns 553
A.1 Info Tables and Settings DIireCtOTiesccvveerveeerieeerieeiieeie e eiee e 555
A.1.1.1 Info Tables and Settings: Frequently Used...................... 555
A.1.1.2 Info Tables and Settings: Keywords..........cccccerverueenennen. 556

A.1.1.3 Info Tables and Settings: Accessed by Keyboard/
DISPIAY .ttt 558
A.1.1.4 Info Tables and Settings: Communications..................... 560
A.1.1.5 Info Tables and Settings: Programming 561
A.1.1.6 Info Tables and Settings: Otherccoeevevvereereenennen. 561
A.2 Info Tables and Settings Descriptions.ccceeveereeeienienieneeneeeennee. 562
B. Serial Port Pinouts...........ccccceiiiiiiiniiiniins 581
B.1 CS I/O Communication Portc.cceccevviriinienieieienienienceeeee, 581
B.2 RS-232 Communication Port...........ccceeviiiiiiiniinieseeeeeeenceeee 582
B.2.1 P OULS e e 582
B.2.2 POWET Stateseeiieiiiiieiiieiieieeie et 583
FP2 Data Format ... 585
Endianness.......ccccccciiiiimieciiiiiri s 587

Supporting Products — List........cccccceeivimreeencinnnnes 589

E.1 Dataloggers — LiSt.....c.cecuirierieriieieeie et 589
E.2 Measurement and Control Peripherals — List........cccccccvvevveiriveennnenne. 590
E.3 Sensor-Input Modules — LiSt........ccceeeveeieiiieiieiiieeie e 590
E.3.1 Analog Input Modules — LiSt.......ccccoevieiiniiniinienieeeeee, 590
E.3.2 Pulse Input Modules — LiSt......cccceeeveeriiieecieeiiieeieecieeeieens 590
E.3.3 Serial I/O Modules — Listccccoevieeieneninininenieieicienns 591
E.3.4 Vibrating Wire Input Modules — Listcccecvevvevieecrennennen. 591
E.3.5 Passive Signal Conditioners — LiStcccceervverreerirecrennennen. 591
E.3.5.1 Resistive-Bridge TIM Modules — List........ccceecveeeneneen. 592

E.3.5.2 Voltage Divider Modules — LiStcccccvervvecrrecrenerenen. 592

E.3.5.3 Current-Shunt Modules — LiStccccoeeuerieniencenenennn. 592

E.3.5.4 Transient Voltage Suppressors — Listc.ccccceevennennee. 592

E.3.6 Terminal Strip Covers — LiStccceeevieriiieeiieiiieeieecieeeiees 593

E.4 PLC Control Modules — LiStSccoouerierienieiieieeienieiceeeie e 593
E.4.1 Digital-I/O Modules — Listcccceeeevieiiiniinienieceeeeee, 593
E.4.2 Continuous-Analog Output (CAO) Modules — List.............. 594
E.43 Relay-Drivers — LiSt ...cccccevciiiienieiieieereeieseeeee e 594
E.4.4 Current-Excitation Modules — Listccoecvevverieniieciennennen. 594

E.5 Sensors — LIStS c..cccuerierieririininiieiieeie sttt e 595
E.5.1 Wired-Sensor Types — LiSt....cccocvvevieviieienienieieeieeie e 595
E.5.2 Wireless-Network Sensors — Listccceceveniniinininncniennn, 596

E.6 Cameras — LiSt ...cccoooueiiiriiriiiiieieieeee e 596
E.7 Data Retrieval and Comms Peripherals — Listccccceevieiiriennennen. 597
E.7.1 Keyboard/Display — LiSt......cccceerirrirriiiienierieeeieee e 597

19

20

Table of Contents

E.7.2 Hardwire, Single-Connection Comms Devices — List.......... 598

E.7.3 Hardwire, Networking Devices — Listcccoevvevercienrennne. 598

E. 7.4 TCP/IP Links — LiSt...cccoeoininienininieieienieneneeeeeeeie e 598

E.7.5 Telephone Modems — LiSt.......cccccuevrierieenieeienieriesienieenee e 599

E.7.6 Private-Network Radios — LiStc.ccccevvevenenincnenieienenne, 599

E.7.7 Satellite Transceivers — LiSt.......ccccecceereeieriieniienieneeneeeee 599
E.8 Data Storage Devices — LiSt......cccooiiiiiiinieiieieececieeeeee e

E.9 Datalogger Support Software — List
E.9.1 Starter Software — List

List of Figures

E.9.2 Datalogger Support Software — Listccceeoeevieninninnenne 601
E.9.2.1 LoggerNet Suite — LiSt......cceoieiiriiieiinienieeeieeee e 602
E.9.3 Software Tools — LiSt.....cccecueriererineriiieieieeneseseeeeeeenen 603
E.9.4 Software Development Kits — LiSt......c.cccevvverieriieciercrennenne. 604
E.10 Power SUpplies — LiSt.....ccccceicierierieiieieereeeesieeie e 605
E.10.1 Battery / Regulator Combinations — Listccccceeveevernennne. 605
E.10.2 Batteries — LiSt.....ccccoieriririeieienieierceceeeeesee e 605
E.10.3 Regulators — LiSt......ccccevierierieeiieieeieeieseeie e 606
E.10.4 Primary Power Sources — LiStcccoeeierienienieiieieeieene 606
E.10.5 24 Vdc Power Supply Kits — List ...ccoocveeierieieiieeeieeee 607
E. 11 Enclosures — LSt ...ccoeoirierieiieriiese e 607
E.12 Tripods, Towers, and Mounts — LiSt........cccoecvereerieienienienenne. 608
E.13 Protection from Moisture — LiStcceevevvierienienieeeieeeee 609
... 611
FIGURE 1: Wiring Panelcccccccveiviieeiieiieeiie ettt 37
FIGURE 2: Connect Power and COmMMS..........ccceereerirnienienieneenieeieeienieens 41
FIGURE 3: PC200W Main Window.........ccccocereeienienenenineneeieeeiene e 42
FIGURE 4: Short Cut Temperature Sensor Folderccocovvivveceniennnnne 44
FIGURE 5: Short Cut Outputs Tabcceecvveierieriieieeie e 45
FIGURE 6: Short Cut Compile Confirmation Window and Results Tab...... 46
FIGURE 7: PC200W Main Window.........c.ccocererienienienenineneneeeeiene e 47
FIGURE 8: PC200W Monitor Data Tab — Public Table.......c..c.cccceeueuenenne. 48
FIGURE 9: PC200W Monitor Data Tab — Public and OneMin Tables 49
FIGURE 10: PC200W Collect Data Tab.........ccccereeriiieiienieneeeeieeieene 49
FIGURE 11: PC200W View Data Utilitycccooeveverinenininenieineecseene 50
FIGURE 12: PC200W View Data Table.........ccceceveirinenininieiecneecneene 51
FIGURE 13: PC200W View Line Graph..........ccccoevevenenninenernenecneen, 52
FIGURE 14: Data Acquisition System Componentscecceeveeceeeeennenne 53
FIGURE 15: Data Acquisition System — OVEIVIEWcccvevveerveevervennnnns 56
FIGURE 16: Wiring Panelc..cccoevieiiiiieniieiieie e 58
FIGURE 17: Control and Monitoring with C Terminals..............ccoccvervennn. 60
FIGURE 18: Analog Sensor Wired to Single-Ended Channel #1.................. 67
FIGURE 19: Analog Sensor Wired to Differential Channel #1 67
FIGURE 20: Half-Bridge Wiring Example — Wind Vane Potentiometer ... 70
FIGURE 21: Full-Bridge Wiring Example — Pressure Transducer............. 71
FIGURE 22: Pulse Sensor Output Signal Types.......cceocveoeereerienveceneennne 72
FIGURE 23: Pulse Input Wiring Example — Anemometercccc...... 73
FIGURE 24: Terminals Configurable for RS-232 Input.......ccccccocenerenenen. 76
FIGURE 25: Use of RS-232 and Digital I/O when Reading RS-232
DIEVICES ...ttt 76
FIGURE 26: CR1000KD Keyboard/Displaycccccceeerieereeeniieeriresieeennen. 83

Table of Contents

FIGURE 27: Custom Menu Examplecccceovvviiioiiniinieieeeeeeeeine 84
FIGURE 28: ENCLOSUT® ...c..eveiiiiiiieiiieieniesiesieeieeicetetetese ettt 97
FIGURE 29: Connecting to Vehicle Power Supply........cccecevvevieneennnnen. 100
FIGURE 30: Schematic of Grounds............cccceceeeeevierenenenenieeeienenennene 102
FIGURE 31: Lightning Protection Scheme...........ccccccevvvevieviecienienieenne, 103
FIGURE 32: Model of a Ground Loop with a Resistive Sensor 106
FIGURE 33: Device Configuration Utility (DevConfig).........cccccceveenuennne. 108
FIGURE 34: Network Planner Setupcccceeviiiininieiieeeeeeeeee, 109
FIGURE 35: "Include" File Settings With DevConfigcccceecueveenuennne. 115
FIGURE 36: "Include" File Settings With PakBusGraph..........c.ccccceouee... 115
FIGURE 37: Summary of CR1000 Configuration............ccecceecueeueneenueenne. 124
FIGURE 38: Sequential-Mode Scan Priority Flow Diagrams 162
FIGURE 39: CRBasic Editor Program Send File Control window 176
FIGURE 40: Running-Average Frequency Response.............ccoevvevvveveenen. 195
FIGURE 41: Running-Average Signal Attenuation...............cccceevverveerveennnne 195
FIGURE 42: Data from TrigVar Programcccccceevvevuieviieieneeneeieennns 197
FIGURE 43: Alarms Toggled in Bit Shift Exampleccccccccoveninincnne. 199
FIGURE 44: Bool8 Data from Bit Shift Example (Numeric Monitor)....... 200
FIGURE 45: Bool8 Data from Bit Shift Example (PC Data File) 200
FIGURE 46: Input Sample VECtOrsccceereerieeieeieeiesieeieee e 208
FIGURE 47: Mean Wind-Vector Graphc..cocceceveecienicicninicncnenceenn 209
FIGURE 48: Standard Deviation of Directioncccccevvereeeenieneeneenne. 210
FIGURE 49: Standard Deviation of Directioncccceceeeuerenenenencnnenne 210
FIGURE 50: Custom Menu Example — Home Screen..........cccceeveeneenneen. 218
FIGURE 51: Custom Menu Example — View Data Window.................... 218
FIGURE 52: Custom Menu Example — Make Notes Sub Menu............... 218
FIGURE 53: Custom Menu Example — Predefined Notes Pick List......... 219
FIGURE 54: Custom Menu Example — Free Entry Notes Window.......... 219
FIGURE 55: Custom Menu Example — Accept / Clear Notes Window.... 219
FIGURE 56: Custom Menu Example — Control Sub Menu...................... 220
FIGURE 57: Custom Menu Example — Control LED Pick List 220
FIGURE 58: Custom Menu Example — Control LED Boolean Pick

LLST 1ottt 220
FIGURE 59: Quarter-Bridge Strain Gage with RC Resistor Shunt 239
FIGURE 60: Strain Gage Shunt Calibration Start.............ccccceeenvieneneenen. 241
FIGURE 61: Strain Gage Shunt Calibration Finishc.c.ccoccevvenvennnnen. 241
FIGURE 62: Zero Procedure Start...........cocoeeeerieienenenenenieeeienienennee 242
FIGURE 63: Zero Procedure Finish.........c.ccocceievieiiininininniiicccnce 242
FIGURE 64: Entering SDI-12 Transparent Mode..........c.ccccvevenenencnnene. 251
FIGURE 65: PT100 BrHalf4W() Four-Wire Half-Bridge Schematic......... 272
FIGURE 66: PT100 BrHalf3W() Three-Wire Half-Bridge Schematic....... 276
FIGURE 67: PT100 BrFull() Four-Wire Full-Bridge Schematic................ 280
FIGURE 68: HyperTerminal New Connection Description 302
FIGURE 69: HyperTerminal Connect-To Settings..........cccecueveereeneenenee. 303
FIGURE 70: HyperTerminal COM Port Settings Tab: Click File |

Properties | Settings | ASCII Setup... and set as shown........................ 303
FIGURE 71: HyperTerminal ASCIL S€tUpccceovvevveeeerierienieieereeieeenns 304
FIGURE 72: HyperTerminal Send-Text File Example..........ccccccevvenennnne. 304
FIGURE 73: HyperTerminal Text-Capture File Examplec.ceeneen. 305
FIGURE 74: Input voltage rise and transient decay............ccoevvevvvecrrevernnnns 329
FIGURE 75: Settling Time for Pressure Transducerc..cccvevvevvenennenne. 331
FIGURE 76: Example voltage measurement accuracy band, including

the effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to

40 °C. ...

.. 340

21

22

Table of Contents

FIGURE 77: Panel Temperature Error SUmmaryccccecceeevvenienenennenn 343
FIGURE 78: Panel Temperature Gradients (low temperature to high)....... 344
FIGURE 79: Panel Temperature Gradients (high temperature to low)....... 344
FIGURE 80: Input Error Calculationcceeeveevereenieneenieeie e 347
FIGURE 81: Diagram of a Thermocouple Junction BoXc.ccoccvvenenneene 353
FIGURE 82: PGIA with Input Signal Decompositioncccccceceerueennenne. 369
FIGURE 83: Simplified voltage measurement sequence.c.ccceceeeueene 370
FIGURE 84: Programmable Gain Input Amplifier (PGIA): H to V+, L

to V—, VH to V+, VL to V- correspond t0 teXt.........ccccereeereeneaneannene 371
FIGURE 85: Ac Power Noise Rejection Techniques..........cccceeveeveenrncene 377
FIGURE 86: Input voltage rise and transient decay...........ccooceeveereenrreenne 379
FIGURE 87: Settling Time for Pressure Transducer............c.ccoceverercnncnne. 381
FIGURE 88: Example voltage measurement accuracy band, including

the effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to

40 PC. ittt e e 390
FIGURE 89: Pulse Sensor Output Signal Types.......ccccceeveevveecveevenvenenenne. 392
FIGURE 90: Switch Closure Pulse Sensorcccoeeeveerienieneeieeeeeee 392
FIGURE 91: Terminals Configurable for Pulse Input............ccccceevvrinens 393
FIGURE 92: Amplitude reduction of pulse count waveform (before and

after 1 pus ps time-constant filter).........ccoocvevveiieiieiiiiereeee e 403
FIGURE 93: Vibrating Wire SENSOrccccoeverererereeieienieneneneneeeene 404
FIGURE 94: Input Conditioning Circuit for Period Averaging.................. 406
FIGURE 95: Circuit to Limit C Terminal Input to 5 Vdc.......cceeevvvevennnne. 407
FIGURE 96: Current-Limiting Resistor in a Rain Gage Circuit................. 408
FIGURE 97: Current sourcing from C terminals configured for control 415
FIGURE 98: Relay Driver Circuit with Relaycccccovvvveniiiniiieniieienen, 417
FIGURE 99: Power Switching without Relay..........cccooevvevvieniienieeniennen. 417
FIGURE 100: Preconfigured HTML Home Pageccccccccvineninencnnnee. 457
FIGURE 101: Home Page Created Using WebPageBegin() Instruction..... 458
FIGURE 102: Customized Numeric-Monitor Web Page...........cccoevenneeee. 459
FIGURE 103: CR1000KD: Navigation..........cccceecueeveniereesieerenneneneseeennes 471
FIGURE 104: CR1000KD: Displaying Datacccecvereeriecrenrenrenenenne 472
FIGURE 105: CR1000KD Real-Time Tables and Graphs...........c..c........... 473
FIGURE 106: CR1000KD Real-Time Customccccceveerieeienieneeneenne. 474
FIGURE 107: CR1000KD: Final Storage Dataccccceveerieneeneenenenne 475
FIGURE 108: CR1000KD: Run/Stop Programccccceeeeenieneinennniennne 476
FIGURE 109: CR1000KD: File Managementccceceereereeneeneeneeneenne 477
FIGURE 110: CR1000KD: File Editcceoerinieininieinincireieincsecnenne 478
FIGURE 111: CR1000KD: PCCard (Memory Card) Management............ 479
FIGURE 112: CR1000KD: Port Status and Status Tablec.ccceeeneene. 480
FIGURE 113: CR1000KD: Settingscceevveeueeieniieniienieeieeie e 480
FIGURE 114: CR1000KD: Configure Display........c.cccoceeverrereniencancnne 481
FIGURE 115: Loosen Retention SCreWS.......cceevereeriereenienieiie e 485
FIGURE 116: Pull Edge Away from Panel.............cccccoooiiiniiininiine 486
FIGURE 117: Remove Nuts to Disassemble Canister.........cc.cccceeevuenuennene 486
FIGURE 118: Remove and Replace Battery..........ccoccveveevvecienienienienne, 487
FIGURE 119: Potentiometer R3 on PS100 and CH100 Charger /

REGUIALOTviiiieiieie ettt st et eeaeeseens 509
FIGURE 120: DevConfig Terminal Tab........c.ccccoecvervierieninieiieeieeeenn, 511
FIGURE 121: Relationships of Accuracy, Precision, and Resolution 550

Table of Contents

List of Tables

TABLE 1: PC200W EZSetup Wizard Promptscccceevenieviecireieniennenn 43
TABLE 2: CR1000 Wiring Panel Terminal Definitions...........c.ccecevceeeennnee. 58
TABLE 3: Differential and Single-Ended Input Terminalsccccccoeueeee. 68
TABLE 4: Pulse Input Terminals and Measurements............c.ccoceeeveereeenne. 73
TABLE 5: Info Tables and Settings Interfacesccccoeeeveirciencienveneennnns 111
TABLE 6: Common Configuration Actions and Toolsc..ceceeceeveeiennne 118
TABLE 7: Program Send Command Locations...........ccecceeeereencenceneennne 121
TABLE 8: CRBasic Program Structureccoceveereenennieniencenceneeeeene 125
TABLE 9: Data Types in Variable MemOrycccceeveeriiriiienieniceneeeeane 132
TABLE 10: Data Types in Final-Storage Memorycccccoeceveeeneeneennnne 133
TABLE 11: Formats for Entering Numbers in CRBasic............ccoeceerreenne 144
TABLE 12: Typical Data Table..........cccoeoieiiriiiieiieeeeee e 147
TABLE 13: TOAS Environment Line.........ccocoeceveeiinienienenencnencnceeene 147
TABLE 14: Datalnterval() Lapse Parameter Options............c.cceeevervvenvrennnns 151
TABLE 15: Program TasKs..........ccceovveviieviieiieienienieeieeie e seeeseee e eseenneens 156
TABLE 16: Program Timing INnStructions..........cceceeeeeenienieneneneneneeienns 158
TABLE 17: Rules for Namesccccueoererenineneeieieieiesese e 164
TABLE 18: Binary Conditions of TRUE and FALSE............cccceiiiiinnne 169
TABLE 19: Logical Expression EXamplescccccoeeeriinoiiiieneeneeeeenne 170
TABLE 20: Data Process Abbreviations............ccceeceeruerieneeneeneeneeneeeeenne 173
TABLE 21: Program Send Options That Reset Memory'cccoevuene. 176
TABLE 22: WindVector() OutputOpt Options..........ccccveeeeveervreeecveescveennenns 206
TABLE 23: FieldCal() Codesccoieriieriieniieiiieeiieeieeeveesreeeveesvee e 226
TABLE 24: Calibration Report for Relative Humidity Sensor 228
TABLE 25: Calibration Report for Salinity Sensorc.ccoceveverevcenenns 231
TABLE 26: Calibration Report for Flow Meter.........ccceevvevivienienienieenne 233
TABLE 27: Calibration Report for Water Content Sensorcccceveuee 236
TABLE 28: Maximum Measurement Speeds Using VOltSE() 243
TABLE 29: Voltage Measurement Instruction Parameters for Dwell

BUIST ... e 247
TABLE 30: SDI-12 Commands for Transparent Mode...........ccccceveevereene 252

TABLE 31: SDI-12 Commands for Programmed (SDIRecorder()) Mode ..256
TABLE 32: SDI-12 Sensor Configuration CRBasic Example — Results...265
TABLE 33: Example Power Usage Profile for a Network of SDI-12

PIODES. .. 266
TABLE 34: PRT Measurement Circuit OVEIVIEWcccuereververeeereeenieaeenns 270
TABLE 35: PT100 Temperature and ideal resistances (RS); o =

0.00385 ..ottt 271
TABLE 36: Callandar-Van Dusen Coefficients for PT100, oo = 0.00385271
TABLE 37: Input Ranges (MV)cccoeviriiieiiieieeiesieeee et 271
TABLE 38: Input Limits (INV) ...ccoovieiiieiieieeiestesieee et 271
TABLE 39: EXcitation Ranges..........cceccvevvievieeieniieniieieeie e seeseeesee e sneens 272
TABLE 40: BrHalf4W() Four-Wire Half-Bridge Equations 272
TABLE 41: Bridge Resistor Values (M)coceeiieieniininienieceeeeeee 272
TABLE 42: BrHalf3W() Three-Wire Half-Bridge Equations...................... 277
TABLE 43: Bridge Resistor Values (IN€2)c.ccoooerieniiniiienenienceeeeene 277
TABLE 44: PRTCalc() PRTType =1, 0.= 0.00385"coovevovereiiiiea 287
TABLE 45: PRTCalc() PRTType =2, a= 0.00392'.......cocoooviiriirrerernnn. 287
TABLE 46: PRTCalc() PRTType =3, a.= 0.00391"ocoovirereiriiirirnnen. 287
TABLE 47: PRTCalc() PRTType =4, a.= 0.003916"coccevevririirrirnnen. 288
TABLE 48: PRTCalc() PRTType =5, a.= 0.00375"oovirerereeiriiriennen 288

TABLE 49: PRTCalc() PRTType = 6, &= 0.003926"cceovvvrvrirerinnnn. 289

24

Table of Contents

TABLE 50: ASCII / ANSI EQUivalentsccceceeevereerienienieeieeieeieeeeeen 290
TABLE 51: CR1000 Serial POTtSccccoueriiniininiiniirieieieneneneeieeeeeeeene 291
TABLE 52: String OPEratorsc.ecvereereerieeseesreseesseesseenseesessessnesseensees 313
TABLE 53: String Concatenation EXxamplesccccccevenininincnicnienene. 314
TABLE 54: String NULL Character Examplescccccocevveneninencnnennenne. 316
TABLE 55: Analog Measurement Integrationccocceeveveenenienieneennen. 326
TABLE 56: Ac Noise Rejection on Small Signals®ccccoeveeiiinnnnnn. 327
TABLE 57: Ac Noise Rejection on Large Signals'ccccoeveiierinnnnnan. 328
TABLE 58: CRBasic Measurement Settling Times...........cccceeevervenieneennen. 329
TABLE 59: First Six Values of Settling Time Data...........cccceceviinieneennen. 332
TABLE 60: Range-Code Option C Over-Voltages........ccccceoeeverieneeneennen. 333
TABLE 61: Offset Voltage Compensation Options.............cceeeveeververeeennens 336
TABLE 62: Analog Voltage Measurement Accuracy’ccccceevrvveereenen. 338
TABLE 63: Analog Voltage Measurement Offsetsc.ccocevvenerceienenee. 338
TABLE 64: Analog Voltage Measurement Resolution...........c.cceceveeeeneenee. 339
TABLE 65: Limits of Error for Thermocouple Wire (Reference

JUNCHION At 0°C)..uiiiiiiiiieieiecieeiieie ettt ettt re e seae st seenseenre e 345
TABLE 66: Voltage Range for Maximum Thermocouple Resolution! 346
TABLE 67: Limits of Error on CR1000 Thermocouple Polynomials.......... 350
TABLE 68: Reference Temperature Compensation Range and Error 351
TABLE 69: Thermocouple Error Examples.........ccccccceevieeeieiiieecieiiieenene 352
TABLE 70: Resistive-Bridge Circuits with Voltage Excitation................... 354
TABLE 71: Ratiometric-Resistance Measurement Accuracy...................... 357
TABLE 72: CalGain() Field Descriptions............ccceecververiierieeienrenienieennens 360
TABLE 73: CalSeOffset() Field Descriptionsccccceevvvevieeveevenvenieennns 361
TABLE 74: CalDiffOffset() Field Descriptions..........cccceeveveeecveevenveneennns 362
TABLE 75: Calibrate() Instruction Results...........cccoceevieriieviieciinienieieenens 362
TABLE 76: StrainCalc() Instruction Equationscccevevenenencneneenee. 365
TABLE 77: Analog Voltage Input Ranges and Optionscccceeeerueennen. 367
TABLE 78: Parameters that Control Measurement Sequence and Timing..372
TABLE 79: Analog Measurement Integrationccccceceeieecenieneencenne. 376
TABLE 80: Ac Noise Rejection on Small Signals!cocoovevevevevenennnnnee. 377
TABLE 81: Ac Noise Rejection on Large Signals'ccccoeveeiiinnnnnn. 378
TABLE 82: CRBasic Measurement Settling Times.......c...cccceeeverienieneennen. 379
TABLE 83: First Six Values of Settling Time Data............cccoecvvecvvevenenenen. 382
TABLE 84: Range-Code Option C Over-Voltages..........ccoeveveeveevenienieennenn 383
TABLE 85: Offset Voltage Compensation Options.............cceeeveeververieennens 386
TABLE 86: Analog Voltage Measurement Accuracy’c.cccoevevvennnn.. 388
TABLE 87: Analog Voltage Measurement Offsetsc.ccocevvevercrieeenne. 389
TABLE 88: Analog Voltage Measurement Resolution..........c.cccecevveeneenen. 389
TABLE 89: Pulse Measurements: Terminals and Programming 393
TABLE 90: Example: E for a 10 Hz input signal...........ccccocconviniinnnnnen. 396
TABLE 91: Frequency Resolution Comparisoncecceeveeverieneeneennen. 397
TABLE 92: Switch Closures and Open Collectors on P Terminals............. 400
TABLE 93: Switch Closures and Open Collectorsccocveeerienienieennen. 400
TABLE 94: Three Specifications Differing Between P and C Terminals....402
TABLE 95: Time COonsStants (T)c.eeverveerierrvereerieseesseenseessessenseesseesseensens 403
TABLE 96: Low-Level Ac Pules Input Ranges...........cccecveeveevenieneenieennnns 403
TABLE 97: Current Source and Sink Limitsc.ccocevceevievienenenencnenenn. 411
TABLE 98: Typical Gzip File Compression Results...........ccceevrevervennnnnne. 422
TABLE 99: CR1000 Memory Allocationcceevverrierieenieerieenesnesenennes 428
TABLE 100: CR1000 SRAM MEMOTY.....c.coveveriemieiinieieiinieieiesieneenesieneenenne 429
TABLE 101: CR1000 Memory DIivesccoeoevieriereerieieeieeeeseeeeenne 430
TABLE 102: Memory Card States........cccecveerierierieieereerie e 435
TABLE 103: TableFile() Instruction Data File Formats...........c.ccccoeeuenee.. 436

Table of Contents

TABLE 104: File Control FUNCIONS........ccccoerirereeiiieienienenenceieeceieeeene 442
TABLE 105: CR1000 File Attributesccccoevereeierienieneneneneneecereeens 444
TABLE 106: Powerup.ini Script Commands and Applications................... 449
TABLE 107: File System Error Codes.........ccoecuevienieneerienieiiesieneeee e 451
TABLE 108: Modbus to Campbell Scientific Equivalentsccc...... 463
TABLE 109: Modbus Registers: CRBasic Port, Flag, and Variable

EqQUIVALENES ...cueieieiii e e 465
TABLE 110: Supported Modbus Function Codescccecceveereenieneennne 466
TABLE 111: Special Keyboard/Display Key Functions............ccccceeneeene 470
TABLE 112: Internal Lithium Battery Specificationsc.cccoccevvenrennne 484
TABLE 113: Math Expressions and CRBasic Results............ccccccevvenrnene 494
TABLE 114: Variable and Final-Storage Data Types with NAN and

EINF e 495
TABLE 115: Warning Message EXamplescccocvevieeiencieneeneenieenieeneens 497
TABLE 116: CR1000 Terminal Commands..........c.cceceerveruereneneneneneenens 510
TABLE 117: LOg LOCAtIONS.....cceeitieiieiieieeieeiiesieesieesveeeeeveeeeeseeesseesseennens 512
TABLE 118: Program Send Command..........c..ccccoevereeienienenenenenceceneen 537
TABLE 119: Info Tables and Settings Interfacesccoccvvevervenienennnen. 553
TABLE 120: Info Tables and Settings: Directoriescocceevereeneeneeennen. 555
TABLE 121: Info Tables and Settings: Frequently Used.............ccccccerurnnen. 555
TABLE 122: Info Tables and Settings: Keywords...........ccoccveevrienienrnnnen. 556
TABLE 123: Info Tables and Settings: KD Settings | Datalogger............... 558
TABLE 124: Info Tables and Settings: KD Settings | Comports................. 558
TABLE 125: Info Tables and Settings: KD Settings | Ethernet 558
TABLE 126: Info Tables and Settings: KD Settings | PPP.........ccccocvvenee.. 558
TABLE 127: Info Tables and Settings: KD Settings | CST/O IP................. 558
TABLE 128: Info Tables and Settings: KD Settings (TCP/IP) on

CR1000KD Keyboard/DiSplayccceervierieenieenieenieeneeenveesveenenes 558
TABLE 129: Info Tables and Settings: KD Settings | Advanced 558
TABLE 130: Info Tables and Settings: KD Status Table Fields.................. 559
TABLE 131: Info Tables and Settings: Settings Only in Settings Editor559
TABLE 132: Info Tables and Settings: Communications, General 560
TABLE 133: Info Tables and Settings: Communications, PakBus.............. 560
TABLE 134: Info Tables and Settings: Communications, TCP_IP I........... 560
TABLE 135: Info Tables and Settings: Communications, TCP_IPII......... 560
TABLE 136: Info Tables and Settings: Communications, TCP_IP III........ 560
TABLE 137: Info Tables and Settings: CRBasic Program I........................ 561
TABLE 138: Info Tables and Settings: CRBasic Program II 561
TABLE 139: Info Tables and Settings: Auto Self-Calibration 561
TABLE 140: Info Tables and Settings: Dataccccoeeeiiniinieniinreeee 561
TABLE 141: Info Tables and Settings: Data Table Information Table

(DTI) K@YWOIS ..ottt 561
TABLE 142: Info Tables and Settings: MemoOrycccccceveereeneeneenennennne 561
TABLE 143: Info Tables and Settings: Miscellaneous............cccceeveeveeeernne 562
TABLE 144: Info Tables and Settings: Obsolete...........ccccovvrerienianeennen. 562
TABLE 145: Info Tables and Settings: OS and Hardware Versioning........ 562
TABLE 146: Info Tables and Settings: Power Monitorscccccverveennene 562
TABLE 147: Info Tables and Settings: SECUrity.........cccvevvveverevverienierieennns 562
TABLE 148: Info Tables and Settings: Signaturesocceevververeerveennnns 562
TABLE 149: Info Tables and Settings: Bccocevieviiviiiiieieeieeeieeene 563
TABLE 150: Info Tables and Settings: Ccccoocvevierieviieieeieeienieieennns 564
TABLE 151: Info Tables and Settings: Dcccovoveiiiiiiiiiiieeeeeeeee 566
TABLE 152: Info Tables and Settings: Eccooooiiiiiiiiiiieeeeeee 567
TABLE 153: Info Tables and Settings: F........cccoooiiiiiiiiiiniieeeeeeee 567
TABLE 154: Info Tables and Settings: H.........cceccoviiiiiiiiniiieieeeeee 568

25

26

Table of Contents

TABLE 155:
TABLE 156:
TABLE 157:
TABLE 158:

Info Tables and Settings: L........cceovevireeiinienierieeee e 568
Info Tables and Settings: L.......ccccccveviveieeienieieeeie e 569
Info Tables and Settings: Mcccoecvvecierienienieneeie e 570
Info Tables and Settings: Ncccccveeireiierienieieeee e 571

TABLE 159: Info Tables and Settings: Occooeveveverienieniieieeieeieeeeenn 572
TABLE 160: Info Tables and Settings: P.........cccoccoioiniiiiiiiiiiieeeee 572
TABLE 161: Info Tables and Settings: Rc.cccocoiiiniiiiiiiiieieeeee 574
TABLE 162: Info Tables and Settings: S........c.ccoooivienienienieeeieeeeeee 575
TABLE 163: Info Tables and Settings: T..........cccoccoviiniiniiiieieieeieeeene 577
TABLE 164: Info Tables and Settings: Ucccoceviinienieiieceieeieeeee 578
TABLE 165: Info Tables and Settings: Vc.ccoooeiiinienienieeeieeieeeeene 578

TABLE 166:
TABLE 167:
TABLE 168:
TABLE 169:
TABLE 170:
TABLE 171:
TABLE 172:
TABLE 173:
TABLE 174:
TABLE 175:
TABLE 176:
TABLE 177:
TABLE 178:
TABLE 179:
TABLE 180:
TABLE 181:
TABLE 182:
TABLE 183:
TABLE 184:
TABLE 185:
TABLE 186:
TABLE 187:
TABLE 188:
TABLE 189:
TABLE 190:
TABLE 191:
TABLE 192:
TABLE 193:
TABLE 194:
TABLE 195
TABLE 196:
TABLE 197:
TABLE 198:
TABLE 199:
TABLE 200:
TABLE 201:
TABLE 202:
TABLE 203:
TABLE 204:
TABLE 205:
TABLE 206:
TABLE 207:
TABLE 208:
TABLE 209:

Info Tables and Settings: Wcccoevireiivienienieieee e 579
Pinout of CR1000 CS I/O D-Type Connector Port 581
Pin Out of CR1000 RS-232 D-Type Connector Port 582
Standard Null-Modem Cable Pin Outccccccevenireneennne. 582
FP2 Data-Format Bit Descriptionsccccceevveeeveecvesverenenne. 585
FP2 Decimal Locater Bitsccccovivenerieiienieienencncecene 585
Endianness in Campbell Scientific Instruments 587

Dataloggers.eeeeeeieieieiieeie et 589
Analog Input Modules...........ceeieriiiiiiieeeeee e 590
Pulse Input Modules........ccceevieiiiiieiiieeeieeeeee e 591
Serial I/O Modules LiStcccccuevireninenenreeienenenencneeene 591

Vibrating Wire Input Modulesccevveevievieciiecneiieeenne, 591
Resistive Bridge TIM' Modules...........c.c.ccoevevereeeerererenan. 592
Voltage Divider Modulesccecveeireierienieniieeee e 592
Current-Shunt Modulesccceoverinenerieneninenenenceiene 592
Transient Voltage SUPPreSSOTsSccvveververreerieerveesierresenenees 592
Terminal-Strip COVEIS.....covvervieriieiieieeieeieenieeie e eee e 593
Digital /O Modules........ccoceeiieriiiiiiinieniieseeeeeee e 593
Continuous-Analog Output (CAO) Modules..........cccceeneee. 594
Relay-Drivers — Productsccccoeceevienienienieeeceieeee 594
Current-Excitation Modulescccoeverienienienenicieieee 594
Wired Sensor TYPEScceevuienieniieiieieeieeiie e 595
Wireless Sensor Modulesoooueeierienienieneeeee e 596
Sensors Types Available for Connection to CWS900............ 596
CAIMETAS ...ttt 596
Datalogger Keyboard/Displays'ccccoeveeeeeeevenenennnnn. 597
Hardwire, Single-Connection Comms Devices.........c..cc..c..... 598
Hardwire, Networking Devicesccoeeververieneenieenienresnennes 598
TCP/TP Links — LiSt...coierieniiiieiieieeeseceeee e 598

: Telephone Modemscouereerienirnieiie e 599

Private-Network Radioscccvuvvveiiieiiiiiiiieiiieieieeeee e 599
Satellite TraNSCEIVETScouvvvveiieeieiiieeieee e e 599

Mass-Storage DEVICEeSccueeruieriieiieieeieeiieieeeee e 600
CF Card Storage Module..........ccoooiieiiniinienieieieee e 600
Starter SOWATe.......c.coeririiieieeeeeeeeeee e 601
Datalogger Support SOftwarecceeevevvereeriiecieeecie e 601
LoggerNet Suite — List'?coooiioieieeeeeeeeee e 602
SOftware TOOIScoeeieierierininereeeeeeeeee e 603
Software Development Kitscccoevverienieiieiiienienieieeies 604
Battery / Regulator Combinations............cceecveveereeervescrerenene 605
Batteries. .. coveeeeeieeie i 605
RegUIAtOTS. ...coeiiiieie e 606
Primary POWer SOUICESccceevuieiieiiiieiienieceeee e 606
24 Vdc Power Supply Kitsccoeoiieiiniinienieieeeee e 607

Table of Contents

TABLE 210: Enclosures — Productscooeveeeeieeeeeeieeeeeeeeeeeee e 607
TABLE 211: Prewired EncClOSUIES..........cooovieiiiiieeeeeee e 608
TABLE 212: Tripods, Towers, and Mounts...........cccceeververeeerveseeneeneeeenns 608

TABLE 213: Protection

CRBasic EXAMPLE 1:

from Moisture — Productscccoeeveveevneereennn.. 609

List of CRBasic Examples

Simple Default.crl File to Control SW12

TerMINAL..c..ooviiiiiiiiiiiieeee e 113
CRBasic EXAMPLE 2: Using an "Include" File.........cccoceoviiininiininnnn. 116
CRBasic EXAMPLE 3: 'Include' File to Control SW12 Terminal. 116
CRBasic EXAMPLE 4: Inserting Commentsccccceeereereeneeneeneeeenns 129
CRBasic EXAMPLE 5: Data Type Declarations..........ccccceeeveereeneenennenne 135
CRBasic EXAMPLE 6: Using Variable Array Dimension Indices 137
CRBasic EXAMPLE 7: Flag Declaration and USecccceveeveeneeneeenne 138
CRBasic EXAMPLE 8: Using a Variable Array in Calculations................. 140
CRBasic EXAMPLE 9: Initializing Variables............ccccccevvvervenvenieniennenns 142
CRBasic EXAMPLE 10: Using the Const Declaration...............ccceveeveennenne 143
CRBasic EXAMPLE 11: Load binary information into a variable.............. 145
CRBasic EXAMPLE 12: Declaration and Use of a Data Table................... 148
CRBasic EXAMPLE 13: Use of the Disable Variable............ccccccevvernene 153
CRBasic EXAMPLE 14: BeginProg / Scan() / NextScan / EndProg

SYNEAX <.ttt et ettt ettt e be e e sbe e b e sbee e 159
CRBasic EXAMPLE 15: Measurement Instruction Syntax..........c.cccecueeee 163
CRBasic EXAMPLE 16: Use of Move() to Conserve Code Space.............. 166
CRBasic EXAMPLE 17: Use of Variable Arrays to Conserve Code

SPDACE . utteiteeeite e ettt e st e st e st e ettt e st e e et e e s be e et e e s beeenbeesnbeeenbeesnbeennneeans 166
CRBasic EXAMPLE 18: Conversion of FLOAT / LONG to Boolean........ 167
CRBasic EXAMPLE 19: Evaluation of Integerscceevveerveerveenreennen. 168
CRBasic EXAMPLE 20: Constants to LONGs or FLOATS........cccccceceenee. 168
CRBasic EXAMPLE 21: String and Variable Concatenation...................... 171
CRBasic EXAMPLE 22: BeginProg / Scan / NextScan / EndProg

SYNLAX 1.ttt ettt ettt e 177
CRBasic EXAMPLE 23: Conditional Output...........ccocceerererererveneenucnnens 178
CRBasic EXAMPLE 24: Groundwater Pump Test..........coccocenererienenicnnns 179
CRBasic EXAMPLE 25: Miscellaneous Program Features.............cc.c....... 181
CRBasic EXAMPLE 26: Scaling Arraycccoecveveeneeneeseeeeeseeseenieeeens 184
CRBasic EXAMPLE 27: Program Signaturesccccceeeevveevieeecveesveennnnns 186
CRBasic EXAMPLE 28: Use of Multiple Scanscccceevvereverierieneeennns 187
CRBasic EXAMPLE 29: Loading Large Data SetS..........ccccceevereverienieennnns 188
CRBasic EXAMPLE 30: Array Assigned Expression: Sum Columns

ANA ROWS.c.oiiiiiiiiete et 190
CRBasic EXAMPLE 31: Array Assigned Expression: Transpose an

ATTAY ettt ettt ettt st st st e e s 190
CRBasic EXAMPLE 32: Array Assigned Expression: Comparison /

Boolean Evaluationccooeeieiiiiiiiiesceeee e 191
CRBasic EXAMPLE 33: Array Assigned Expression: Fill Array

I 001S) 13 T) 1 TR SR 192
CRBasic EXAMPLE 34: Two Data-Output Intervals in One Data Table ...195
CRBasic EXAMPLE 35: Using TrigVar to Trigger Data Storage............... 198
CRBasic EXAMPLE 36: Bool8 and a Bit Shift Operator.................ccueeunnn. 201
CRBasic EXAMPLE 37: NSEC — One Element Time Array 203
CRBasic EXAMPLE 38: NSEC — Two Element Time Array 204
CRBasic EXAMPLE 39: NSEC — Seven and Nine Element Time

ATTAYS. 1t eutteenite ettt et ettt ete et e et e ettt e abe e tbeesabe ettt enabeeenbeesabeennseesnbeennreas 204

27

28

Table of Contents

CRBasic EXAMPLE 40: NSEC —Convert Timestamp to Universal

TIIMIE .ttt 205
CRBasic EXAMPLE 41: Using TableFile() with Option 64 with

MEMOTY Cardeevieieiieciieeiieie ettt ettt sseenseenee e 213
CRBasic EXAMPLE 42: Custom Menus..........cccceeveeieieneeneneneneneeeennen 220
CRBasic EXAMPLE 43: FieldCal() Zero.......cccecveevieeciieeieeeieeeieeeveeeneene 229
CRBasic EXAMPLE 44: FieldCal() Offsetccceevveeiviieeiieeiieeiee e 231
CRBasic EXAMPLE 45: FieldCal() Two-Point Slope and Offset............... 234
CRBasic EXAMPLE 46: FieldCal() Multiplierccccceoovevirenienieeenene 236
CRBasic EXAMPLE 47: FieldCalStrain() Calibration...........c.cccccvevveeennen. 240
CRBasic EXAMPLE 48: Fast Analog Voltage Measurement: Fast Scan() .244

CRBasic EXAMPLE 49:
CRBasic EXAMPLE 50:
CRBasic EXAMPLE 51:
CRBasic EXAMPLE 52:

Analog Voltage Measurement: Cluster Burst......245
Dwell Burst Measurement............coceeeverenennenne 246
Measurement with Excitation and Delay............. 249
Using SDI12Sensor() to Test Cv Command 260

CRBasic EXAMPLE 53: Using Alternate Concurrent Command (aC)....... 261
CRBasic EXAMPLE 54: Using an SDI-12 Extended Command 263
CRBasic EXAMPLE 55: SDI-12 Sensor Setupcccceeveevereeneenieeneeeenen. 264
CRBasic EXAMPLE 56: Conditional Code..........cccccceeverrienienieieneeeee, 267
CRBasic EXAMPLE 57: PT100 BrHalf4W() Four-Wire Half-Bridge

(7 1110] ;15 T0) 1 VS 275
CRBasic EXAMPLE 58: PT100 BrHalf4W() Four-Wire Half-Bridge

IMEASUICINENLeentieiieriteniienite ettt ettt ettt et et sbee s e saeeae e eae 275
CRBasic EXAMPLE 59: PT100 BrHalf3W() Three-Wire Half-Bridge

CalIDIAtION. ...c..eiiieiiiiieiiecerte et 279
CRBasic EXAMPLE 60: PT100 BrHalf3W() Three-Wire Half-Bridge

IMEASUIEIMENL ...ttt ettt ettt ettt sttt ettt et st saeesbeebeenreeas 279
CRBasic EXAMPLE 61: PT100 BrFull() Four-Wire Full-Bridge

CaliDIAtION. ...c..eviiieiieiietetere ettt 282
CRBasic EXAMPLE 62: PT100 BrFull() Four-Wire Full-Bridge

CaliDIAtION. ...ttt 283
CRBasic EXAMPLE 63: PT100 BrFull() Four-Wire Full-Bridge

MEASUIEIMENLcueeniieniieiieriteniteteettete ettt esre e s esaeenneenreeas 284
CRBasic EXAMPLE 64: Receiving an RS-232 Stringccccceeevveveenennen. 301
CRBasic EXAMPLE 65: Measure Sensors / Send RS-232 Data.................. 306
CRBasic EXAMPLE 66: Concatenation of Numbers and Strings............... 315
CRBasic EXAMPLE 67: Subroutine with Global and Local Variables318
CRBasic EXAMPLE 68: Time Stamping with System Time...................... 322
CRBasic EXAMPLE 69: Measuring Settling Time.............ccoecveevvenvenieennen. 330
CRBasic EXAMPLE 70: Four-Wire Full-Bridge Measurement and

PIrOCESSING ...eontieiieeiieeie ettt 356
CRBasic EXAMPLE 71: Measuring Settling Timeccooceveenieneennen. 380
CRBasic EXAMPLE 72: Custom Web Page HTML...........cccocovieiieneenen. 459
CRBasic EXAMPLE 73: Concatenating Modbus Long Variables............... 469
CRBasic EXAMPLE 74: Using NAN to Filter Dataccccooceninnnennen. 496
CRBasic EXAMPLE 75: Reboot under program control with Restart

TNSETUCHION ..ottt sttt ebe e 514
CRBasic EXAMPLE 76: Reboot under program control with

FileManage() INStrUCHON:coveriereieriieiieeeeeesieesieesie e eeeseeeseeense e 514

1.

Introduction

1.1

HELLO

Whether in extreme cold in Antarctica, scorching heat in Death Valley, salt spray
from the Pacific, micro-gravity in space, or the harsh environment of your office,
Campbell Scientific dataloggers support research and operations all over the
world. Our customers work a spectrum of applications, from those more complex
than any of us imagined, to those simpler than any of us thought practical. The
limits of the CR1000 are defined by our customers. Our intent with this operator's
manual is to guide you to the tools you need to explore the limits of your
application.

You can take advantage of the advanced CR1000 analog and digital measurement
features by spending a few minutes working through the Quickstart (. 35) and the
Overview (p. 55. For more demanding applications, the remainder of the manual
and other Campbell Scientific publications are available. If you are programming
with CRBasic, you will need the extensive help available with the CRBasic Editor
software. Formal CR1000 training is also available from Campbell Scientific.

This manual is organized to take you progressively deeper into the complexity of
CR1000 functions. You may not find it necessary to progress beyond the
Quickstart or Overview. Quickstart is a cursory view of CR1000
data-acquisition and walks you through a procedure to set up a simple system.
Overview reviews salient topics that are covered in-depth in subsequent sections
and appendices.

Review the exhaustive table of contents to learn how the manual is organized,
and, when looking for a topic, use the index and PDF reader search.

More in-depth study requires other Campbell Scientific publications, most of
which are available on-line at www.campbellsci.com. Generally, if a particular
feature of the CR1000 requires a peripheral hardware device, more information is
available in the manual written for that device.

Don't forget the Glossary (. 515 when you run across a term that is unfamiliar.
Many specialized terms are hyperlinked in this manual to a glossary entry.

If you are unable to find the information you need, need assistance with ordering,
or just wish to speak with one of our many product experts about your application,
please call us:

Technical Support (435) 227-9100
Sales Engineering (435) 227-9120

Orders (435) 227-9090
Accounts Receivable (435) 227-9092
Repairs (435) 227-9105
General Inquiries (435) 227-9000

29

30

Section 1. Infroduction
In earlier days, Campbell Scientific dataloggers greeted our customers with a
cheery HELLO at the flip of the ON switch. While the user interface of the
CR1000 datalogger has advanced beyond those simpler days, you can still hear
the cheery HELLO echoed in voices you hear at Campbell Scientific.
1.2 Typography

1.3

The following type faces are used throughout the CR1000 Operator's Manual.
Type color other than black on white does not appear in printed versions of the
manual:

e Underscore — information specifically flagged as unverified. Usually
found only in a draft or a preliminary released version.

e Capitalization — beginning of sentences, phrases, titles, names,
Campbell Scientific product model numbers.

e Bold — CRBasic instructions within the body text, input commands,
output responses, GUI commands, text on product labels, names of data
tables.

e Jtalic — glossary entries and titles of publications, software, sections,
tables, figures, and examples.

e Bold italic — CRBasic instruction parameters and arguments within the
body text.

e §pthiue — cross reference page numbers. In the PDF version of the
manual, click on the page number to jump to the cross referenced page.

e Lucida Sans Typewriter — blocks of CRBasic code. Type colors are
as follows:

o instruction

o 'comments

o all other code

Capturing CRBasic Code

Many examples of CRBasic code are found throughout this manual. The manual
is designed to make using this code as easy as possible. Keep the following in
mind when copying code from this manual into CRBasic Editor:

If an example crosses pages, select and copy only the contents of one page at a
time. Doing so will help avoid unwanted characters that may originate from page
headings, page numbers, and hidden characters.

2.

Precautions

DANGER: Fire, explosion, and severe-burn hazard. Misuse or improper
installation of the internal lithium battery can cause severe injury. Do not
recharge, disassemble, heat above 100 °C (212 °F), solder directly to the
cell, incinerate, or expose contents to water. Dispose of spent lithium
batteries properly.

WARNING:

o Protect from over-voltage

o Protect from water

o Protect from ESD . 101)

IMPORTANT: Note the following about the internal battery:

o When primary power is continuously connected to the CR1000, the
battery will last up to 10 years or more.

o When primary power is NOT connected to the CR1000, the battery
will last about three years.

o See section Internal Battery — Details (p. 483) for more information.
IMPORTANT: Maintain a level of calibration appropriate to the

application. Campbell Scientific recommends factory recalibration of the
CR1000 every three years.

31

3.

Initial Inspection

Check the Ships With tab at http://www.campbellsci.com/CR1000 for a
list of items shipped with the CR1000. Among other things, the
following are provided for immediate use:

o Screwdriver to connect wires to terminals
o Type-T thermocouple for use in the Quickstart . 35) tutorial

o A datalogger program pre-loaded into the CR1000 that measures
power-supply voltage and wiring-panel temperature.

o A serial communication cable to connect the CR1000 to a PC

o A ResourceDVD that contains product manuals and the following
starter software:

— Short Cut
— PC200W
— DevConfig

Upon receipt of the CR1000, inspect the packaging and contents for
damage. File damage claims with the shipping company.

Immediately check package contents. Thoroughly check all packaging
material for product that may be concealed. Check model numbers, part
numbers, and product descriptions against the shipping documents.
Model or part numbers are found on each product. On cabled items, the
number is often found at the end of the cable that connects to the
measurement device. The Campbell Scientific number may differ from
the part or model number printed on the sensor by the sensor vendor.
Ensure that the you received the expected cable lengths. Contact
Campbell Scientific immediately about discrepancies.

Check the operating system version in the CR1000 as outlined in the
Operating System (OS) — Installation (. 118 and update as needed.

33

4. Quickstart

4.1

Sensors

The following tutorial introduces the CR1000 by walking you through a
programming and data retrieval exercise.

— Quickstart

Related Topics:

» Sensors — Quickstart (p. 35)

» Measurements — Overview (p. 65)
* Measurements — Details (p. 321)

» Sensors — Lists (p. 595)

Sensors transduce phenomena into measurable electrical forms by modulating
voltage, current, resistance, status, or pulse output signals. Suitable sensors do
this accurately and precisely (p. 549. Smart sensors have internal measurement
and processing components and simply output a digital value in binary,
hexadecimal, or ASCII character form. The CR1000, sometimes with the
assistance of various peripheral devices, can measure or read nearly all electronic
sensor output types.

Sensor types supported include:

e Analog
o Voltage
o Current

o Thermocouples
o Resistive bridges
e Pulse
o High frequency
o Switch closure
o Low-level ac
e Period average
e Vibrating wire
e Smart sensors
o SDI-12

o RS-232

35

36

Section 4.

Quickstart

4.2

4.2.1

o Modbus
o DNP3
o RS-485

Refer to the Sensors — Lists . 595 for a list of specific sensors available from
Campbell Scientific. This list may not be comprehensive. A library of sensor
manuals and application notes are available at www.campbellsci.com to assist in
measuring many sensor types.

Datalogger — Quickstart

Related Topics:

» Datalogger — Quickstart (p. 36)
» Datalogger — Overview (p. 56)
» Dataloggers — List (p. 589)

The CR1000 can measure almost any sensor with an electrical response. The
CR1000 measures electrical signals and converts the measurement to engineering
units, performs calculations and reduces data to statistical values. Most
applications do not require that every measurement be stored. Instead, individual
measurements can be combined into statistical or computational summaries. The
CR1000 will store data in memory to await transfer to the PC with an external
storage devices or telecommunication device.

CR1000 Module

CR1000 electronics are protected in a sealed stainless steel shell. This design
makes the CR1000 economical, small, and very rugged.

4.2.1.1 Wiring Panel — Quickstart

Related Topics

» Wiring Panel — Quickstart (p. 36)

» Wiring Panel — Overview (p. 57)

* Measurement and Control Peripherals (p. 415)

As shown in figure Wiring Panel . 37), the CR1000 wiring panel provides
terminals for connecting sensors, power, and communication devices. Surge
protection is incorporated internally in most wiring panel connectors.

Section 4. Quickstart

FIGURE 1: Wiring Panel

H/L Terminals VX Terminals
Analog Input Switched-Voltage

Differential Excitation for 1;:;:?;::;3: i
ingle- Resistive-Brid,
Single-Ended ESISHVEHTIAge Low-Level Ac

Period Average Sensors

(Power In] (Earth Ground)

Signal Ground RS-232 Port
Computer and

seccooccoooooooooo gl [5)cameeEL:
Power Ground . CR1000 (Gsziersrmc Modem Comms

R+

mInIRmEEEEEEEEEEn ©O RS-232 (Not Isolated) (o]

: Peripheral Port
f’;r/igll;al CUTT LRy e _ EtheIr)net and
and Sensor SEERPTRRRRRER R O‘A :O CF Card
Power ' ‘* < [N { 1 Peripherals
Switched 12V 12V QOut C Terminals CS /O Port
Peripheral and Peripheral/ | | Pulse Counting SDI-12, SDM | | Communication
Sensor Power Sensor Digital I/O TTL RS-232 Peripherals

Power Switched Voltage

4.3 Power Supplies — Quickstart

Related Topics:

» Power Input Terminals — Specifications

» Power Supplies — Quickstart (. 37)

» Power Supplies — Overview (p. 85)

» Power Supplies — Details (p. 98

» Power Supplies — Products (p. 605)

» Power Sources (p. 99)

» Troubleshooting — Power Supplies (p. 503)

The CR1000 requires a power supply. Be sure that power supply components
match the specifications of the device to which they are connected. When
connecting power, first switch off the power supply, make the connection, then
turn the power supply on.

The CR1000 operates with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

38

Section 4. Quickstart

External power connects through the green POWER IN connector on the face of
the CR1000. The positive power lead connects to 12V. The negative lead
connects to G. The connection is internally reverse-polarity protected.

The CR1000 is internally protected against accidental polarity reversal on the
power inputs.

4.3.1 Internal Battery — Quickstart

Related Topics:
* Internal Battery — Quickstart (p. 38)
* Internal Battery — Details (p. 483)

Warning Misuse or improper installation of the internal lithium battery
can cause severe injury. Fire, explosion, and severe burns can result. Do
not recharge, disassemble, heat above 100 °C (212 °F), solder directly to
the cell, incinerate, or expose contents to water. Dispose of spent lithium
batteries properly.

A lithium battery backs up the CR1000 clock, program, and memory.

4.4 Data Retrieval and Comms — Quickstart

Related Topics:

» Data Retrieval and Comms — Quickstart (p. 38)

» Data Retrieval and Comms — Overview (p. 77)

» Data Retrieval and Comms — Details (p. 453)

» Data Retrieval and Comms Peripherals — Lists (p. 597)

If the CR1000 datalogger sits near a PC, direct-connect serial communication is
usually the best solution. In the field, direct serial, a data storage device, can be
used during a site visit. A remote comms option (or a combination of comms
options) allows you to collect data from your CR1000 over long distances. It also
allows you to discover system problems early.

A Campbell Scientific sales engineer can help you make a shopping list for any of
these comms options:
e Standard
o RS-232 serial
e Options
o Ethernet

o CompactFlash, Mass Storage

Section 4. Quickstart

o Cellular, Telephone

o 108, Android

o PDA

o Multidrop, Fiber Optic

o Radio, Satellite

Some comms options can be combined.

Datalogger Support Software — Quickstart

Related Topics:

» Datalogger Support Software — Quickstart (p. 39)
» Datalogger Support Software — Overview (p. 89)
» Datalogger Support Software — Details (p. 418

» Datalogger Support Software — Lists (p. 600)

Campbell Scientific datalogger support software is PC or Linux software that
facilitates comms between the computer and the CR1000. A wide array of
software are available. This section focuses on the following:

e Short Cut Program Generator for Windows (SCWin)
e PC200W Datalogger Starter Software for Windows
e LoggerLink Mobile Datalogger Starter software for iOS and Android

A CRBasic program must be loaded into the CR1000 to enable it to make
measurements, read sensors, and store data. Use Short Cut to write simple
CRBasic programs without the need to learn the CRBasic programming language.
Short Cut is an easy-to-use wizard that steps you through the program building
process.

After the CRBasic program is written, it is loaded onto the CR1000. Then, after
sufficient time has elapsed for measurements to be made and data to be stored,
data are retrieved to a computer. These functions are supported by PC200W and
LoggerLink Mobile.

Short Cut and PC200W are available at no charge at
www.campbellsci.com/downloads.

Note More information about software available from Campbell Scientific
can be found at www.campbellsci.com.

39

Section 4. Quickstart

4.6 Tutorial: Measuring a Thermocouple

This exercise guides you through the following:

Attaching a sensor to the CR1000

Creating a program for the CR1000 to measure the sensor
Making a simple measurement

Storing measurement data on the CR1000

Collecting data from the CR1000 with a PC

Viewing real-time and historical data with the PC

4.6.1 What You Will Need

The following items are used in this exercise. If you do not have all of these
items, you can provide suitable substitutes. If you have questions about
compatible power supplies or serial cables, review and Power Supplies — Details
(- 98 or contact Campbell Scientific.

CR1000 datalogger
Power supply with an output between 10 to 16 Vdc
Thermocouple, 4 to 5 inches long; one is shipped with the CR1000

Personal computer (PC) with an available nine-pin RS-232 serial port, or
with a USB port and a USB-to-RS-232 adapter

Nine-pin female to nine-pin male RS-232 cable; one is shipped with the
CR1000.

PC200W software, which is available on the Campbell Scientific
resource DVD or thumb drive, or at www.campbellsci.com.

Note

If the CR1000 datalogger is to be connected to the PC during

normal operations, use the Campbell Scientific SC32B interface to provide
optical isolation through the CS I/O port. Doing so protects low-level
analog measurements from grounding disturbances.

4.6.2 Hardware Setup

Note The thermocouple is attached to the CR1000 later in this exercise.

40

Section 4. Quickstart

4.6.2.1 Connect External Power Supply

With reference to FIGURE: Connect Power and Serial Comms (. 41), proceed as
follows:

1. Remove the green power connector from the CR1000 wiring panel.

2. Switch power supply to OFF.

3. Connect the positive lead of the power supply to the 12V terminal of the green
power connector. Connect the negative (ground) lead of the power supply to

the G terminal of the green connector.

4. Confirm the power supply connections have the correct polarity then insert the
green power connector into its receptacle on the CR1000 wiring panel.

FIGURE 2: Connect Power and Comms

Power Qonnection

.
BATTERY - internal (12V 7 AMP HOUR) CcAMPBELL Made in USA
BATTERY - Ex rgeable battery SCIENTIFIC Ce

® CHARGE - Charging esent
OFF ~ ON - Power to 12V terminals WARNING
o @ ge to Liftto
ARG Remove

F
CHARGE } o

+12v
+12v
g PS100
12V Power supply wity| charging regulator

= —
— N}

cauTion
'bC ONLY

=

.

- cAMPBELL

1000 @ SCIENTIFIC
Panel

©

RS-232 Connection

4.6.2.2 Connect Comms
Connect the serial cable between the RS-232 port on the CR1000 and the RS-232

port on the PC. If your CR1000 is Wi-Fi enabled, and you wish to use the
Wi-Fi link for this exercise, go to On-Board Wi-Fi.

Switch the power supply ON.

41

42

Section 4. Quickstart

4.6.3 PC200W Software Setup

1.

Install PC200W software onto the PC. Follow on-screen prompts during the
installation process. Use the default folders.

Open PC200W. Your PC should display a window similar to figure PC200W
Main Window . 42. When PC200W is first run, the EZSetup Wizard will run
automatically in a new window. This will configure the software to
communicate with the CR1000 datalogger. The table PC200W EZSetup
Wizard Prompts (p. 42) indicates what information to enter on each screen of the
wizard. Click Next at the lower portion of the window to advance.

Note A video tutorial is available at

https.:.//www.campbellsci.com/videos ?video=80
(https://www.campbellsci.com/videos?video=80). Other video tutorials are
available at www.campbellsci.com/videos.

After exiting the wizard, the main PC200W window becomes visible. This
window has several tabs. The Clock/Program tab displays clock and program
information. Monitor Data and Collect Data tabs are also available. Icons across
the top of the window access additional functions.

FIGURE 3: PC200W Main Window

Y PC200W 4.2 Datalogger Support Software - CR « |(CR =)

=% EOR ="
File Datalogger Network Tools Help

Yo | BT OO BEHE @ O
a Clock/Program | Monitor Data ‘ Collect Data
CR Datalogger Information Clocks

Datalogger Name: CR ==
Datalogger Type: CR Datalogger 6/10/2014 8:53:28 AM
Reported Station Name: 23877 pC 6/10/2014 8:53:28 AM

Direct Connect Connection
COM Port: Communications Port (COM1) Pause Clock Update

Datalogger Settings
Baud Rate: 9600 Datalogger Time Zone Offset
PakBus Address: 1 Set Clock Ohours Om =
Security Code: 0
Extra Response Time: 0s

Datalogger Program

Data File Paths
Status: C:\Campbellsci\PC200W\CR _Status.dat Current Program
Public: C:\Campbellsci\PC200W\CR “# _Public.dat MyTemperature.CR1

OneMin: C:\Campbellsci\PC200W\CR _OneMin.dat

Send Program...

Retrieve Program...

https://www.campbellsci.com/videos?video=80

Section 4. Quickstart

TABLE 1: PC200W EZSetup Wizard Prompts

Screen Name Information Needed

Provides an introduction to the EZSetup Wizard
Introduction along with instructions on how to navigate through
the wizard.

Datalogger Type and Select the CR1000 from the list box.
Name Accept the default name of CR1000.

Select the correct PC COM port for the serial
connection. Typically, this will be COM1, but
other COM numbers are possible, especially when
using a USB cable.

Leave COM Port Communication Delay at 00
seconds.

Note When using USB serial cables, the COM
COM Port Selection number may change if the cable is moved to a
different USB port. This will prevent data transfer
between the software and CR1000. Should this
occur, simply move the cable back to the original
port. If this is not possible, close then reopen the
PC200W software to refresh the available COM
ports. Click on Edit Datalogger Setup and change
the COM port to the new port number.

Configures how the CR1000 communicates with
Datalogger Settings the PC.
For this tutorial, accept the default settings.

Datalogger Settings — | For this tutorial, Security Code should be set to 0
Security and PakBus Encryption Key should be left blank.

Summary of settings in previous screens. No
changes are needed for this tutorial. Press Finish to
exit the wizard.

Communication Setup
Summary

4.6.4 Write CRBasic Program with Short Cut

Following are the objectives for this Short Cut programming exercise:

e Create a program to measure the voltage of the CR1000 power supply,
temperature of the CR1000 wiring panel, and ambient air temperature
using a thermocouple.

e When the program is downloaded to the CR1000, it will take samples
once per second and store averages of the samples at one-minute
intervals.

NOTE A video tutorial is available at
https.//www.campbellsci.com/videos ?video=80
https.//www.campbellsci.com/videos?video=80. Other video resources
are available at www.campbellsci.com/videos.

43

https://www.campbellsci.com/videos?video=80

44

Section 4. Quickstart

4.6.4.1 Procedure: (Short Cut Steps 1 to 5)

1. Click on the Short Cut icon in the upper-right corner of the PC200W window.
The icon resembles a clock face.

2. The Short Cut window is shown. Click New Program.
3. In the Datalogger Model drop-down list, select CR1000.

4. In the Scan Interval box, enter 1 and select Seconds in the drop-down list
box. Click Next.

Note The first time Short Cut is run, a prompt will appear asking for a
choice of ac noise rejection. Select 60 Hz for the United States and other
areas using 60 Hz ac voltage. Select 50 Hz for most of Europe and other
areas that operate at 50 Hz. A second prompt lists sensor support options.
Campbell Scientific, Inc. (US) is probably the best fit if you are outside
Europe.

5. The next window displays Available Sensors and Devices as shown in the
following figure. Expand the Sensors folder by clicking on the > symbol.
This shows several sub-folders. Expand the Temperature folder to view
available sensors. Note that a wiring panel temperature (PTemp_C in the
Selected column) is selected by default.

FIGURE 4: Short Cut Temperature Sensor Folder

@ Short Cut (CR) C:\Campbellsci\SCWin\untitled.scw Scan Interval = 5.0000 Seconds [roe|[-@ \-
File Program Tools Help
Available Sensors and Devices Selected

Progress ~ Generic Measurements - Sensor Measurement

1. New/Open 1 Geotechnical & Structural 4CR

2. Datalogger Meteorological

1 Miscellaneous Sensors 4 Defauit ey

3. Sensors 4 [y Temperature PTemp_C

4. Outputs _) 105E (chromel-constantan) The

5. Finish) 105T (copper-constantan) Ther

_) 107 Temperature Probe
_) 108 Temperature Probe

Wiring _] 109 Temperature Probe
Wiring Diagram _) 110PV Surface Temperature Prc =
d 43347
Wiring Text

_) IRTS-P Precision Infrared Temp¢
_) SI-111 Precision Infrared Radior
_) Type E (chromel-constantan) T
_) Type J (iron-constantan) Therm
] Type K (chromel-alumel) Therm:

J| Type T (copper-constantan Thermocouple |
) Wiring Panel Temperature -
« »
CR
A Type T (copper-constantan) Thermocouple -

Therefore, a wiring panel temperature sensor must be selected and
configured for degrees C before selecting and configuring this sensor. v

"',. g Units for Temperature: Deg C, Deg F, K 3
' / - A wiring panel temperature reference in degrees C is required for this sensor.

4 Previous Next b Finish Help

4.6.4.2 Procedure: (Short Cut Steps 6 to 7)

6. Double-click Type T (copper-constantan) Thermocouple to add it into the
Selected column. A dialog window is presented with several fields. By

Section 4. Quickstart

immediately clicking OK, you accept default options that include selection of
1 sensor and PTemp_C as the reference temperature measurement.

Note BattV (battery voltage) and PTempC (wiring panel temperature)
are default measurements. During normal operations, battery and

temperature can be recorded at least daily to assist in monitoring system
status.

7. In the left pane of the main Short Cut window, click Wiring Diagram. Attach
the physical type-T thermocouple to the CR1000 as shown in the diagram.
Click on 3. Sensors in the left pane to return to the sensor selection screen.

4.6.4.3 Procedure: (Short Cut Step 8)

8. As shown in the following figure, click Next to advance to the Outputs tab,
which displays the list Selected Sensors to the left and data storage tables to
the right under Selected Outputs.

FIGURE 5: Short Cut Outputs Tab

@ Short Cut (CR =) C:\Campbellsci\SCWin\untitled.scw Scan Interval = 5.0000 Seconds o -® \
Eile Program Tools Help
Selected Sensors Selected Outputs
Progress s M
oneor aase. Table Name |Table1l
1. New/Open 4CR

Store Every |60 Minutes =
2. Datalogger 4 Default Battv R -
3. Sensors PTemp_C PCCard
4. Outputs Type TTC Temp_C SC115 CS 1/0O-to-USB Flash Memory Drive
5. Finish

Sensor :asureme rocessin: itput Lat Units
wiring | | |

Wiring Diagram
wiring Text

{ 7
Advanced Outputs (all tables) 1 Tablel 42 Table2

Add Table | Delete Table

4 Previous Finish Help

4.6.4.4 Procedure: (Short Cut Steps 9 to 12)

9. As shown in the right-most pane of the previous figure, two output tables (1
Tablel and 2 Table2 tabs) are initially configured. Both tables have a Store
Every field and a drop-down list from which to select the time units. These
are used to set the time intervals when data are stored.

10. Only one table is needed for this tutorial, so remove Table 2. Click 2 Table2
tab, then click Delete Table.

45

46

Section 4. Quickstart

11. Change the name of the remaining table from Tablel to OneMin, and then
change the Store Every interval to 1 Minutes.

12. Add measurements to the table by selecting BattV under Selected Sensors in
the center pane. Click Average in the center column of buttons. Repeat this
procedure for PTemp_C and Temp_C.

4.6.4.5 Procedure: (Short Cut Steps 13 to 14)

13. Click Finish at the bottom of the Short Cut window to compile the program.
At the prompt, name the program MyTemperature. A summary screen, like
the one in the following figure, will appear showing the pre-compiler results.
Pre-compile errors, if any, are displayed here.

FIGURE 6:

Progress

1. New/Open
. Datalogger
. Sensors

. Outputs

0w s wN

. Finish

Wiring
Wiring Diagram
Wiring Text

@ Short Cut (CR

Short Cut Compile Confirmation Window and Results Tab

) C:\Campbellsci\SCWin\MyTemperature.scw Scan Interval = 5.0000 Seconds =) (=) 3

Results | Summary | Advanced

Short Cut File
Your Short Cut program settings have been saved in: C:\Campbellsci\SCWin\MyTemperature.scw

Datal: Program Succ y Generated!

The following datalogger program has been created: C:\Campbellsci\SCWin\MyTemperature.CR1

Use PC200W, PC400, LoggerNet, RTDAQ, or VisualWeather to transmit C:\Campbellsci\SCWin\MyTempe
Or, you can send the program to the datalogger now. | Send Program

Confirm [owe..om|

0 The program was created successfully.
Do you wish to send the program to a datalogger?

| Yes No
< »
4 Previous Finish Help

14. Close this window by clicking on X in the upper right corner.

4.6.5 Send Program and Collect Data

PC200W Datalogger Support Software objectives:

e Send the CRBasic program created by Short Cut in the previous
procedure to the CR1000.

e (Collect data from the CR1000.

e Store the data on the PC.

Section 4. Quickstart

4.6.5.1 Procedure: (PC200W Step 1)

1. From the PC200W Clock/Program tab, click on Connect (upper left) to
connect the CR1000 to the PC. As shown in the following figure, when
connected, the Connect button changes to Disconnect.

CAUTION This procedure assumes there are no data already on the
CR1000. If there are data that you want to keep on the CR1000, you
should collect it before proceeding to the next step.

FIGURE 7: PC200W Main Window

) PC200W 4.2 Datalogger Support Software - CR & |(CR o) (o ® =
File Datalogger Network Tools Help

\7 Disconnect % ! ’ E E F P @ Lj
a Clock/Program | Monitor Data‘Collec: Data

CR Datalogger Information Clocks
Datalogger Name: CR ==
Datalogger Type: CR Datalogger 6/10/2014 8:53:28 AM
Reported Station Name: 23877 pC 6/10/2014 8:53:28 AM
Direct Connect Connection
COM Port: Communications Port (COM1) Pause Clock Update
Datalogger Settings
Baud Rate: 9600 Datalogger Time Zone Offset
PakBus Address: 1 Set Clock [ohowsom 2]
Security Code: 0
Extra Response Time: 0s
Datalogger Program
Data File Paths
Status: C:\Campbellsci\PC200W\CR _Status.dat Current Program
Public: C:\Campbellsci\PC200W\CR _Public.dat MyTemperature.CR1

OneMin: C:\Campbellsci\PC200W\CR _OneMin.dat
Send Program...

Retrieve Program...

‘Connection Time 0:01:29

4.6.5.2 Procedure: (PC200W Steps 2 to 4)

2. Click Set Clock (right pane, center) to synchronize the CR1000 clock with the
computer clock.

3. Click Send Program... (right pane, bottom). A warning appears that data on
the datalogger will be erased. Click Yes. A dialog box will open. Browse
to the C:\CampbellSci\SCWin folder. Select the MyTemperature.crl file.
Click Open. A status bar will appear while the program is sent to the
CR1000 followed by a confirmation that the transfer was successful. Click
OK to close the confirmation.

4. After sending a program to the CR1000, a good practice is to monitor the
measurements to ensure they are reasonable. Select the Monitor Data tab. As
shown in the following figure, PC200W now displays data found in the
CR1000 Public table.

47

Section 4. Quickstart

FIGURE 8: PC200W Monitor Data Tab — Public Table

Y PC200W 4.2 Datalogger Support Software - CR = [(CR s ()
File Datalogger Network TIools Help

Y| WW® QD BHAE O O
a Clock/Program | Monitor Data | Collect Data
= |) Updatelnterval: | 00mOls 5

CR Add ciete PorfFlag | DecimalPlacess 2 (3

RecNum 565
TimeStamp 10:19:26
BattV 13415
PTemp_C 2253
Temp_C NAN

4.6.5.3 Procedure: (PC200W Step 5)

5. To view the OneMin table, select an empty cell in the display area. Click
Add. In the Add Selection window Tables field, click on OneMin, then click
Paste. The OneMin table is now displayed.

Section 4. Quickstart

FIGURE 9: PC200W Monitor Data Tab — Public and OneMin Tables

) PC200W 4.2 Datalogger Support Software - CR s | (CR e)
File Datalogger Network Tools Help

\p"”""m\ !!,\ D\ EE\ @\ O

E Clock/Program | Monitor Data | Collect Data
a i " =
- 4 Decimal Placess 2 (3 Updatelntervak | 00mo01s 5

CR Add Delete Port/Flag

RecNum 177 RecNum 14
TimeStamp 10:39:07 TimeStamp 10:39:00
BattV 13.15PTemp_C_Avg 22 .47
PTemp_C 22.47Temp_C_Avg 21.44
Temp_C 21.44

4.6.5.4 Procedure: (PC200W Step 6)

6. Click on the Collect Data tab and select data to be collected and the storage
location on the PC.

FIGURE 10: PC200W Collect Data Tab

) PC200W 4.2 Datalogger Support Software - CR 4% (CR v) o] &=
File Datalogger Network Tools Help

o | WET QD BEHE @ O
a CIock/Progvam[Monitor Data| Collect Data

CRE=. What to Collect ‘

9 New data from datalogger \ Change Table's Output File...

(Append to data files)

All data from datalogger

(Overwrite data files) { Start DataGollection ‘
Table File Name
v| OneMin C:\Campbellsci\PC200W\CR |_OneMin.dat
Public C:\Campbellsci\PC200W\CR _Public.dat
Status C:\Campbellsci\PC200W\CR! _Status.dat
‘Connection Time 0:01:21

49

50

Section 4. Quickstart

4.6.5.5 Procedure: (PC200W Steps 7 to 10)

7. Click the OneMin box so a check mark appears in the box. Under What to
Collect, select New data from datalogger.

8. Click on a table in the list to highlight it, then click Change Table's Output
File... to change the name of the destination file.

9. Click on Collect. A progress bar will appear as data are collected, followed
by a Collection Complete message. Click OK to continue.
10. To view data, click the E icon at the top of the PC200W window to open

the View utility.

FIGURE 11: PC200W View Data Utility

Open File Expand Tabs Show Graph
&) CACapfpbellsci\PC200WACR3000_OneMin.dat / - / [E=RREN
ngiew Help / /
= o e
& @ QA | Alamays - 1=)
TIMESTAMP RECORD BattV Avg Flemp C Avg Temp C Avg
"2009-10-06 a 13.03 25. 2 ﬂ
"2009-10-06 1 13.03 25
"2009-10-06 2 13.03 25 .
"2009-10-08 3 13.03 25 4,
"2009-10-06& 4 13.03 25 4,1
"2009-10-06 5 13.02 25 4.
"2009-10-06 5 13.02 25 4.
"2009-10-06 7 13.02 25 4.
"2009-10-06 8 13.02 4.
"2009-10-06 F] 13.02 25 4.4
"2009-10-06 10 13.02 25 4.
"2009-10-06 11 13.02 25 4,
"2009-10-06 12 13.02 25. 4.
"2008-10-06& 15:42:00™ 13 13.02 25. 24.]
-
Kl |
[View32 - Graph) — @E‘%
[& 9\ Max Points To Display ‘ﬁ B
C:\CampbellsciPC200VACR3000_OneMin.dat

—&— Temp_C_Avg

2465
246"
2455
2451
24.45
244]
2435
243];
2425 24_:12 : : :
2424 N L :]
ere 15:31:00 _,f
P e :

T T T T T T T T T T T T T
10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009
15:29:00 15:30:00 15:31:00 15:32:00 15:33:00 15:34:00 15:35:00 15:36:00 15:37:00 15:38:00 15:39:00 15:40:00 15:41:00 15:42:00

< | |»

Section 4. Quickstart

4.6.5.6 Procedure: (PC200W Steps 11 to 12)

3
11.Clickon = to open a file for viewing. In the dialog box, select the
CR1000_OneMin.dat file and click Open.
12. The collected data are now shown.

FIGURE 12: PC200W View Data Table

(B views2 E=Fom x|

File Edit View Window Help

oA=L M =REARAR N = =1

[CR = _OneMin.dat (No Graph Associated) 20 Records o | @ [
TIMESTAMP _RECORD PTemp_C_Avq Temp_C_Avg
2014-06-09 10:36:00 11 2247 21.67
2014-06-09 10:37:00 12 22.48 21.47
2014-06-09 10:38:00 13 22.47 21.46
2014-06-09 10:39:00 14 2247 21.44
2014-06-09 10:40:00 15 2247 21.45
2014-06-09 10:41:00 16 22.46 21.44
2014-06-09 10:42:00 17 22.45 21.45
2014-06-09 10:43:00 18 22.45 21.42
2014-06-09 10:44:00 19 22.45 214
2014-06-09 10:45:00 20 22.45 214
2014-06-09 10:46:00 21 2244 21.48
2014-06-09 10:47:00 22 22.42 21.46
2014-06-09 10:48:00 23 2242 21.46
2014-06-09 10:49:00 24 22.42 21.43
2014-06-09 10:50:00 25 2242 21.44
2014-06-09 10:51:00 26 22.42 21.45
2014-06-09 10:52:00 27 22.42 21.45
2014-06-09 10:53:00 28 22.42 21.49
2014-06-09 10:54:00 29 2242 21.48
2014-06-09 10:55:00 30 22.42 21.49

4.6.5.7 Procedure: (PC200W Steps 13 to 14)

13. Click the heading of any data column. To display the data in that column in a

line graph, click the icon.

14. Close the Graph and View windows, and then close the PC200W program.

51

52

Section 4. Quickstart

FIGURE 13: PC200W View Line Graph

IR Graph2 (o=
> & bl 35 b 0 B8 2 6B %)

v |Temp_C_Avg 21.67 -
| - R Ottt

— Temp_C_Avg
— PTemp_C_Avg

21.95
! 219

CR1000_OneMin.dat

Edit Delete | ~
218
~Graph Width 2175
Time 217
0d00h19m 00s 000 ¢ 21654
Records 2161,
20 - Apply 21851\
2IE--
21451 - ciamtacizamn e
214 -
10:40:00.000 10:45:00.000 10:50:00.000 10:55:00.000
Options Clear

4.7 Data Acquisition Systems — Quickstart

Related Topics:
» Data Acquisition Systems — Quickstart (p. 52)
» Data Acquisition Systems — Overview (p. 56)

Acquiring data with a CR1000 datalogger requires integration of the following
into a data acquisition system:

e Electronic sensor technology

e CR1000 datalogger

e Comms link

e Datalogger support software (p. 89
A failure in any part of the system can lead to bad data or no data. The concept of
a data acquisition system is illustrated in figure Data Acquisition System

Components (p. 53) Following is a list of typical system components:

e Sensors (p. 35 — Electronic sensors convert the state of a phenomenon to
an electrical signal.

e Datalogger (p. 39 — The CR1000 measures electrical signals or reads
serial characters. It converts the measurement or reading to engineering
units, performs calculations, and reduces data to statistical values. Data
are stored in memory to await transfer to a PC by way of an external
storage device or a comms link.

Section 4. Quickstart

e Data Retrieval and Comms (p. 38 — Data are copied (not moved) from
the CR1000, usually to a PC, by one or more methods using datalogger
support software. Most of these comms options are bi-directional, which
allows programs and settings to be sent to the CR1000.

e Datalogger Support Software (p. 39 — Software retrieves data and sends
programs and settings. The software manages the comms link and has
options for data display.

e Programmable Logic Control (. 89 — Some data acquisition systems
require the control of external devices to facilitate a measurement or to
control a device based on measurements. The CR1000 is adept at
programmable logic control.

o Measurement and Control Peripherals (p. 84 — Sometimes, system
requirements exceed the capacity of the CR1000. The excess can usually

be handled by addition of input and output expansion modules.

FIGURE 14: Data Acquisition System Components

Datalogger Support
Software

Link

5.

Overview

You have just received a big box (or several big boxes) from Campbell Scientific,
opened it, spread its contents across the floor, and now you sit wondering what to
do.

Well, that depends.

Probably, the first thing you should understand is the basic architecture of a data
acquisition system. Once that framework is in mind, you can begin to
conceptualize what to do next. So, job one, is to go back to the Quickstart p. 35
section of this manual and work through the tutorial. When you have done that,
and then read the following, you should have the needed framework.

A Campbell Scientific data acquisition system is made up of the following five
basic components:

e Sensors
e Datalogger, which includes:
o Clock
o Measurement and control circuitry
o Memory
o Hardware and firmware to communicate with comms devices
o User-entered CRBasic program
e Power supply
e Comms link or external storage device
e Datalogger support software (p. 521)

The figure Data Acquisition Systems — Overview (p. 56 illustrates a common
CR1000-based data acquisition system.

55

56

Section 5. Overview

FIGURE 15: Data Acquisition System — Overview

Weather-Tight Enclosure

Analog Signal

i

Pulse Frequency

SR

Sma
|

5.1

Datalogger

Y

Y

Terminals
Configured for
Analog Input

Analog Measurement
Instructions

Time Keeping

Control
Instructions

Terminals Configured
for Control

Terminals
Configured for
Pulse Input

Terminals
Configured for
Digital Serial Input

Pulse Measurement
Instructions

Measurement
Processing
Instructions

Data Storage

L)
Serial Input/
Parsing Instructions 5 §
8
Z :
aa) A
= [
8 o
gﬂ =
e E
Ground 8 8
Lug 5 &
o) v
R

Telecommunication
Hardware

Desiccant
Packets

Y

Controlled Device

Datalogger Suppo
Software (PC)

Datalogger — Overview

Earth Ground

The CR1000 datalogger is the main part of the system. It is a precision instrument
designed to withstand demanding environments and to use the smallest amount of
power possible. It has a central-processing unit (CPU), analog and digital
measurement inputs, analog and digital outputs, and memory. An operating

Section 5. Overview

system (firmware) coordinates the functions of these parts in conjunction with the
on-board clock and the CRBasic application program.

The application program is written in CRBasic, which is a programming language
that includes measurement, data processing, and analysis routines and the
standard BASIC instruction set. For simpler applications, Short Cut . 541), a
user-friendly program generator, can be used to write the progam. For more
demanding programs, use CRBasic Editor (p. 520).

After measurements are made, data are stored in non-volatile memory. Most
applications do not require that every measurement be recorded. Instead, the
program usually combines several measurements into computational or statistical
summaries, such as averages and standard deviations.

Programs are run by the CR1000 in either sequential mode (. 541) or the more
efficient pipeline mode (. 536). In sequential mode, each instruction is executed
sequentially in the order it appears in the program. In pipeline mode, the
CR1000 determines the order of instruction execution.

5.1.1 Wiring Panel — Overview

In the following figure, the CR1000 wiring panel is illustrated. The wiring panel
is the interface to most CR1000 functions so studying it is a good way to get
acquainted with the CR1000. Functions of the terminals are broken down into the
following categories.

e Analog input

e Analog output

e Pulse counting

e Digital I/O input

e Digital I/O output

e Digital /O communications

e Dedicated power output terminal

e Power input terminal

e Ground terminals

57

Section 5. Overview

FIGURE 16: Wiring Panel

H/L Terminals VX Terminals
Analog Input Switched-Voltage

Differential Excitation for 11:1;[1‘::;:11;1?: i
ingle- Resistive-Brid,
Single-Ended ESISHVEHTIAge Low-Level Ac

Period Average Sensors

(Power In] (Earth Ground)

. D Wy
Signal Ground WD TR SR | RS-232 Port
asubatuuasubnuLss I Computor and
< CTR1000 &) SaieRsis
TS Modem Comms

RS-232 (Not Isolated) (e}

Peripheral Port
Ethernet and
CF Card

5V Out
Peripheral

and Sensor .
Poswer Peripherals
Switched 12V C Terminals CS 1/0 Port

Peripheral and Peripheral/ | |Pulse Counting SDI-12, SDM | | Communication
Sensor Power Sensor Digital I/O TTL RS-232 Peripherals
Power Switched Voltage

Analog Input
Single-ended VIV iV IV IV IV IV IV IVIVIVIVIVIVIVI|IV é
Di.fferential v v v v v v v v 8
(high/low)
= .
_gAnalogPe“Od viiviviiviviiviviv|iviv|vIiv|iv] v |v]|v .
& | average 6
L'-'Vibratingwirez VIV IV IV IV IVIVIVIVIVIVIVIVIV|IVI|V é
Analog Output
Switched Precision Vi viv 3
Voltage
Pulse Counting

58

Section 5. Overview

Switch closure vilviviv|v|v v v v :
High frequency vAvivIivivivivivIy (1)
Low-level Vac viv 2
Digital I/O
Control 8
Status 8
General /0 v v v v 4
(TX,RX)
Pulse-width v v v 3
modulation
Timer I/O 8
Interrupt 8
Continuous
Regulated3
s vae EEEEEEEEEEEEEEN NN EEEERGEn |
Continuous
Umregulated3
12 vie EEEEEEEEEEEEEEE NI NN EEERGY 2
Switched Regulated3
s vae L L e e] :
Switched
Unregulated3
12 vie AN NI EERC e
UART
True RS-232 2
(TX/RX)
TTL RS-232

v v v v
(TX/RX) 4
SDI-12 v v v v 4
SDM v 1
(Data/Clock/Enable)

! Terminal expansion modules are available. See section Measurement and Control Peripherals — Overview (. 84).

2 Static, time-domain measurement. Obsolete. See section Vibrating Wire Measurements — Overview (p. 74).

3 Check the table Current Source and Sink Limits (. 411)

4 Requires an interfacing device for sensor input. See the table Data Retrieval and Comms Peripherals — Lists (p. 597).

59

Section 5. Overview

5.1.1.1 Switched Voltage Output — Overview

Related Topics:

+ Switched Voltage Output — Specifications
» Switched Voltage Output — Overview (p. 60)
» Switched Voltage Output — Details (p. 410)

» Current Source and Sink Limits (p. 411)

* PLC Control — Overview (p. 89)

* PLC Control Modules — Overview (p. 416)

» PLC Control Modules — Lists (p. 593)

C terminals are selectable as binary inputs, control outputs, or communication
ports. See Measurements — Overview (p. 65) for a summary of measurement
functions. Other functions include device-driven interrupts, asynchronous
communications and SDI-12 communications. Table CR1000 Terminal
Definitions (p. 58 summarizes available options.

Figure Control and Monitoring with C Terminals (p. 60) illustrates a simple
application wherein a C terminal configured for digital input and another
configured for control output are used to control a device (turn it on or off) and
monitor the state of the device (whether the device is on or off).

FIGURE 17: Control and Monitoring with C Terminals

Relay
To Ground
Centrifugal Pump
AC Line Monitor
ToC2
To Ground i | To C1
B b oy
|y = T i [u] \
‘ -
E =) | @ @l
4

5.1.1.2 Voltage Excitation — Overview

Related Topics:
* Voltage Excitation — Specifications (p. 60)
» Voltage Excitation — Overview (p. 60)

file://zeus/groups/Author-it%205/Publishing/Word%20Document/_CR1000%20Manual%20--%20Never%20Delete/H_23699

Section 5. Overview

The CR1000 has several terminals designed to supply switched voltage to
peripherals, sensors, or control devices:

e Voltage Excitation (switched-analog output) — Vx terminals supply
precise voltage. These terminals are regularly used with resistive-bridge
measurements..

e Digital /O — C terminals configured for on / off and PWM (pulse width
modulation) or PDM (pulse duration modulation) on C4, C5 and C7.

e Switched 12 Vdc — SW12 terminals. Primary battery voltage under
program control to control external devices (such as humidity sensors)
requiring nominal 12 Vdc. SW12 terminals can source up to 900 mA.
See the table Current Source and Sink Limits (p. 411).

e Continuous Analog Output (CAO) — available by adding a peripheral
analog output device available from Campbell Scientific. Refer to
Analog-Output Modules — List (p. 416) for information on available
expansion modules.

5.1.1.3 Power Terminals
5.1.1.3.1 Power In Terminals

The POWER IN connector is the connection point for external power supply
components.

5.1.1.3.2 Power Out Terminals

Note Referto Switched-Voltage Output — Details (p. 410) for more
information about using the CR1000 as a power supply for sensors and
peripheral devices.

The CR1000 can be used as a power source for sensors and peripherals. The
following voltages are available:

e 12V terminals: unregulated nominal 12 Vdc. This supply closely tracks
the primary CR1000 supply voltage, so it may rise above or drop below
the power requirement of the sensor or peripheral. Precautions should
be taken to prevent damage to sensors or peripherals from over- or
under-voltage conditions, and to minimize the error associated with the
measurement of underpowered sensors. See Power Supplies —
Overview (p. 85).

e 5V terminals: regulated 5 Vdc at 300 mA. The 5 Vdc supply is
regulated to within a few millivolts of 5 Vdc so long as the main power
supply for the CR1000 does not drop below <MinPwrSupplyVolts>.

61

62

Section 5. Overview

5.1.1.4 Communication Ports — Overview

Rel

ated Topics:

Communication Ports — Overview (p. 62)

Data Retrieval and Comms — QOverview (p. 77)
CPI Port and CDM Devices — Overview (p. 64)
PakBus — Overview (p. 79

RS-232 and TTL (p. 406)

The CR1000 is equipped with hardware ports that allow communication with
other devices and networks, such as:

e PC

e Smart sensors

e Modbus and DNP3 networks

e Ethernet

e Modems

e Campbell Scientific PakBus networks
e Other Campbell Scientific dataloggers

e Campbell Scientific datalogger peripherals

Communication ports include:

e CSI/O
e RS-232
[]

e SDI-12
e SDM

o CPI (requires a peripheral device)
e Ethernet (requires a peripheral device)

o Peripheral Port — supports Ethernet and CompactFlash memory card
modules

Section 5. Overview

5.1.1.4.1 CS I/O Port

Read More See Serial Port Pinouts (p. 581).

e One nine-pin port, labeled CS I/O, for communicating with a PC or
modem through Campbell Scientific communication interfaces, modems,
or peripherals. CS I/O comms interfaces are listed in the appendix
Serial 1/0 Modules — List (p. 591).

Note Keep CS I/O cables short (maximum of a few feet).

5.1.1.4.2 RS-232 Ports

Note RS-232 communications normally operate well up to a transmission
cable capacitance of 2500 picofarads, or approximately 50 feet of
commonly available serial cable.

. One nine-pin DCE port, labeled RS-232, normally used to communicate
with a PC running datalogger support software (p. 89, or to connect a
third-party modem. With a null-modem adapter attached, it serves as a
DTE device.

Read More See Serial Port Pinouts (p. 581).

e Two-terminal (TX and RX) RS-232 ports can be configured:

o Upto Four TTL ports, configured from C terminals.

Note RS-232 ports are not isolated (p. 530).

5.1.1.4.3 Peripheral Port

Provided for connection of some Campbell Scientific CF memory card modules
and IP network link hardware. See the appendices TCP/IP Links — List (p. 598)
and Data Storage Devices — List (p. 599. See Memory Card (CRD: Drive) —
Overview (p. 78) for precautions when using memory cards.

Read More See TCP/IP — Details (p. 455).

e One multi-pin port, labeled Peripheral Port.

63

Section 5. Overview

64

5.1.1.4.4 SDI-12 Ports

Read More See the section Serial I/O: SDI-12 Sensor Support — Details
(p. 250).

SDI-12 is a 1200 baud protocol that supports many smart sensors. Each port
requires one terminal and supports up to 16 individually addressed sensors.

e Up to four ports configured from C terminals.

5.1.1.4.5 SDM Port
SDM is a protocol proprietary to Campbell Scientific that supports several
Campbell Scientific digital sensor and comms input and output expansion

peripherals and select smart sensors.

e One SDM port configured from C1, C2, and C3 terminals.

5.1.1.4.6 CPI Port and CDM Devices — Overview

Related Topics:
* CPI Port and CDM Devices — Overview (p. 64)
* CPI Port and CDM Devices — Details (p. 481)

CPI is a new proprietary protocol that supports an expanding line of Campbell
Scientific CDM modules. CDM modules are higher-speed input- and
output-expansion peripherals. CPI ports also enable networking between
compatible Campbell Scientific dataloggers. Consult the manuals for CDM
modules for more information.

o Connection to CDM devices requires the SC-CPI interface.

5.1.1.4.7 Ethernet Port

Read More See the section TCP/IP — Details (p. 455).

. Ethernet capability requires a peripheral Ethernet interface device, as
listed in Network Links — List p. 598).

5.1.1.5 Grounding — Overview

Related Topics:
* Grounding — Overview (p. 64)
* Grounding — Details (p. 100)

Proper grounding lends stability and protection to a data acquisition system. It is
the easiest and least expensive insurance against data loss — and often the most

Section 5. Overview

neglected. The following terminals are provided for connection of sensor and
CR1000 datalogger grounds:

e == Signal ground reference for single-ended analog inputs, pulse
inputs, excitation returns, and as a ground for sensor shield wires. Signal
returns for pulse inputs should use =& terminals located next to the
pulse input terminal. Current loop sensors, however, should be grounded
to power ground.

e G Power ground return for SV, SW12, 12V terminals, current loop
sensors, and C configured for control. Use of G grounds for these
outputs minimizes potentially large current flow through the
analog-voltage-measurement section of the wiring panel, which can
cause single-ended voltage measurement errors.

e == Earth ground lug connection point for a heavy-gage earth-ground
wire. A good earth connection is necessary to secure the ground potential
of the CR1000 and shunt transients away from electronics. Minimum 14
AWG wire is recommended.

5.2 Measurements — Overview

Related Topics:

» Sensors — Quickstart (p. 35)

» Measurements — Overview (p. 65)
* Measurements — Details (p. 321)

» Sensors — Lists (p. 595)

Most electronic sensors, whether or not they are supplied by Campbell Scientific,
can be connected directly to the CR1000.

Manuals that discuss alternative input routes, such as external multiplexers,
peripheral measurement devices, or a wireless sensor network, can be found at
www.campbellsci.com/manuals.

This section discusses direct sensor-to-datalogger connections and applicable
CRBasic programming to instruct the CR1000 how to make, process, and store
the measurements. The CR1000 wiring panel has terminals for the following
measurement inputs:

5.2.1 Time Keeping — Overview

Related Topics:
» Time Keeping — Overview (p. 65)
+ Time Keeping — Details (p. 321)

Measurement of time is an essential function of the CR1000. Time measurement
with the on-board clock enables the CR1000 to attach time stamps to data,
measure the interval between events, and time the initiation of control functions.

Section 5. Overview

5.2.2 Analog Measurements — Overview

Related Topics:
» Analog Measurements — Overview (p. 66)
* Analog Measurements — Details (p. 323)

Analog sensors output a continuous voltage or current signal that varies with the
phenomena measured. Sensors compatible with the CR1000 output a voltage.
The CR1000 can also measure analog current output when the current is
converted to voltage by using a resistive shunt.

Sensor connection is to H/L terminals configured for differential (DIFF) or

single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

5.2.2.1 Voltage Measurements — Overview

Related Topics:

» Voltage Measurements — Specifications
» Voltage Measurements — Overview (p. 66)
» Voltage Measurements — Details (p. 366)

e Maximum input voltage range: 5000 mV
e Measurement resolution range: 0.67 pV to 1333 pVv

Single-ended and differential connections are illustrated in the figures Analog
Sensor Wired to Single-Ended Channel #1 (p. 67) and Analog Sensor Wired to
Differential Channel #1 (p. 67. Table Differential and Single-Ended Input
Terminals (p. 67) lists CR1000 analog input channel terminal assignments.

Conceptually, analog voltage sensors output two signals: high and low. For
example, a sensor that outputs 1000 mV on the high lead and 0 mV on the low has
an overall output of 1000 mV. A sensor that outputs 2000 mV on the high lead
and 1000 mV on the low also has an overall output of 1000 mV. Sometimes, the
low signal is simply sensor ground (0 mV). A single-ended measurement
measures the high signal with reference to ground, with the low signal tied to
ground. A differential measurement measures the high signal with reference to
the low signal. Each configuration has a purpose, but the differential
configuration is usually preferred.

A differential configuration may significantly improve the voltage measurement.
Following are conditions that often indicate that a differential measurement
should be used:

e Ground currents cause voltage drop between the sensor and the
signal-ground terminal. Currents >5 mA are usually considered
undesirable. These currents may result from resistive-bridge sensors
using voltage excitation, but these currents only flow when the voltage
excitation is applied. Return currents associated with voltage excitation
cannot influence other single-ended measurements of small voltage

Section 5. Overview

unless the same voltage-excitation terminal is enabled during the
unrelated measurements.

Measured voltage is less than 200 mV.

FIGURE 18: Analog Sensor Wired to
Single-Ended Channel #1

FIGURE 19: Analog Sensor Wired to
Differential Channel #1

67

68

Section 5. Overview

TABLE 3: Differential and Single-Ended Input

Terminals

Differential Single-Ended
DIFF Terminals SE Terminals

1H 1

1L 2

2H 3

2L 4

3H 5

3L 6

4H 7

4L 8

SH 9

5L 10

6H 11

6L 12

7H 13

7L 14

8H 15

8L 16

5.2.2.1.1 Single-Ended Measurements — Overview

Related Topics:
» Single-Ended Measurements — Overview (p. 68)
» Single-Ended Measurements — Details (p. 372)

A single-ended measurement measures the difference in voltage between the
terminal configured for single-ended input and the reference ground. While
differential measurements are usually preferred, a single-ended measurement is
often adequate in applications wherein some types of noise are not present and
care is taken to avoid problems caused by ground currents (p. 527. Examples of
applications wherein a single-ended measurement may be preferred include:

e Not enough differential terminals available. Differential measurements
use twice as many H/L terminals as do single-ended measurements.

e Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

e Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the
draw backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

Section 5. Overview

However, be aware that because a single-ended measurement is referenced to
CR1000 ground, any difference in ground potential between the sensor and the
CR1000 will result in error, as emphasized in the following examples:

e [fthe measuring junction of a thermocouple used to measure soil
temperature is not insulated, and the potential of earth ground is greater
at the sensor than at the point where the CR1000 is grounded, a
measurement error will result. For example, if the difference in grounds
is | mV, with a copper-constantan thermocouple, the error will be
approximately 25 °C.

e Ifsignal conditioning circuitry, such as might be found in a gas analyzer,
and the CR1000 use a common power supply, differences in current
drain and lead resistance often result in different ground potentials at the
two instruments despite the use of a common ground. A differential
measurement should be made on the analog output from the external
signal conditioner to avoid error.

5.2.2.1.2 Differential Measurements — Overview

Related Topics:
» Differential Measurements — QOverview (p. 69)
» Differential Measurements — Details (p. 373)

Summary Use a differential configuration when making voltage
measurements, unless constrained to do otherwise.

A differential measurement measures the difference in voltage between two input
terminals. Its autosequence is characterized by multiple measurements, the
results of which are autoaveraged before the final value is reported. For example,
the sequence on a differential measurement using the VoltDiff() instruction
involves two measurements — first with the high input referenced to the low, then
with the inputs reversed. Reversing the inputs before the second measurement
cancels noise common to both leads as well as small errors caused by junctions of
different metals that are throughout the measurement electronics.

5.2.2.2 Current Measurements — Overview

Related Topics:
» Current Measurements — Overview (p. 69)
» Current Measurements — Details (p. 366)

A measurement of current is accomplished through the use of external resistors to
convert current to voltage, then measure the voltage as explained in the section
Differential Measurements — Overview (p. 69. The voltage is measured with the
CR1000 voltage measurement circuitry.

Section 5. Overview

5.2.2.3 Resistance Measurements — Overview

Related Topics:

» Resistance Measurements — Specifications

* Resistance Measurements — Overview (p. 70)

* Resistance Measurements — Details (p. 353)

* Measurement: RTD, PRT, PT100, PT1000 (p. 268)

Many analog sensors use some kind of variable resistor as the fundamental
sensing element. As examples, wind vanes use potentiometers, pressure
transducers use strain gages, and temperature sensors use thermistors. These
elements are placed in a Wheatstone bridge or related circuit. With the exception
of PRTs, another type of variable resistor. See Measurement: RTD, PRT, PT100),
PT1000 . 268). This manual does not give instruction on how to build variable
resistors into a resistor bridge. Sensor manufacturers consider many criteria
when deciding what type of resistive bridge to use for their sensors. The CR1000
can measure most bridge circuit configurations.

5.2.2.3.1 Voltage Excitation

Bridge resistance is determined by measuring the difference between a known
voltage applied to the excitation (input) arm of a resistor bridge and the voltage
measured on the output arm. The CR1000 supplies a precise-voltage excitation
via Vx terminals . Return voltage is measured on H/L terminals configured for
single-ended or differential input. Examples of bridge-sensor wiring using
voltage excitation are illustrated in figures Half-Bridge Wiring — Wind Vane
Potentiometer . 70) and Full-Bridge Wiring — Pressure Transducer . 71).

FIGURE 20: Half-Bridge Wiring
Example — Wind Vane
Potentiometer

Section 5. Overview

FIGURE 21: Full-Bridge Wiring Example
— Pressure Transducer

5.2.2.4 Strain Measurements — Overview

Related Topics:

» Strain Measurements — Overview (p. 71)
» Strain Measurements — Details (p. 364)

* FieldCalStrain() Examples (p. 238)

Strain gage measurements are usually associated with structural-stress analysis.

5.2.3 Pulse Measurements — Overview

Related Topics:

» Pulse Measurements — Specifications
* Pulse Measurements — Overview (p. 71)
* Pulse Measurements — Details (p. 391)

The output signal generated by a pulse sensor is a series of voltage waves. The
sensor couples its output signal to the measured phenomenon by modulating wave
frequency. The CR1000 detects the state transition as each wave varies between

voltage extremes (high-to-low or low-to-high). Measurements are processed and
presented as counts, frequency, or timing data.

P terminals are configurable for pulse input to measure counts or frequency from
the following signal types:

e High-frequency 5 Vdc square-wave
e Switch closure

e Low-level ac

71

Section 5. Overview

C terminals configurable for input for the following:
e State
e Edge counting

e Edge timing

Note A period-averaging sensor has a frequency output, but it is
connected to a SE terminal configured for period-average input and
measured with the PeriodAverage() instruction. See Period Averaging
— Overview (p. 74).

5.2.3.1 Pulses Measured

The CR1000 measures three types of pulse outputs, which are illustrated in the
figure Pulse Sensor Output Signal Types (. 72).

FIGURE 22: Pulse Sensor Output Signal Types

Vdc H H H H H H HHigh-frequency square wave

t

Vac O /\ /\ /\ /\ Low-I | .
T J U _ lowdlevelacsine wave
t

Vdc H H H H H H HSWitch closure series
— o o—

Open
t

5.2.3.2 Pulse Input Channels

Table Pulse Input Terminals and Measurements (p. 72 lists devices, channels and
options for measuring pulse signals.

72

Section 5. Overview

TABLE 4: Pulse Input Terminals and Measurements

Pulse Input CRBasic
Terminal Input Type Data Option Instruction

e Counts

e Low-level ac e Frequency

P Terminal |e High-frequency |, Run PulseCount()
e Switch-closure average of
frequency
e Counts
e Frequenc
e Low-level ac q] y
with LLAC4 . |® Running ¢ | pulseCounto
) average o ulseCoun
CT 1 5909) module
ermima frequency TimerIO()

e High-frequency
: e Interval
e Switch-closure]
e Period

e State

5.2.3.3 Pulse Sensor Wiring

Read More See Pulse Measurement Tips (p. 399).

An example of a pulse sensor connection is illustrated in figure Pulse Input
Wiring Example — Anemometer Switch (p. 73. Pulse sensors have two active
wires, one of which is ground. Connect the ground wire to a == (signal ground)
terminal. Connect the other wire to a P terminal. Sometimes the sensor will
require power from the CR1000, so there may be two added wires — one of
which will be power ground. Connect power ground to a G terminal. Do not
confuse the pulse wire with the positive power wire, or damage to the sensor or
CR1000 may result. Some switch closure sensors may require a pull-up resistor.

FIGURE 23: Pulse Input Wiring
Example — Anemometer

1

73

Section 5. Overview

5.2.4 Period Averaging — Overview

Related Topics:

» Period Average Measurements — Specifications
» Period Average Measurements — Qverview (p. 74)
» Period Average Measurements — Details (p. 405)

CR1000 SE terminals can be configured to measure period average.

Note Both pulse count and period average measurements are used to
measure frequency output sensors. Yet pulse count and period average
measurement methods are different. Pulse count measurements use
dedicated hardware — pulse count accumulators, which are always
monitoring the input signal, even when the CR1000 is between program
scans. In contrast, period average measurement instructions only monitor
the input signal during a program scan. Consequently, pulse count scans
can usually be much less frequent than period average scans. Pulse
counters may be more susceptible to low-frequency noise because they
are always "listening", whereas period averaging may filter the noise by
reason of being "asleep” most of the time. Pulse count measurements are
not appropriate for sensors that are powered off between scans, whereas
period average measurements work well since they can be placed in the
scan to execute only when the sensor is powered and transmitting the
signal.

Period average measurements use a high-frequency digital clock to
measure time differences between signal transitions, whereas pulse count
measurements simply accumulate the number of counts. As a result,
period average measurements offer much better frequency resolution per
measurement interval, as compared to pulse count measurements. The
frequency resolution of pulse count measurements can be improved by
extending the measurement interval by increasing the scan interval and by
averaging. For information on frequency resolution, see Frequency
Resolution (p. 396).

5.2.5 Vibrating Wire Measurements — Overview

Related Topics:

» Vibrating Wire Measurements — Specifications
» Vibrating Wire Measurements — Overview (p. 74)
» Vibrating Wire Measurements — Details (p. 404)

Vibrating wire sensors are the sensor of choice in many environmental and
industrial applications that need sensors that will be stable over very long periods,
such as years or even decades. The CR1000 can measure these sensors either
directly or through interface modules.

A thermistor included in most sensors can be measured to compensate for
temperature errors.

Section 5. Overview

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic
spectral-analysis techniques (VSPECT (. 548 that produce superior noise
rejection, higher resolution, diagnostic data, and, in the case of dynamic VSPECT,
measurements up to 333.3 Hz.

SE terminals are configurable for time-domain vibrating wire measurement,
which is a technique now superseded in most applications by VSPECT (. 548
vibrating wire analysis. See Vibrating Wire Input Modules — List (p. 591 for more
information

Dynamic VSPECT measurements require addition of an interface module.

5.2.6 Reading Smart Sensors — Overview

Related Topics:
* Reading Smart Sensors — Overview (p. 75)
* Reading Smart Sensors — Details (p. 406)

A smart sensor is equipped with independent measurement circuitry that makes
the basic measurement and sends measurement and measurement related data to
the CR1000. Smart sensors vary widely in output modes. Many have multiple
output options. Output options supported by the CR1000 include SDI-12 (. 250),
RS-232 (p. 289), Modbus (p. 463), and DNP3 (p. 462).
The following smart sensor types can be measured on the indicated terminals:

e SDI-12 devices: C

e Synchronous Devices for Measurement (SDM): C

e Smart sensors: C terminals, RS-232 port, and CS I/O port with the
appropriate interface.

e Modbus or DNP3 network: RS-232 port and CS I/O port with the
appropriate interface

e Other serial I/0 devices: C terminals, RS-232 port, and CS 1/O port with
the appropriate interface

5.2.6.1 SDI-12 Sensor Support — Overview

Related Topics:

» SDI-12 Sensor Support — Overview (p. 75)

» SDI-12 Sensor Support — Details (p. 407)

» Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 250)

SDI-12 is a smart-sensor protocol that uses one input port on the CR1000 and is
powered by 12 Vdc. Refer to the chart CR1000 Terminal Definitions (p. 58, which
indicates C terminals that can be configured for SDI-12 input.

75

Section 5. Overview

5.2.6.2 RS-232 — Overview

The CR1000 has 6 ports available for RS-232 input as shown in figure Terminals
Configurable for RS-232 Input (p. 76).

As indicated in figure Use of RS-232 and Digital 1/O when Reading RS-232
Devices . 76), RS-232 sensors can often be connected to C terminal pairs
configured for serial I/O, to the RS-232 port, or to the CS I/O port with the proper
adapter. Ports can be set up for baud rate, parity, stop-bit, and so forth as
described in CRBasic Editor Help.

FIGURE 24: Terminals Configurable for
RS-232 Input

FIGURE 25: Use of RS-232 and Digital I/O when Reading RS-232

Devices
Receive
\ —
v Transmit 0 o
0 0 0 O,
Sensor RS-232
\e 2 8 8/
< Transmit__ Hillillliila
—)
=, Receive }E © o

Section 5. Overview

5.2.7 Field Calibration — Overview

Related Topics:
» Field Calibration — Overview (p. 77)
» Field Calibration — Details (p. 223)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR1000 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement without modifying
or recompiling the CRBasic program.

5.2.8 Cabling Effects — Overview

Related Topics:
» Cabling Effects — Overview (p. 77)
» Cabling Effects — Details (p. 408

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than
Campbell Scientific. Campbell Scientific sensors are engineered for optimal
performance with factory-installed cables.

5.2.9 Synchronizing Measurements — Overview

Related Topics:
» Synchronizing Measurements — Overview (p. 77)
» Synchronizing Measurements — Details (p. 409)

5.2.9.1 Synchronizing Measurements in the CR1000 — Overview
5.2.9.2 Synchronizing Measurements in a Datalogger Network — Overview

Large numbers of sensors, cable length restrictions, or long distances between
measurement sites may require use of multiple CR1000s.

5.3 Data Retrieval and Comms — Overview

Related Topics:

» Data Retrieval and Comms — Quickstart (p. 38)

* Data Retrieval and Comms — Overview (p. 77)

» Data Retrieval and Comms — Details (p. 453)

» Data Retrieval and Comms Peripherals — Lists (p. 597)

77

Section 5. Overview

The CR1000 communicates with external devices to receive programs, send data,
or join a network. Data are usually moved through a comms link consisting of
hardware and a protocol using Campbell Scientific datalogger support sofiware (p.
601). Data can also be shuttled with external memory such as a CompactFlash (CF)
card (CRD: drive) or a Campbell Scientific mass storage media (USB: drive) to
the PC.

5.3.1 Data File Formats in CR1000 Memory

Routine CR1000 operations store data in binary data tables. However, when the
TableFile() instruction is used, data are also stored in one of several formats in
discrete text files in internal or external memory. See Memory Drives —
On-board (p. 431) for more information on the use of the TableFile() instruction.

5.3.2 Data Format on Computer

CR1000 data stored on a PC with datalogger support software (p. 601 are formatted
as either ASCII or binary depending on the file type selected in the support
software. Consult the software manual for details on available data-file formats.

5.3.3 Mass-Storage Device

Caution When removing a Campbell Scientific mass storage device
(thumb drive) from the CR1000, do so only when the LED is not lit or
flashing. Removing the device while it is active can cause data
corruption.

Data stored on a SC115 Campbell Scientific mass storage device can be retrieved
via a comms link to the CR1000 if the device remains on the CS I/O port. Data

can also be retrieved by removing the device, connecting it to a PC, and copying

off files using Windows File Explorer.

5.3.4 Memory Card (CRD: Drive) — Overview

Related Topics:

* Memory Card (CRD: Drive) — Overview (p. 78)

* Memory Card (CRD: Drive) — Details (p. 433)

* Memory Cards and Record Numbers (p. 439

» Data Output: Writing High-Frequency Data to Memory Cards (p. 211)
» File System Errors (p. 451)

» Data Storage Devices — List (p. 599)

» Data File Format Examples (p. 437)

» Data Storage Drives Table (p. 430)

Caution Observe the following precautions when using memory cards:

Section 5. Overview

5.3.4.1 Comms

e Before removing a card from the card module, or removing the card
module from the CR1000, disable the card by pressing the Initiate
Removal button (NOT the eject button), wait for the green light.

e Do not remove a memory card while the drive is active or data
corruption and damage to the card may result.

e Prevent data loss by collecting data before sending a program from the
memory card to the CR1000. Sending a program from the card to the
CR1000 often erases all data.

Data stored on a memory card are collected to a PC through a comms link with
the CR1000 or by removing the card and collecting it directly using a third-party
adapter on a PC.

The CR1000 accesses data on the card as needed to fill data-collection requests
initiated with the datalogger support software Collect . 518) command. An
alternative, if care is taken, is to collect data in binary form. Binary data are
collected using the datalogger support software File Control | Retrieve (. 525
command. Before collecting data this way, stop the CR1000 program to ensure
data are not written to the card while data are retrieved, or data will be corrupted.

5.3.4.2 Direct with Adapter to PC

Data transfer is much faster through an adapter than through a comm link. This
speed difference is especially noticeable with large files.

The format of data files collected by direct connection of the card with a PC may
be different than the standard Campbell Scientific data file formats (binary —
format depends on the instruction used to write to the card). See section Data
File Format Examples (p. 437) for more information. Binary data files can be
converted to a Campbell Scientific format using CardConvert (. 517) software.

5.3.5 Comms Protocols

The primary communication protocol is PakBus (. 535). PakBus is a protocol
proprietary to Campbell Scientific.

5.3.5.1 PakBus Comms — Overview

Related Topics:

» PakBus Comms — Overview (p. 79)

» PakBus Networking Guide (available at
www.campbellsci.com/manuals)

The CR1000 communicates with datalogger support software . 601), comms
peripherals (p. 597), and other dataloggers (p. 589 with PakBus, a proprietary
network communication protocol. PakBus is a protocol similar in concept to IP

79

80

Section 5. Overview

(Internet Protocol). By using signatured data packets, PakBus increases the
number of communication and networking options available to the CR1000.
Communication can occur via TCP/IP, on the RS-232 port, CS I/O port, and C
terminals.

Advantages of PakBus are as follows:
e Simultaneous communication between the CR1000 and other devices.

e Peer-to-peer communication — no PC required. Special CRBasic
instructions simplify transferring data between dataloggers for
distributed decision making or control.

e Data consolidation — other PakBus dataloggers can be used as sensors
to consolidate all data into one Campbell Scientific datalogger.

e Routing — the CR1000 can act as a router, passing on messages
intended for another Campbell Scientific datalogger. PakBus supports
automatic route detection and selection.

e Short distance networks — with no extra hardware, a CR1000 can talk to
another CR1000 over distances up to 30 feet by connecting transmit,
receive and ground wires between the dataloggers.

In a PakBus network, each datalogger is set to a unique address. The default
PakBus address in most devices is 1. To communicate with the CR1000, the
datalogger support software must know the CR1000 PakBus address. The PakBus
address is changed using the CR1000KD Keyboard/Display (p. 469, DevConfig
utility (. 107, CR1000 Status table . 553), or PakBus Graph (p. 535) software.

5.3.6 Alternate Comms Protocols — Overview

Related Topics:
» Alternate Comms Protocols — Overview (p. 80)
» Alternate Comms Protocols — Details (p. 454)

Other comms protocols are also included:

o Web API . 462, p. 462)

e Modbus . 81

o DNP3 p. 81
Refer to Specifications (p. 95) for a complete list of supported protocols. See Data
Retrieval and Comms Peripherals — Lists (p. 597) for devices available from

Campbell Scientific.

Keyboard displays also communicate with the CR1000. See Keyboard/Display
— QOverview (p. 82) for more information.

Section 5. Overview

5.3.6.1 Modbus — Overview

Related Topics:
* Modbus — Overview (p. 81)
* Modbus — Details (p. 463)

The CR1000 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR1000 communicates with Modbus over RS-232, (with a RS-232 to
RS-485 such as an MD485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The CR1000 supports RTU and ASCII communication modes
on RS-232 and RS485 connections. It exclusively uses the TCP mode on IP
connections.

Field instruments can be queried by the CR1000. Because Modbus has a set
command structure, programming the CR1000 to get data from field instruments
is much simpler than from serial sensors. Because Modbus uses a common bus
and addresses each node, field instruments are effectively multiplexed to a
CR1000 without additional hardware.

5.3.6.2 DNP3 — Overview

Related Topics:
* DNP3 — QOverview (p. 81)
* DNP3 — Details (p. 462)

The CR1000 supports DNP3 slave communications for inclusion in DNP3
SCADA networks.

5.3.6.3 TCP/IP — Overview

Related Topics:

* TCP/IP — Overview

» TCP/IP — Details (p. 455)

» TCP/IP Links — List (p. 598)

The following TCP/IP protocols are supported by the CR1000 when using
network links (p. 598 that use the resident IP stack or when using a cell modem with
the PPP/IP key enabled. The following sections include information on some of
these protocols:

82

Section 5. Overview

e DHCP e Ping

e DNS e POP3

e FTP e SMTP

e HTML e SNMP

e HTTP e Telnet

e Micro-serial server e Web API
e Modbus TCP/IP e XML

e NTCIP e UDP

e NTP e [Pv4

e PakBus over TCP/IP IPv6

5.3.7 Comms Hardware — Overview

The CR1000 can accommodate, in one way or another, nearly all comms options.
Campbell Scientific specializes in RS-232, USB, RS-485, short haul (twisted
pairs), Wi-Fi, radio (single frequency and spread spectrum), land-line telephone,
cell phone / IP modem, satellite, ethernet/internet, and sneaker net (external
memory).

The most common comms hardware is an RS-232 cable or USB cable. These are
short-distance direct-connect devices that require no configuration of the CR1000.
All other comms methods require peripheral devices; some require that CR1000
settings be configured differently than the defaults.

5.3.8 Keyboard/Display — Overview

The CR1000KD Keyboard/Display is a powerful tool for field use. The
CR1000KD, illustrated in figure CR1000KD Keyboard/Display . 83), is purchased
separately from the CR1000.

The keyboard/display is an essential installation, maintenance, and
troubleshooting tool for many applications. It allows interrogation and
configuration of the CR1000 datalogger independent of other comms links.
More information on the use of the keyboard/display is available in Custom
Menus — Overview (p. 83. The keyboard/display will not operate when a USB
cable is plugged into the USB port.

Section 5. Overview

FIGURE 26: CR1000KD
Keyboard/Display

5.3.8.1 Character Set

The keyboard display character set is accessed using one of the following three
procedures:

e The 16 keys defaultto A, ¥V, <, », Home, PgUp, End, PgDn, Del,
and Ins.

e To enter numbers, first press Num Lock. Num Lock stays set until
pressed again.

e Above all keys, except Num Lock and Shift, are characters printed in
blue. To enter one of these characters, press Shift one to three times to
select the position of the character as shown above the key, then press the
key. For example, to enter Y, press Shift Shift Shift PgDn.

e To insert a space (Spc) or change case (Cap), press Shift one to two
times for the position, then press BkSpe.

e To insert a character not printed on the keyboard, enter Ins , scroll down
to Character, press Enter, then press A, ¥, <, P to scroll to the
desired character in the list that is presented, then press Enter.

5.3.8.2 Custom Menus — Overview

CRBasic programming in the CR1000 facilitates creation of custom menus for the
CR1000KD Keyboard/Display.

Figure Custom Menu Example (p. $4) shows windows from a simple custom menu
named DataView by the programmer. DataView appears in place of the default
main menu on the keyboard display. As shown, DataView has menu item

83

Section 5. Overview

Counter, and submenus PanelTemps, TCTemps and System Menu. Counter
allows selection of one of four values. Each submenu displays two values from

CR1000 memory. PanelTemps shows the CR1000 wiring-panel temperature at
each scan, and the one-minute sample of panel temperature. TCTemps displays
two thermocouple temperatures.

FIGURE 27: Custom Menu Example

DataView Panel Temps:
PanelTemps > ——Pp| Scan 23.4960
Counter 0.00000 Final Stg 23.5000
TCTemps >
System Menu >
rTCTemps:)
TC_Temp_1 29.4355
TC_Temp_2 32.3133
Data)
' Run/Stop Program
File
Ports and Status
Configure, Settings

5.4 Measurement and Control Peripherals — Overview

Modules are available from Campbell Scientific to expand the number of
terminals on the CR1000. These include:

Multiplexers

Multiplexers increase the input capacity of terminals configured for
analog-input, and the output capacity of Vx excitation terminals.

SDM Devices
Serial Device for Measurement expand the input and output capacity of the
CR1000. These devices connect to the CR1000 through terminals C1, C2,
and C3.

CDM Devices
Campbell Distributed Modules measurement and control modules that use

the high speed CAN Peripheral Interface (CPI) bus technology. These
connect through the SC-CPI interface.

84

Section 5. Overview

5.5 Power Supplies — Overview

The CR1000 is powered by a nominal 12 Vdc source. Acceptable power range is
9.6 to 16 Vdc.External power connects through the green POWER IN connector
on the face of the CR1000. The positive power lead connects to 12V. The
negative lead connects to G. The connection is internally reverse-polarity
protected.

The CR1000 is internally protected against accidental polarity reversal on the
power inputs.

The CR1000 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging
regulator, and a rechargeable battery can be used to construct a UPS
(un-interruptible power supply).

5.6 CR1000 Setup — Overview

Related Topics:
* CR1000 Setup — Overview (p. 85)
» CR1000 Setup — Details (p. 106)

» Status, Settings, and Data Table Information (Info Tables and Settings)
(p. 553)

The CR1000 is shipped factory-ready with an operating system (OS) installed.
Settings default to those necessary to communicate with a PC via RS-232 and to
accept and execute application programs. For more complex applications, some
settings may need adjustment. Settings can be changed with the following:

o DevConfig (Device Configuration Utility)

e CRI1000KD Keyboard/Display

e Datalogger support software
OS files are sent to the CR1000 with DevConfig or through the program Send
button in datalogger support software. When the OS is sent with DevConfig, most
settings are cleared, whereas, when sent with datalogger support software, most
settings are retained. Operating systems can also be transferred to the CR1000
with a Campbell Scientific mass storage device or memory card. OS and settings

remain intact when power is cycled.

OS updates are occasionally made available at www.campbellsci.com.

5.7 CRBasic Programming — Overview

Related Topics:
» CRBasic Programming — Overview (p. 85)

Section 5. Overview

* CRBasic Programming — Details (p. 124)
* Programming Resource Library (p. 176)
» CRBasic Editor Help

A CRBasic program directs the CR1000 how and when sensors are to be
measured, calculations made, and data stored. A program is created on a PC and
sent to the CR1000. The CR1000 can store a number of programs in memory, but
only one program is active at a given time. Two Campbell Scientific software
applications, Short Cut and CRBasic Editor, are used to create CR1000 programs.

e Short Cut creates a datalogger program and wiring diagram in four easy
steps. It supports most sensors sold by Campbell Scientific and is
recommended for creating simple programs to measure sensors and store
data.

e Programs generated by Short Cut are easily imported into CRBasic
Editor for additional editing. For complex applications, experienced
programmers often create essential measurement and data storage code
with Short Cut, then add more complex code with CRBasic Editor.

Note Once a Short Cut generated program has been edited with
CRBasic Editor, it can no longer be modified with Short Cut.

5.8 Security — Overview

86

The CR1000 is supplied void of active security measures. By default, RS-232,
Telnet, FTP and HTTP services, all of which give high level access to CR1000
data and CRBasic programs, are enabled without password protection.

You may wish to secure your CR1000 from mistakes or tampering. The following
may be reasons to concern yourself with datalogger security:

e Collection of sensitive data

e Operation of critical systems

e Networks accessible by many individuals

Some options to secure your datalogger from mistakes or tampering include:

e Sending the latest operating system to the datalogger.

e Disabling unused services and securing those that are used. This includes
disabling HTTP, FTP, Telnet, and Ping network services (Device
Configuration Utility | Settings Editor | Network Services tab). These
services can be used to discover your datalogger on an IP network.

e Setting security codes (see section Pass-Code Lockout (p. 424)).

e Setting a PakBus/TCP password. The PakBus TCP password controls

access to PakBus communication over a TCP/IP link. PakBusTCP
passwords can be set in Device Configuration Utility.

Section 5. Overview

e Disabling FTP or setting an FTP username and password in Device
Configuration Utility.

e Setting a PakBus encryption (AES-128) key in Device Configuration
Utility. This forces PakBus data to be encrypted during transmission.

e Disabling HTTP or creating a .csipasswd file to secure HTTP/HTTPS
(see section .csipasswd (p. 425) for more information).

e Tracking Operating System, Run, and Program signatures.
e Encrypting program files if they contain sensitive information (see
CRBasic help FileEncrypt() instruction or use the CRBasic Editor File

menu, Save and Encrypt option).

e Hiding program files for extra protection (see CRBasic help
FileManage() instruction).

e Securing the physical datalogger and power supply under lock and key.

e Monitoring your datalogger for changes by tracking program and
operating system signatures, as well as CPU and USR file contents.

Warning All security features can be subverted through physical access
to the datalogger. If absolute security is a requirement, the physical
datalogger must be kept in a secure location.

5.9 Maintenance — Overview

Related Topics:
» Maintenance — Overview (p. 87)
» Maintenance — Details (p. 483)

With reasonable care, the CR1000 should give many years of reliable service.

5.9.1 Protection from Moisture — Overview

Protection from Moisture — Overview (p. 87)
Protection from Moisture — Details (p. 106)
Protection from Moisture — Products (p. 609)

The CR1000 and most of its peripherals must be protected from moisture.
Moisture in the electronics will seriously damage, and probably render
un-repairable, the CR1000. Water can come in liquid form from flooding or
sprinkler irrigation, but most often it comes as condensation. In most cases,
protection from water is easily accomplished by placing the CR1000 in a
weather-tight enclosure with desiccant and by elevating the enclosure above the
ground. The CR1000 is shipped with internal desiccant packs to reduce humidity.
Desiccant in enclosures should be changed periodically.

Section 5. Overview

Note Do not completely seal the enclosure if lead acid batteries are
present; hydrogen gas generated by the batteries may build up to an
explosive concentration.

5.9.2 Protection from Voltage Transients — Overview

The CR1000 must be grounded to minimize the risk of damage by voltage
transients associated with power surges and lightning-induced transients. Earth
grounding is required to form a complete circuit for voltage clamping devices
internal to the CR1000.

5.9.3 Factory Calibration — Overview

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

The CR1000 uses an internal voltage reference to routinely calibrate itself.
Campbell Scientific recommends factory recalibration as specified in
Specifications (p. 93). If calibration services are required, see Assistance (p. 3).

5.9.4 Internal Battery — Overview

Related Topics:
* Internal Battery — Quickstart (p. 38)
* Internal Battery — Details (p. 483)

Warning Misuse or improper installation of the internal lithium battery
can cause severe injury. Fire, explosion, and severe burns can result. Do
not recharge, disassemble, heat above 100 °C (212 °F), solder directly to
the cell, incinerate, or expose contents to water. Dispose of spent lithium
batteries properly.

The CR1000 contains a lithium battery that operates the clock and powers SRAM
when the CR1000 is not externally powered. Voltage of the battery is monitored
from the CR1000 Status table (LithiumBattery (p. 569). Replace the battery as
directed in Internal Battery — Details (p. 483).

The lithium battery is not rechargeable. Its design is one of the safest available
and uses lithium thionyl chloride technology. Maximum discharge current is
limited to a few mA. It is protected from discharging excessive current to the
internal circuits (there is no direct path outside) with a 100 ohm resistor. The
design is UL listed. See:

Section 5. Overview

http://www.tadiran-batterie.de/download/eng/LBRO6Eng.pdf.

5.10 Datalogger Support Software — Overview

Related Topics:

* Datalogger Support Software — Quickstart (p. 39)
» Datalogger Support Software — Overview (p. 89)
» Datalogger Support Software — Details (p. 418)

* Datalogger Support Software — Lists (p. 600)

Datalogger support software handles communication between a computer or
device and the CR1000. A wide array of software are available, but the following
are the most commonly used:

Short Cut Program Generator for Windows (SCWin) — Generates
simple CRBasic programs without the need to learn the CRBasic
programming language

PC200W Datalogger Starter Software for Windows — Supports only
direct serial connection to the CR1000 with hardwire or select Campbell
Scientific radios. It supports sending a CRBasic program, data collection,
and setting the CR1000 clock; available at no charge at
www.campbellsci.com/downloads

LoggerLink Mobile Apps — Simple tools that allow an iOS or Android
device to communicate with IP, Wi-Fi, or Bluetooth enabled CR1000s;
includes most PC200W functionality.

PC400 Datalogger Support Software — Includes PC200W functions,
CRBasic Editor, and supports all Campbell Scientific communications
hardware, except satellite, in attended mode

LoggerNet Datalogger Support Software — Includes all PC400 functions
and supports all Campbell Scientific communication options, except
satellite, attended and automatically; includes many enhancements such
as graphical data displays and a display builder

Note More information about software available from Campbell Scientific
can be found at www.campbellsci.com.

5.11 PLC Control — Overview

Related Topics:

* PLC Control — Overview (p. 89)

* PLC Control Modules — Overview (p. 416)

» PLC Control Modules — Lists (p. 593)

+ Switched Voltage Output — Specifications
» Switched Voltage Output — Overview (p. 60)
» Switched Voltage Output — Details (p. 410)

» Current Source and Sink Limits (p. 411)

89

90

Section 5. Overview

The CR1000 can control instruments and devices such as the following:

o Wireless cellular modem to conserve power.

e GPS receiver to conserve power.

e Trigger a water sampler to collect a sample.

e Trigger a camera to take a picture.

e Activate an audio or visual alarm.

e Move a head gate to regulate water flows in a canal system.

e Control pH dosing and aeration for water quality purposes.

e Control a gas analyzer to stop operation when temperature is too low.

e Control irrigation scheduling.
Controlled devices can be physically connected to C terminals, usually through an
external relay driver, or the SW12V (p. 412) terminal. C terminals can be set low (0
Vdc) or high (5 Vdc) using PortSet() or WritelO() instructions. Control modules
are available to expand and augment CR1000 control capacity. On / off and
proportional control modules are available. See appendix PLC Control Modules
— List (p. 593).
Tips for writing a control program:

e Short Cut programming wizard has provisions for simple on/off control.

e PID control can be done with the CR1000.
Control decisions can be based on time, an event, or a measured condition.
Example:
In the case of a cell modem, control is based on time. The modem requires 12 Vdc
power, so connect its power wire to the CR1000 SW12V terminal. The following

code snip turns the modem on for ten minutes at the top of the hour using the
TimelntoInterval() instruction embedded in an If/Then logic statement:

If TimeIntoInterval(0,60,Min) Then PortSet(9,1) 'Port “9” is the
SW12V Port. Turn phone on.

If TimeIntoInterval(10,60,Min) Then PortSet(9,0) 'Turn phone
off.

TimelsBetween() returns TRUE if the CR1000 real-time clock falls within the
specified range; otherwise, the function returns FALSE. Like
TimelntolInterval(), TimelsBetween() is often embedded in an If/Then logic
statement, as shown in the following code snip.

Section 5. Overview

If TimeIsBetween(0,10,60,Min) Then
SW12(1) 'Turn phone on.

Else
SW12(0) 'Turn phone off.

EndIf

TimelsBetween() returns TRUE for the entire interval specified whereas

TimelntolInterval() returns TRUE only for the one scan that matches the interval

specified.

For example, using the preceding code snips, if the CRBasic program is sent to

the datalogger at one minute past the hour, the TimeIsBetween() instruction will

evaluate as TRUE on its first scan. The TimeIntoInterval() instruction will
evaluate as TRUE at the top of the next hour (59 minutes later).

Note START is inclusive and STOP is exclusive in the range of time that

will return a TRUE result. For example: TimelsBetween(0,10,60,Min) will
return TRUE at 8:00:00.00 and FALSE at 08:10:00.00.

5.12 Auto Self-Calibration — Overview

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

The CR1000 auto self-calibrates to compensate for changes caused by changing
operating temperatures and aging. Disable auto self-calibration when it interferes
with execution of very fast programs and less accuracy can be tolerated.

513 Memory — Overview

Related Topics:

* Memory — Overview (p. 91)

* Memory — Details (p. 428)

» Data Storage Devices — List (p. 599)

» TABLE: Info Tables and Settings: Memory (p. 561)

The CR1000 organizes memory as follows:
e OSFlash
o Operating system (OS)
o Serial number and board rev
o Boot code

o Erased when loading new OS (boot code only erased if changed)

91

Section 5. Overview

e Serial Flash
o Device settings
o Write protected
o Non-volatile

o CPU: drive

— Automatically allocated

— FAT32 file system

— Limited write cycles (100,000)

— Slow (serial access)

e Main Memory

o Battery backed

o OS variables

o CRBasic compiled program binary structure (490 KB maximum)

o CRBasic variables

o Data memory

o Communication memory

o USR:drive

— User allocated

— FAT32 RAM drive

— Photographic images (see Cameras — List (p. 596))

— Data files from TableFile() instruction (TOAS, TOB1, CSIXML
and CSIJSON)

o Keep memory (p. 530 (OS variables not initialized)

o Dynamic runtime memory allocation

Note CR1000s with serial numbers smaller than 11832 were usually
supplied with only 2 MB of SRAM.

Memory for data can be increased with the addition of a CF (. 518 card and CF
storage module (connects to the Peripheral port) or a mass storage device (thumb
drive) that connects to CS I/O or both. See Data Storage Devices — List (p. 599
for information on available memory expansion products.

By default, final-storage memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The

Section 5. Overview

DataTable() instruction, however, has an option to set a data table to Fill and
Stop.

93

6.

CR1000 specifications are valid from —25° to 50°C in non-condensing environments unless otherwise specified. Recalibration is recommended every three years.

Specifications

configurations should be confirmed with a Campbell Scientific sales engineer before purchase.

PROGRAM EXECUTION RATE
10 ms to one day at 10 ms increments
ANALOG INPUTS (SE 1-16, DIFF 1-8)
Eight differential (DIFF) or 16 single-ended (SE) individually
configured input channels. Channel expansion provided by
optional analog multiplexers.
RANGES and RESOLUTION: With reference to the following table,
basic resolution (Basic Res) is the resolution of a single A/D (p.
515) conversion. A DIFF measurement with input reversal has
better (finer) resolution by twice than Basic Res.

| DIFF Basic

Range (mV); Res (uV), Res (nV)
+5000 667 1333

+2500 333 667

+250 333 66.7

+25 3.33 6.7

*7.5 1.0 2.0

$2.5 0.33 0.67

1Range overhead of 9% on all ranges guarantees full-scale
voltage will not cause over-range.

2Resolution of DIFF measurements with input reversal.

ANALOG INPUT ACCURACY;:

+(0.06% of reading + offsets), 0° to 40°C

+(0.12% of reading + offsets), -25° to 50°C

+(0.18% of reading + offsets), -55° to 85°C (-XT only)

sAccuracy does not include sensor and measurement noise.

Offset definitions:

Offset = 1.5 x Basic Res + 1.0 pV (for DIFF measurement w/ input
reversal)

Offset = 3 x Basic Res + 2.0 uV (for DIFF measurement w/o input
reversal)

Offset = 3 x Basic Res + 3.0 pV (for SE measurement)

ANALOG MEASUREMENT SPEED:

---Total Timeg---
Inte- SE DIFF
gration Inte- with with
Type gration Settling no Input
Code Time Time Rev Rev
250 250 ps 450 ps =1 ms =12 ms
_60Hzs 16.67 ms 3ms =20 ms =40 ms
_50Hzs 20.00 ms 3ms =25 ms =50 ms
4Includes 250 ps for conversion to engineering units.
sAC line noise filter

INPUT-NOISE VOLTAGE: For DIFF measurements with input
reversal on £2.5 mV input range (digital resolution dominates for
higher ranges):
250 ps Integration: 0.34 pV RMS
50/60 Hz Integration: 0.19 uV RMS
INPUT LIMITS: +5 Vdc
DC COMMON-MODE REJECTION: >100 dB
NORMAL-MODE REJECTION: 70 dB @ 60 Hz when using 60 Hz
rejection
INPUT VOLTAGE RANGE W/O MEASUREMENT CORRUPTION: 8.6
Vdc max.
SUSTAINED-INPUT VOLTAGE W/O DAMAGE: +16 Vdc max
INPUT CURRENT: +1 nA typical, 6 nA max. @ 50°C; £90 nA @ 85°C
INPUT RESISTANCE: 20 GQ typical
ACCURACY OF BUILT-IN REFERENCE JUNCTION THERMISTOR (for
thermocouple measurements):
+0.3°C, -25° to 50°C
+0.8°C, -55° to 85°C (-XT only)
ANALOG OUTPUTS (VX 1-3)

Three switched voltage outputs sequentially active only during
measurement.

RANGES AND RESOLUTION:

Current
Resolu- Source

Channel Range tion / Sink
(VX 1-3) +2.5 Vdc 0.67 mV +25 mA

ANALOG OUTPUT ACCURACY (VX):

+(0.06% of setting + 0.8 mV, 0° to 40°C

+(0.12% of setting + 0.8 mV, -25° to 50°C

+(0.18% of setting + 0.8 mV, -55° to 85°C (-XT only)

VX FREQUENCY SWEEP FUNCTION: Switched outputs provide a
programmable swept frequency, 0 to 2500 mV square waves for
exciting vibrating wire transducers.

PERIOD AVERAGE

Any of the 16 SE analog inputs can be used for period averaging.
Accuracy is +(0.01% of reading + resolution), where resolution is
136 ns divided by the specified number of cycles to be measured.
INPUT AMPLITUDE AND FREQUENCY:

Input

Signal Min
Volt- Peak-Peak Pulse Max
age Range Min Max Width Freq
Gain Code mVg V7 us kHzg
1 mV250 500 10 2.5 200
10 mvV25 10 2 10 50
33 mvV7_5 5 2 62 8
100 mV2_5 2 2 100 5

eSignal to be centered around Threshold (see PeriodAvg()
instruction).

;Signal to be centered around ground.

gThe maximum frequency = 1/(twice minimum pulse width)
for 50% of duty cycle signals.

RATIOMETRIC MEASUREMENTS

MEASUREMENT TYPES: The CR1000 provides ratiometric
resistance measurements using voltage excitation. Three
switched voltage excitation outputs are available for
measurement of four- and six-wire full bridges, and two-, three-,
and four-wire half bridges. Optional excitation polarity reversal
minimizes dc errors.

RATIOMETRIC MEASUREMENT ACCURACYg 11
Note Important assumptions outlined in footnote 9:
+(0.04% of Voltage Measurement + Offset;;)

oAccuracy specification assumes excitation reversal for excitation
voltages < 10001000 mV. Assumption does not include bridge
resistor errors and sensor and measurement noise.

11Estimated accuracy, AX (where X is value returned from
measurement with Multiplier =1, Offset = 0):
BRHalf() Instruction: AX = AV1/VX.
BRFull() Instruction: AX = 1000 x AV1/VX, expressed as mVeV._;.
Note AV1 is calculated from the ratiometric measurement
accuracy. See manual section Resistance Measurements (p. 353)
for more information.
1,0ffset definitions:
Offset = 1.5 x Basic Res + 1.0 pV (for DIFF measurement w/ input
reversal)
Offset = 3 x Basic Res + 2.0 pV (for DIFF measurement w/o input
reversal)
Offset = 3 x Basic Res + 3.0 pV (for SE measurement)
Note Excitation reversal reduces offsets by a factor of two.
PULSE COUNTERS (P 1-2)
Two inputs individually selectable for switch closure,
high-frequency pulse, or low-level ac. Independent 24-bit counters
for each input.
MAXIMUM COUNTS PER SCAN: 16.7 x 10¢
SWITCH CLOSURE MODE:
Minimum Switch Closed Time: 5 ms
Minimum Switch Open Time: 6 ms
Max. Bounce Time: 1 ms open without being counted
HIGH-FREQUENCY PULSE MODE:
Maximum-Input Frequency: 250 kHz
Maximum-Input Voltage: +20 V
Voltage Thresholds: Count upon transition from below 0.9 V to
above 2.2 V after input filter with 1.2 ps time constant.
LOW-LEVEL AC MODE: Internal ac coupling removes dc offsets up
to 0.5 Vdc.
Input Hysteresis: 12 mV RMS @ 1 Hz
Maximum ac-Input Voltage: +20 V
Minimum ac-Input Voltage:

Sine wave (mV RMS) | Range (Hz)
20 1.0to 20
200 0.5to0 200
2000 0.3 to 10,000
5000 0.3 to 20,000

Critical specifications and system

DIGITAL I/O PORTS (C 1-8)

Eight ports software selectable as binary inputs or control outputs.
Provide on/off, pulse width modulation, edge timing, subroutine
interrupts / wake up, switch closure pulse counting,
high-frequency pulse counting, asynchronous communications
(UARTSs), and SDI-12 communications. SDM communications are
also supported.

LOW FREQUENCY MODE MAX: <1 kHz

HIGH FREQUENCY MODE MAX: 400 kHz

SWITCH-CLOSURE FREQUENCY MAX: 150 Hz

EDGE-TIMING RESOLUTION: 540 ns

OUTPUT VOLTAGES (no load): high 5.0V 0.1 V; low < 0.1 V
OUTPUT RESISTANCE: 330 Q

INPUT STATE: high 3.8 to 16 V; low -8.0to 1.2 V

INPUT HYSTERISIS: 1.4 V

INPUT RESISTANCE:

100 kQ with inputs < 6.2 Vdc

220 Q with inputs 2 6.2 Vdc

SERIAL DEVICE / RS-232 SUPPORT: 0 to 5 Vdc UART

SWITCHED 12 Vdc (SW-12)
One independent 12 Vdc unregulated terminal switched on and
off under program control. Thermal fuse hold current = 900 mA at
20°C, 650 mA at 50°C, and 360 mA at 85°C.
COMPLIANCE
View the EU Declaration of Conformity at
www.campbellsci.com/cr1000
COMMUNICATION
RS-232 PORTS:
DCE nine-pin: (not electrically isolated) for computer connection
or connection of modems not manufactured by Campbell
Scientific.
COML1 to COM4: four independent Tx/Rx pairs on control ports
(non-isolated); 0 to 5 Vdc UART
Baud Rate: selectable from 300 bps to 115.2 kbps.
Default Format: eight data bits; one stop bits; no parity.
Optional Formats: seven data bits; two stop bits; odd, even parity.
CS 1/0 PORT: Interface with comms peripherals manufactured by
Campbell Scientific.
SDI-12: Digital control ports C1, C3, C5, C7 are individually
configurable and meet SDI-12 Standard v. 1.3 for datalogger
mode. Up to ten SDI-12 sensors are supported per port.
PERIPHERAL PORT: 40-pin interface for attaching CompactFlash or
Ethernet peripherals.
PROTOCOLS SUPPORTED: PakBus, AES-128 Encrypted PakBus,
Modbus, DNP3, FTP, HTTP, XML, HTML, POP3, SMTP, Telnet,
NTCIP, NTP, web API, SDI-12, SDM.
SYSTEM
PROCESSOR: Renesas H8S 2322 (16-bit CPU with 32-bit internal
core running at 7.3 MHz)
MEMORY: 2 MB of flash for operating system; 4 MB of
battery-backed SRAM for CPU, CRBasic programs, and data.
REAL-TIME CLOCK ACCURACY: £3 min. per year. Correction via GPS
optional.
RTC CLOCK RESOLUTION: 10 ms
SYSTEM POWER REQUIREMENTS
VOLTAGE: 9.6 to 16 Vdc
INTERNAL BATTERY: 1200 mAhr lithium battery for clock and
SRAM backup. Typically provides three years of back-up.

EXTERNAL BATTERIES: Optional 12 Vdc nominal alkaline and
rechargeable available. Power connection is reverse polarity
protected.

TYPICAL CURRENT DRAIN at 12 Vdc:

Sleep Mode: 0.7 mA typical; 0.9 mA maximum
1 Hz Sample Rate (one fast SE meas.): 1 mA
100 Hz Sample Rate (one fast SE meas.): 16 mA
100 Hz Sample Rate (one fast SE meas. with RS-232
communications): 28 mA

Active external keyboard display adds 7 mA (100 mA with
backlight on).

PHYSICAL

DIMENSIONS: 239 x 102 x 61 mm (9.4 x 4.0 x 2.4 in.) ; additional
clearance required for cables and leads.

MASS / WEIGHT: 1.0 kg / 2.1 Ibs

WARRANTY

Warranty is stated in the published price list and in opening pages

of this and other user manuals.

95

http://www.campbellsci.com/cr1000#documents_

7.

Installation

71

Related Topics:

* Quickstart (p. 35)

* Specifications (p. 95)
* Installation (p. 97)

* Operation (p. 321)

Enclosures — Details

Enclosures — Details (p. 97)
Enclosures — Products (p. 607)

Mlustrated in figure Enclosure (p. 97) is the typical use of enclosures available from
Campbell Scientific designed for housing the CR1000. This style of enclosure is
classified as NEMA 4X (watertight, dust-tight, corrosion-resistant, indoor and
outdoor use). Enclosures have back plates to which are mounted the CR1000
datalogger and associated peripherals. Back plates are perforated on one-inch
centers with a grid of holes that are lined as needed with anchoring nylon inserts.
The CR1000 base has mounting holes through which small screws are inserted
into the nylon anchors. Screws and nylon anchors are supplied in a kit that is
included with the enclosure.

FIGURE 28: Enclosure

@

@

ol
i) [

‘%@ooooooeo

200 ¢ OO OO

97

Section 7. Installation

7.2 Power Supplies — Details

Related Topics:

» Power Input Terminals — Specifications

» Power Supplies — Quickstart (p. 37)

» Power Supplies — Overview (p. 85)

» Power Supplies — Details (p. 98)

» Power Supplies — Products (p. 605)

» Power Sources (p. 99

» Troubleshooting — Power Supplies (p. 503)

Reliable power is the foundation of a reliable data acquisition system. When
designing a power supply, consideration should be made regarding worst-case
power requirements and environmental extremes. For example, when designing a
solar power system, design it to operate with 14 days of reserve time at the winter
solstice when the following are limiting environmental factors:

e Sunlight intensity is the lowest

e Sunlight duration is the shortest

e Battery temperatures are the lowest

e System power requires are often the highest

The CR1000 is internally protected against accidental polarity reversal on the
power inputs.

The CR1000 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging
regulator, and a rechargeable battery can be used to construct a UPS
(un-interruptible power supply).

Caution Voltage levels at the 12V and switched SW12 terminals, and pin
8 on the CS 1/O port, are tied closely to the voltage levels of the main
power supply. For example, if the power received at the POWER IN 12V
and G terminals is 16 Vdc, the 12V and SW12 terminals, and pin 8 on
the CS /O port, will supply 16 Vdc to a connected peripheral. If the
connected peripheral or sensor is not designed for that voltage level, it
may be damaged.

7.21 CR1000 Power Requirement

The CR1000 operates with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

Section 7. Installation

The CR1000 is internally protected against accidental polarity reversal on the
power inputs. A transient voltage suppressor (TVS) diode at the POWER IN 12V
terminals provides protection from intermittent high voltages by clamping these
transients to within the range of 19 to 21 V. Sustained input voltages in excess of
19 V, can damage the TVS diode.

7.2.2 Calculating Power Consumption

System operating time for batteries can be determined by dividing the battery
capacity (ampere-hours) by the average system current drain (amperes). The
CR1000 typically has a quiescent current drain of 0.5 mA (with display off) 0.6
mA with a 1 Hz sample rate, and >10 mA with a 100 Hz scan rate. When the
CR1000KD Keyboard/Display is active, an additional 7 mA is added to the
current drain while enabling the backlight for the display adds 100 mA.

7.2.3 Power Sources

Related Topics:

» Power Input Terminals — Specifications

* Power Supplies — Quickstart (p. 37)

* Power Supplies — Overview (p. 85)

» Power Supplies — Details (p. 98)

» Power Supplies — Products (p. 605)

» Power Sources (p. 99)

» Troubleshooting — Power Supplies (p. 503)

Be aware that some Vac-to-Vdc power converters produce switching noise or ac
(- 515 ripple as an artifact of the ac-to-dc rectification process. Excessive
switching noise on the output side of a power supply can increase measurement
noise, and so increase measurement error. Noise from grid or mains power also
may be transmitted through the transformer, or induced electro-magnetically from
nearby motors, heaters, or power lines.

High-quality power regulators typically reduce noise due to power regulation.
Using the optional 50 Hz or 60 Hz rejection arguments for CRBasic analog input
measurement instructions (see Measurements — Details (p. 321)) often improves
rejection of noise sourced from power mains. The CRBasic standard deviation
instruction, SDEV(), can be used to evaluate measurement noise.

The main power for the CR1000 is provided by an external-power supply.

7.2.3.1 Vehicle Power Connections

If a CR1000 is powered by a motor-vehicle power supply, a second power supply
may be needed. When starting the motor of the vehicle, battery voltage often
drops below the voltage required for CR1000 operation. This may cause the
CR1000 to stop measurements until the voltage again equals or exceeds the lower
limit. A second supply can be provided to prevent measurement lapses during
vehicle starting. The figure Connecting to Vehicle Power Supply (. 100) illustrates
how a second power supply is connected to the CR1000. The diode OR

Section 7. Installation

connection causes the supply with the largest voltage to power the CR1000 and
prevents the second backup supply from attempting to power the vehicle.

FIGURE 29: Connecting to Vehicle Power Supply

Datalogger
Terminals

+

POWERINO I k2000 Vehicle +12 Ve
POWERINO [O Vehicle ==
IQ TLE008 O Second Supply +12 Vdc
O Second Supply —é—

7.2.4 Uninterruptable Power Supply (UPS)

A UPS (un-interruptible power supply) is often the best power source for
long-term installations. An external UPS consists of a primary-power source, a
charging regulator external to the CR1000, and an external battery. The primary
power source, which is often a transformer, power converter, or solar panel,
connects to the charging regulator, as does a nominal 12 Vdc sealed rechargeable
battery. A third connection connects the charging regulator to the 12V and G
terminals of the POWER IN connector..

7.2.5 External Power Supply Installation

When connecting external power to the CR1000, remove the green POWER IN
connector from the CR1000 face. Insert the positive 12 Vdc lead into the green
connector, then insert the negative lead. Re-seat the green connector into the
CR1000. The CR1000 is internally protected against reversed external-power
polarity. Should this occur, correct the wire connections and the CR1000 will
resume operation.

7.2.6 External Alkaline Power Supply

If external alkaline power is used, the alkaline battery pack is connected directly
to the POWER IN 12V and G terminals. Voltage input range is 9.6 to 16 Vdc.

7.3 Grounding — Details

Grounding the CR1000 with its peripheral devices and sensors is critical in all
applications. Proper grounding will ensure maximum ESD (electrostatic
discharge) protection and measurement accuracy.

100

Section 7. Installation

7.3.1 ESD Protection

Related Topics:
» ESD Protection (p. 101)
» Lightening Protection (p. 102)

ESD (electrostatic discharge) can originate from several sources, the most
common and destructive being lightning strikes. Primary lightning strikes hit the
CR1000 or sensors directly. Secondary strikes induce a high voltage in power
lines or sensor wires.

The primary devices for protection against ESD are gas-discharge tubes (GDT).
All critical inputs and outputs on the CR1000 are protected with GDTs or
transient voltage suppression diodes. GDTs fire at 150 V to allow current to be
diverted to the earth ground lug. To be effective, the earth ground lug must be
properly connected to earth (chassis) ground. As shown in figure Schematic of
Grounds (. 102), signal grounds and power grounds have independent paths to the
earth-ground lug.

Communication ports are another path for transients. You should provide
communication paths, such as telephone or short-haul modem lines, with
spark-gap protection. Spark-gap protection is usually an option with these
products, so request it when ordering. Spark gaps must be connected to either the
earth ground lug, the enclosure ground, or to the earth (chassis) ground.

A good earth (chassis) ground will minimize damage to the datalogger and
sensors by providing a low-resistance path around the system to a point of low
potential. Campbell Scientific recommends that all dataloggers be earth (chassis)
grounded. All components of the system (dataloggers, sensors, external power
supplies, mounts, housings, etc.) should be referenced to one common earth
(chassis) ground.

In the field, at a minimum, a proper earth ground will consist of a five foot
copper-sheathed grounding rod driven into the earth and connected to the large
brass ground lug on the wiring panel with a 14 AWG wire. In low-conductive
substrates, such as sand, very dry soil, ice, or rock, a single ground rod will
probably not provide an adequate earth ground. For these situations, search for
published literature on lightning protection or contact a qualified
lightning-protection consultant.

In vehicle applications, the earth ground lug should be firmly attached to the
vehicle chassis with 12 AWG wire or larger.

In laboratory applications, locating a stable earth ground is challenging, but still
necessary. In older buildings, new Vac receptacles on older Vac wiring may
indicate that a safety ground exists when, in fact, the socket is not grounded. Ifa
safety ground does exist, good practice dictates the verification that it carries no
current. If the integrity of the Vac power ground is in doubt, also ground the
system through the building plumbing, or use another verified connection to earth
ground.

101

Section 7. Installation

102

FIGURE 30: Schematic of Grounds

Connect analog-signal
shields and returns to
grounds (=) that are
located adjacent to
analog-input channels.

Connect the return (negative lead) of a pulse-count device to the ground
terminal () that is adjacent to the pulse channel. Also connect returns of
large excitations to pulse grounds to minimize induced single-ended offset
voltages when making half-bridge measurements.

Connect 5V, SW12V, 12V and C1-
C8 returns to power grounds (G).

Star ground at
External GROUND
power mput LUG =

!

Y,

/ J‘ 0.1uf

b sa i

Analog Ground PJane T = To CR1000
use electronics

T,

0.9-Amp
thermal
fuse

A

1&’

7.3.1.1 Lightning Protection

Related Topics:
» ESD Protection (p. 101)
» Lightening Protection (p. 102

The most common and destructive ESDs are primary and secondary lightning
strikes. Primary lightning strikes hit instrumentation directly. Secondary strikes
induce voltage in power lines or wires connected to instrumentation. While
elaborate, expensive, and nearly infallible lightning protection systems are on the
market, Campbell Scientific, for many years, has employed a simple and
inexpensive design that protects most systems in most circumstances. The
system employs a lightening rod, metal mast, heavy-gage ground wire, and
ground rod to direct damaging current away from the CR1000. This system,
however, not infallible. Figure Lightning Protection Scheme (p. 103) is a drawing
of a typical application of the system.

Section 7. Installation

Note Lightning strikes may damage or destroy the CR1000 and
associated sensors and power supplies.

In addition to protections discussed in, use of a simple lightning rod and
low-resistance path to earth ground is adequate protection in many installations.

FIGURE 31: Lightning Protection Scheme

Lightning

Path of Least
Resistance

Charge Dissipation

‘\\/Z‘: Lightning Rod
Ve N

Instrument
Enclosure

14-AWG
Copper Wire

Copper-Clad
Ground Rod

~
¥

Highly Conductive
Metal Mast

4-AWG
Copper Cable

\

/ 0
R

Strike Dissipation

7.3.2 Single-Ended Measurement Reference

Low-level, single-ended voltage measurements (<200 mV) are sensitive to ground
potential fluctuation due to changing return currents from 12V, SW12, 5V, and
C1 - C8 terminals. The CR1000 grounding scheme is designed to minimize

103

104

these fluctuations by separating signal grounds (=%=) from power grounds (G).
To take advantage of this design, observe the following rules:

e Connect grounds associated with 12V, SW12, 5V, and C1 — C8
terminals to G terminals.

e Connect excitation grounds to the nearest =& terminal on the same
terminal block.

e Connect the low side of single-ended sensors to the nearest =2= terminal
on the same terminal block.

e Connect shield wires to the =2= terminal nearest the terminals to which
the sensor signal wires are connected.

Note Several ground wires can be connected to the same ground
terminal.

If offset problems occur because of shield or ground leads with large current flow,
tying the problem leads into == terminals next to terminals configured for
excitation and pulse-count should help. Problem leads can also be tied directly to
the ground lug to minimize induced single-ended offset voltages.

7.3.3 Ground Potential Differences

Because a single-ended measurement is referenced to CR1000 ground, any
difference in ground potential between the sensor and the CR1000 will result in a
measurement error. Differential measurements MUST be used when the input
ground is known to be at a different ground potential from CR1000 ground. See
the section Single-Ended Measurements — Details (. 372) for more information.

Ground potential differences are a common problem when measuring full-bridge
sensors (strain gages, pressure transducers, etc), and when measuring
thermocouples in soil.

7.3.3.1 Soil Temperature Thermocouple

If the measuring junction of a thermocouple is not insulated when in soil or water,
and the potential of earth ground is, for example, 1 mV greater at the sensor than
at the point where the CR1000 is grounded, the measured voltage is 1 mV greater
than the thermocouple output. With a copper-constantan thermocouple, 1 mV
equates to approximately 25 °C measurement error.

7.3.3.2 External Signal Conditioner

External instruments with integrated signal conditioners, such as an infrared gas
analyzer (IRGA), are frequently used to make measurements and send analog
information to the CR1000. These instruments are often powered by the same
Vac-line source as the CR1000. Despite being tied to the same ground,
differences in current drain and lead resistance result in different ground

Section 7. Installation

potentials at the two instruments. For this reason, a differential measurement
should be made on the analog output from the external signal conditioner.

7.3.4 Ground Looping in lonic Measurements

When measuring soil-moisture with a resistance block, or water conductivity with
a resistance cell, the potential exists for a ground loop error. In the case of an
ionic soil matric potential (soil moisture) sensor, a ground loop arises because soil
and water provide an alternate path for the excitation to return to CR1000 ground.
This example is modeled in the diagram Model of a Ground Loop with a Resistive
Sensor (. 106. With Rg in the resistor network, the signal measured from the sensor
is described by the following equation:

Re
" (Rs + Ry) + RsRe/R,

V, =V

where

V is the excitation voltage

Rris a fixed resistor

Rs is the sensor resistance

Rg is the resistance between the excited electrode and CR1000 earth ground.

RxR¢/Rg is the source of error due to the ground loop. When Ry is large, the error
is negligible. Note that the geometry of the electrodes has a great effect on the
magnitude of this error. The Delmhorst gypsum block used in the Campbell
Scientific 227 probe has two concentric cylindrical electrodes. The center
electrode is used for excitation; because it is encircled by the ground electrode, the
path for a ground loop through the soil is greatly reduced. Moisture blocks which
consist of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in
water conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the CR1000
earth ground form a galvanic cell, with the water/soil solution acting as the
electrolyte. If current is allowed to flow, the resulting oxidation or reduction will
soon damage the electrode, just as if dc excitation was used to make the
measurement. Campbell Scientific resistive soil probes and conductivity probes
are built with series capacitors to block this dc current. In addition to preventing
sensor deterioration, the capacitors block any dc component from affecting the
measurement.

105

Section 7.

106

7.4

7.5

FIGURE 32: Model of a Ground Loop
with a Resistive Sensor

Datalogger
Terminals

+

voltage excitation

R¢

|— SE c single-ended hd
v R,
|_ —1

—_ O ground

= Earth

Protection from Moisture — Details

Protection from Moisture — Overview (p. 87)
Protection from Moisture — Details (p. 106)
Protection from Moisture — Products (p. 609)

When humidity levels reach the dew point, condensation occurs and damage to
CR1000 electronics can result. Effective humidity control is the responsibility of
the user. The CR1000 module is protected by a packet of silica gel desiccant,
which is installed at the factory. This packet is replaced whenever the CR1000 is
repaired at Campbell Scientific. The module should not normally be opened
except to replace the internal lithium battery.

Adequate desiccant should be placed in the instrumentation enclosure to provide
added protection.

CR1000 Setup — Details

Related Topics:
+ CR1000 Setup — Overview (p. 85)
» CR1000 Setup — Details (p. 106)

» Status, Settings, and Data Table Information (Info Tables and Settings)
(p. 553)

Your new CR1000 is already configured to communicate with Campbell
Scientific datalogger support software . 89 on the RS-232 port, and over most
comms links. If you find that an older CR1000 no longer communicates with
these simple links, update the operating system and do a full reset of the unit, as
described in Resetting the CR1000 (p. 4409). Some applications, especially those
implementing TCP/IP features, may require changes to factory defaults.

Configuring modifies the firmware of the CR1000. Programming modifies the
CR1000 CRBasic program. Settings are key to configuring the CR1000.

Section 7. Installation

7.5.1 Tools — Setup

Configuration tools include the following:

Device Configuration Utility (p. 107)
Network Planner (. 108)

Info tables and settings (. 111)
CRBasic program (p. 112)
Executable CPU. files (p. 112)
Keyboard display (p. 480)

Terminal commands

7.5.1.1 DevConfig — Setup Tools

The most versatile set up tool is Device Configuration Utility, or DevConfig. It is
bundled with LoggerNet, PC400, RTDAQ, or it can be downloaded from
www.campbellsci.com/downloads. 1t has the following basic features:

Extensive context sensitive help
Connects directly to the CR1000 over a serial or IP connection

Facilitates access to most settings, status fields, and info table
information fields

Includes a terminal emulator that facilitates access to the command
prompt of the CR1000

DevConfig Help guides you through connection and use. The simplest connection
is to connect a serial cable from the computer COM port or USB port to the
RS-232 port on the CR1000 as shown in figure Connect Power and Comms.

107

Section 7. Installation

FIGURE 33: Device Configuration Utility (DevConfig)

) Device Configuration Utility 2.08 o)
Eile Backup Options Help
Device Type CR1000 | Send 05
ST :
CR1000
CR10X-PB
CR200 Series In order to configure the CR1000, power (+12 Volts DC) must be supplied to the datalogger on
CR23X-PB its Power In port. A nine pin cable should also be connected between one of your computer’s
RS-232 Ports and the RS-232 port on the datalogger. When these requirements have been met,
RN select the appropriate serial port in the left panel and press the Connect button
CRS10-PB

CR6
CR800 Series

1

CRVW Series [) CR1000 SamesELL
@ Datalogger (Other)
@ Datalogging Sensor %—>)r
& Network Peripheral

e 5 R R RGNS TR FAN % 7"’0
@ Peripheral 7 CE

1

@ Phone Modem
@ Radio
@ Sampler

Communication Port
com1

If the datalogger has an NL115 or NL120 connected to its peripheral port or if the datalogger has
an NL200 configured in bridge mode attached to its CS 1/0 port, it may be possible to connect
PakBus Encryption Key to the datalogger using TCP/IP. In order to do this, click on the Use IP Connection check
box in the left panel and enter the IP address or domain name for the datalogger in the
Communication Port control. For datalogger operating system version 23 and newer,

Use JP Connection

Baud Rate clicking on the browse button to the right of the Communication Port control will bring up a
(115200 ~ dialog that searches your local area network for any available dataloggers. If the datalogger has
a non-empty PakBus/TCP Password setting specified, you will also need to specify that
Connect password in the TCP Password field in order for the connection to succeed

7.5.1.2 Network Planner — Setup Tools

Network Planner is a drag-and-drop application used in designing PakBus
datalogger networks. You interact with Network Planner through a drawing
canvas upon which are placed PC and datalogger nodes. Links representing
various comms options are drawn between nodes. Activities to take place
between the nodes are specified. Network Planner automatically specifies
settings for individual devices and creates configuring XML files to download to
each device through DevConfig (p. 107).

108

Section 7. Installation
FIGURE 34: Network Planner Setup
= Network Planner 1.2 - [C:\Campbellsci\NetworkPlanner\manualwp] =Tk
Ele EdX Yew Options Help
W L IR B e
Device Paette 2 Configure Devices ox
Applications = I tide Completed
PakBus Datal... Program settings for DF_N So
 Program settings for DF S 5ol
= crioo Progem setings fo OF 550
5 CR10Y-PE Program settings for SD_E Soi
Program settngs for SO_F Soi
- oo Progra settngs for SO_W 5¢
Program settings for SD_W
- cres Program settings for Weather v
- crann
- crai6 Settings need to be
stored in "DF_N
58 creswee Soi_Leaf CRA50"
= cros -
5
(23 craooo =
Click Here
&8 CRS10-8
) creoo
& = Station Summary x
Zdcsio DF_N -
oo Soil_Leaf
" Weatherha... Edit Station Properties
* * WeatherHa...
% * WeatherHa... CRB50
s RE401
—— =)
— AVW200
—AYW206
—AVW211 DF_N
= B ; A= _.A-.H_l
[

7.5.1.2.1 Overview — Network Planner

Network Planner allows you to

Create a graphical representation of a network, as shown in figure
Network Planner Setup (p. 109),

Determine settings for devices and LoggerNet, and

Program devices and LoggerNet with new settings.

Why is Network Planner needed?

Caveats

PakBus protocol allows complex networks to be developed.
Setup of individual devices is difficult.
Settings are distributed across a network.

Different device types need settings coordinated.

Network Planner aids in, but does not replace, the design process.
It aids development of PakBus networks only.
It does not make hardware recommendations.

It does not generate datalogger programs.

109

110

Section 7. Installation

It does not understand distances or topography; that is, it does not warn
when broadcast distances are exceeded, nor does it identify obstacles to
radio transmission.

For more detailed information on Network Planner, please consult the LoggerNet
manual, which is available at www.campbellsci.com.

7.5.1.2.2 Basics — Network Planner

PakBus Settings

Device addresses are automatically allocated but can be changed.

Device connections are used to determine whether neighbor lists should
be specified.

Verification intervals will depend on the activities between devices.
Beacon intervals will be assigned but will have default values.

Network role (for example, router or leaf node) will be assigned based on
device links.

Device Links and Communication Resources

Disallow links that will not work.

Comparative desirability of links.

Prevent over-allocation of resources.

Optimal RS-232 and CS I/O ME baud rates based on device links.

Optimal packet-size limits based on anticipated routes.

Fundamentals of Using Network Planner

Add a background (optional)

Place stations, peripherals, etc.

Establish links

Set up activities (scheduled poll, callback)
Configure devices

Configure LoggerNet (adds the planned network to the LoggerNet
Network Map)

Section 7. Installation

7.5.1.3 Info Tables and Settings — Setup Tools

Related Topics:

» Info Tables and Settings (p. 553)

* Common Uses of the Status Table (p. 555)
» Status Table as Debug Resource (p. 496)

Info tables and settings contain fields, settings, and information essential to setup,
programming, and debugging of many advanced CR1000 systems. Info tables and
settings are numerous. Note the following:

e Allinfo tables and settings, except a handful, are accessible through a
keyword. This discussion is organized around these keywords. Keywords
and descriptions are listed alphabetically in sub appendix Info Tables and
Settings Descriptions (p. 562).

e Info table fields are mostly read only. Some are resettable.
e Settings are mostly read/write.

e Directories in sub appendix Info Tables and Settings Directories (p. 555)
list several groupings of keywords. Each keyword listed in these groups
is linked to the relevant description.

e Some info tables and settings have multiple names depending on the
interface used to access them. The names are listed with the descriptions.

e No single interface accesses all info tables and settings. Interfaces used
for access include the following:

TABLE 5: Info Tables and Settings Interfaces

Interface Location
Device Configuration Utility,
Settings Editor LoggerNet Connect screen, PakBus
Graph
Info tables (Status, DataTableInfo, | View as a data table in a numeric
CPIlInfo, etc) monitor
Station Status Menu item in LoggerNet
Edit Settings Menu item in PakBusGraph software.
Keyboard/Display Settings Menu items in Configure, Settings

status.keyword/settings.keyword | Syntax in CRBasic program

! Information presented in Station Status is not updated automatically. Click
the Refresh button to update.

111

Section 7.

Installation

112

Note Communication and processor bandwidth are consumed when
generating the Status and and other information tables. If the CR1000 is
very tight on processing time, as may occur in very long or complex

operations, retrieving these tables repeatedly may cause skipped scans (p.
498).

7.5.1.4 CRBasic Program — Setup Tools

Info tables and settings can be set or accessed using CRBasic instructions
SetStatus() or SetSetting().

For example, to set the setting StationName to BlackIceCouloir, the following
syntax is used:

SetSetting("StationName", "BlackIceCouloir")

where StationName is the keyword for the setting, and BlackIceCouloir is the set
value.

Settings can be requested by the CRBasic program using the following syntax:
x = Status.[setting]
where Setting is the keyword for a setting.

For example, to acquire the value set in setting StationName, use the following
statement:

x = Status.StationName

7.5.1.5 Executable CPU: Files — Setup Tools

Many CR1000 settings can be changed remotely over a comms link either
directly, or as discussed in CRBasic Program — Setup Tools (. 112), as part of the
CRBasic program. These conveniences come with the risk of inadvertently
changing settings and disabling communications. Such an occurrence will likely
require an on-site visit to correct the problem if at least one of the provisions
discussed in this section is not put in place. For example, wireless-ethernet (cell)
modems are often controlled by a switched 12 Vdc (SW12) terminal. SW12 is
normally off, so, if the program controlling SW12 is disabled, such as by
replacing it with a program that neglects SW12 control, the cell modem is
switched off and the remote CR1000 drops out of comms.

Executable CPU: files include the following:
o 'Include'file p. 113)
o Default.crl file (p. 113)

o Powerup.ini file (p. 446)

Section 7. Installation

To be used, each file needs to be created and then placed on the CPU: drive of the
CR1000. The 'include' file and default.crl file consist of CRBasic code.
Powerup.ini has a different, limited programming language.

7.5.1.5.1 Default.cr1 File

A file named default.crl can be stored on the CR1000 CPU: drive. At power up,
the CR1000 loads default.crl if no other program takes priority (see Executable
File Run Priorities (p. 117). Default.crl can be edited to preserve critical
datalogger settings such as communication settings, but cannot be more than a
few lines of code.

Downloading operating systems over comms requires much of the available
CR1000 memory. If the intent is to load operating systems via a comms link,
and have a default.crl file in the CR1000, the default.crl program should not
allocate significant memory, as might happen by allocating a large USR: drive.
Do not use a DataTable() instruction set for auto allocation of memory, either.
Refer to Operating System — Installation (. 118) for information about sending the
operating system.

Execution of default.crl at power-up can be aborted by holding down the DEL
key on the CR1000KD Keyboard/Display.

CRBasic EXAMPLE 1: Simple Default.crl File to Control SW12 Terminal

'"This program example demonstrates use of a Default.crl file. It must be restricted
"to few 1ines of code. This program controls the SW12 switched power terminal, which
'may be helpful in assuring that the default power state of a remote modem is ON.

BeginProg
Scan(1,Sec,0,0)
If TimeIntoInterval(15,60,Sec) Then SW12(1)
If TimeIntoInterval(45,60,Sec) Then SW12(0)
NextScan
EndProg

7.5.1.5.2 "Include” File

An alternative to a subroutine is an 'include’ file. An 'include' file is a CRBasic
program file that resides on the CR1000 CPU: drive and compiles as an insert to
the CRBasic program. It may also run on its own (. 117). It is essentially a
subroutine stored in a file separate from the main program file. It can be used
once or multiple times by the main program, and by multiple programs. The file
begins with the SlowSequence instruction and can contain any code.

Procedure to use the "Include File":

1. Write the file, beginning with the SlowSequence instruction followed by any
other code.

2. Send the file to the CR1000 using tools in the File Control menu of
datalogger support software (p. 89).

113

Section 7. Installation

3. Enter the path and name of the file in the Include File setting using DevConfig
or PakBusGraph.

Figures "Include File" Settings With DevConfig (p. 115) and "Include File" Settings
With PakBusGraph (. 115) show methods to set required settings with DevConfig
or with comms. There is no restriction on the length of the file. CRBasic
example Using an "Include File" p. 115 shows a program that expects a file to
control power to a modem.

Consider the the example "include file", CPU:pakbus_broker.dld. The rules used
by the CR1000 when it starts are as follows:

1. If the logger is starting from power-up, any file that is marked as the "run on
power-up" program is the "current program". Otherwise, any file that is marked as
"run now" is selected. This behavior has always been present and is not affected
by this setting.

2. If there is a file specified by this setting, it is incorporated into the program
selected above.

3. If there is no current file selected or if the current file cannot be compiled, the
datalogger will run the program given by this setting as the current program.

4. If the program run by this setting cannot be run or if no program is specified,
the datalogger will attempt to run the program named default.crl on its CPU:
drive.

5. If there is no default.crl file or if that file cannot be compiled, the datalogger
will not run any program.

The CR1000 will now allow a SlowSequence statement to take the place of the
BeginProg statement. This feature allows the specified file to act both as an

include file and as the default program.

The formal syntax for this setting follows:

include-setting := device-name ":" file-name "." file-extension.
device-name = "CPU" | "USR"™ | "CRD"
File-extension = "d1d" | "crl"

114

Section 7. Installation

FIGURE 35: "Include" File Settings With DevConfig

Settings Editor

Current Setting: [Include File Name

Datalogger | TCP/IP| CS Y0 P [PPP | ComPorts Settings | Network Services| Advanced |

Include File Name *

CPU:Include File.CR

Max Packet Size
1000 -

RS232 Always On

RS232 Hardware Handshaking Buffer Size

RS232 Hardware Handshaking Timeout
0 =

Transport Layer Security (TLS) Enabled
o i

IP Broadcast Filtered
0 B

1P Trace COM Port

FIGURE 36:

[File] View PakBus Network Help

gm-mt|showuavwwsmmgsmuopm| ? ? 100% v

"Include” File Settings With PakBusGraph

N

(-]

Settings For [1] CR v

Current Setting: | Include File Name v/

PPP | ComPorts Settings | Network Services| Advanced | « | >

Include File Name * -
CPU:Include File.CR1

Max Packet Size

1000 %‘ @,
RS232 Always On
Include File Name é!

This setting specifies the name of a file to be
implicitly included at the end of the current
CRBasic program or can be run as the default

program. In order to work as an include file, -
<« »
[popyscose | | cancel | | appy |

| Factory Defauts | | Read e | | summary |

115

116

Section 7. Installation

CRBasic EXAMPLE 2: Using an "Include" File

'This program example demonstrates the use of an 'include' file. An 'include' file is a CRBasic
file that usually

'resides on the CPU: drive of the CR1000. It is essentially a subroutine that is

'stored in a file separate from the main program, but it compiles as an insert to the main
'program. It can be used once or multiple times, and by multiple programs.

"'Include' files begin with the SlowSequence instruction and can contain any code.

'Procedure to use an 'include' file in this example:

'1. Copy the code from the CRbasic example 'Include' File to Control Switched 12 V (p. 116) to
CRBasic Editor, name it 'IncludeFile.crl, and save it to the same PC folder on which
resides the main program file (this make pre-compiling possible. Including the
SlowSequence instruction as the first statement is required, followed by any other code.
'2. Send the 'include' file to the CPU: drive of the CR1000 using the File Control menu

of the datalogger support software. Be sure to de-select the Run Now and Run On

Power-up options that are presented by the software when sending the file.

'3. Add the Include instruction to the main CRBasic program at the Tlocation from which the
"include' file is to be called (see the following code).

'4. Enter the CR1000 file system path and file name after the Include() instruction, as shown
in the following code.

'"IncludeFile.crl contains code to control power to a cellular phone modem.
'Cell phone + wire to be connected to SW12 terminal. Negative (-) wire
"to G.

Public PTemp, batt_volt

DataTable(Test,1,-1)
DataInterval(0,15,Sec,10)
Minimum(1,batt_volt,FP2,0,False)
Sample(1,PTemp,FP2)

EndTable

BeginProg
Scan(1,Sec,0,0)
Panel1Temp(PTemp,250)
Battery(Batt_volt)
CallTable Test
NextScan
Include "CPU:IncludeFile.CR1" '<<<<<<<<<<<<<<<'include' file code executed here
EndProg

CRBasic EXAMPLE 3: 'Include' File to Control SW12 Terminal.

'This program example demonstrates the use of an 'include' file. See the documentation in CRBasic
example
'Using an Include File (p. 115)
' <<<<<<<<<<<<<<<<<<<<<<<NOTE: No BeginProg instruction
STowSequence '<<<<<<<<<<NOTE: Begins with SlowSequence
Scan(1,Sec,0,0)
If TimeIntoInterval(9,24,Hr) Then SW12(1) '"Modem on at 9:00 AM (900 hours)
If TimeIntoInterval(1l7,24,Hr) Then SW12(0) 'Modem off at 5:00 PM (1700 hours)
NextScan

[

' <<<<<<<<<<<<<<<<<<<<<<<NOTE: No EndProg instruction

Section 7. Installation

7.5.1.5.3 Executable File Run Priorities

1. When the CR1000 powers up, it executes commands in the powerup.ini file
(on Campbell Scientific mass storage device or memory card including
commands to set the CRBasic program file attributes to Run Now or Run On
Power-up.

2. When the CR1000 powers up, a program file marked as Run On Power-up
will be the current program.

3. If'there is a file specified in the Include File Name setting, it is compiled at
the end of the program selected in step.

4. If there is no file selected in step 1, or if the selected file cannot be compiled,
the CR1000 will attempt to run the program listed in the Include File Name
setting. The CR1000 allows a SlowSequence statement to take the place of
the BeginProg statement. This allows the "Include File" to act as the default
program.

5. Ifthe program listed in the Include File Name setting cannot be run or if no
program is specified, the CR1000 will attempt to run the program named
default.crl on its CPU: drive.

6. If there is no default.crl file or it cannot be compiled, the CR1000 will not
automatically run any program.

7.5.2 Setup Tasks

Following are a few common configuration actions:
e Updating the operating system (p. 118).
e Access CR1000 infor tables and settings (p. 111) to help troubleshoot
e Set the CR1000 clock
e Save current configuration
e Restore a configuration

Tools available to perform these actions are listed in the following table:

117

Section 7. Installation

118

TABLE 6: Common Configuration Actions and Tools

Action

Tools to Use'

Updating the operating system

DevConfig . 107) software, Program
Send (. 537), memory card (p. 78), mass
storage device

Access a register

DevConfig, PakBus Graph, CRBasic
program, 'Include’ file . 113),
Default.crl file p. 113).

Set the CR1000 clock

DevConfig, PC200W, PC400,
LoggerNet

Save / restore configuration

DevConfig

' Tools are listed in order of preference.

7.5.2.1 Operating System (OS) — Details

The CR1000 is shipped with the operating system pre-loaded. Check the
pre-loaded version by connecting your PC to the CR1000 using the procedure
outlined in DevConfig Help. OS version is displayed in the following location:

Deployment tab — Datalogger tab — OS Version text box

Update the OS on the CR1000 as directed in DevConfig Help. The current
version of the OS is found at www.campbellsci.com/downloads. OS updates are

free of charge.

Note An OS file has a .obj extension.

It can be compressed using the

gzip compression algorithm. The datalogger will accept and decompress
the file on receipt. See Program and OS Compression Q and A (p. 419).

Note the following precautions:

e Since sending an OS resets CR1000 memory, data loss will certainly
occur. Depending on several factors, the CR1000 may also become

incapacitated for a time.

o Is sending the OS necessary to correct a critical problem? If not,
consider waiting until a scheduled maintenance visit to the site.

o Isthe site conveniently accessible such that a site visit can be
undertaken to correct a problem of reset settings without excessive

expense?

o Ifthe OS must be sent, and the site is difficult or expensive to
access, try the OS download procedure on an identically
programmed, more conveniently located CR1000.

e Campbell Scientific recommends upgrading operating systems only with
a direct-hardwire link. However, the Send Program (. 537) button in the

Section 7. Installation

datalogger support software allows the OS to be sent over all software
supported comms systems.

o Operating systems are very large files — be cautious of line
charges.

o Updating the OS may reset CR1000 settings, even settings critical to
supporting the comms link. Newer operating systems minimize this
risk.

Note Beginning with OS 25, the OS has become large enough that a
CR1000 with serial number < 11831, which has only 2 MB of SRAM, may
not have enough memory to receive it under some circumstances. If
problems are encountered with a 2 MB CR1000, sending the OS over a
direct serial connection is usually successful.

The operating system is updated with one of the following tools:

7.5.2.1.1 OS Update with DevConfig Send OS Tab
Using this method results in the CR1000 being restored to factory defaults. The
existing OS is over written as it is received. Failure to receive the complete new
OS will leave the CR1000 in an unstable state. Use this method only with a
direct hardwire serial connection.
How
Use the following procedure with DevConfig: Do not click Connect.
1. Select CR1000 from the list of devices at left
2. Select the appropriate communication port and baud rate at the bottom left
3. Click the Send OS tab located at the top of DevConfig window
4. Follow the on-screen OS Download Instructions
Pros/Cons
This is a good way to recover a CR1000 that has gone into an unresponsive state.
Often, an operating system can be loaded even if you are unable to communicate

with the CR1000 through other means.

Loading an operating system through this method will do the following:

1. Restore all CR1000 settings to factory defaults
2. Delete data in final storage

3. Delete data from and remove the USR drive

4. Delete program files stored on the datalogger

119

120

Section 7. Installation

7.5.2.1.2 OS Update with File Control

This method is very similar to sending an OS as a program, with the exception
that you have to manually prepare the datalogger to accept the new OS.

How

1.

7.

8.

Connect to the CR1000 with Connect or DevConfig
Collect data
Transfer a default. CR1 (p. 113) program file to the CR1000 CPU: drive

Stop the current program and select the option to delete associated data (this
will free up SRAM memory allocated for data storage)

Collect files from the USR: drive (if applicable)
Delete the USR: drive (if applicable)
Send the new .obj OS file to the CR1000

Restart the previous program (default. CR1 will be running after OS compiles)

Pros/Cons

This method is preferred because the user must manually configure the datalogger
to receive an OS and thus should be cognizant of what is happening (loss of data,
program being stopped, etc.).

Loading an operating system through this method will do the following:

1.

2.

Preserve all CR1000 settings

Delete all data in final storage

Delete USR: drive

Stop current program deletes data and clears run options

Deletes data generated using the CardOut() or TableFile() instructions

7.5.2.1.3 OS Update with Send Program Command

A send program command is a feature of DevConfig and other datalogger support
software (p. 600). Location of this command in the software is listed in the following
table:

Section 7. Installation

TABLE 7: Program Send Command Locations

Datalogger Support
Software Name of Button Location of Button

Logger Control tab

DevConfig Send Program lower left
Connect window, lower

LoggerNet Send New... right

PC400 Send Program Mam st Lowes
right

PC200Ww Send Program Mam window, lower
right

RTDAQ Sl Main window, lower

right

This method results in the CR1000 retaining its settings (a feature since OS
version 16). The new OS file is temporarily stored in CR1000 SRAM memory,
which necessitates the following:

e Sufficient memory needs to be available. Before attempting to send the
0S8, you may need to delete other files in the CPU: and USR: drives, and
you may need to remove the USR: drive altogether. Since OS 25, older 2
MB CR1000s do not have sufficient memory to perform this operation.

e SRAM will be cleared to make room, so program run options and data
will be lost. If CR1000 communications are controlled with the current
program, first load a default.crl CRBasic program on to the CPU: drive.
Default.crl will run by default after the CR1000 compiles the new OS
and clears the current run options.

How

From the LoggerNet Connect window, perform the following steps:

1.

2.

Connect to the station

Collect data

Pros/Cons

Click the Send New...

Select the OS file to send

Restart the existing program through File Control, or send a new program
with CRBasic Editor and specify new run options.

This is the best way to load a new operating system on the CR1000 and have its
settings retained (most of the time). This means that you will still be able to
communicate with the station because the PakBus address is preserved and

121

122

Section 7.

Installation

PakBusTCP client connections are maintained. Plus, if you are using a TCP/IP
connection, the file transfer is much faster than loading a new OS directly through
DevConfig.

The bad news is that, since it clears the run options for the current program, you
can lose communications with the station if power is toggled to a communication
peripheral under program control, such as turning a cell modem on/off to conserve
power use.

Also, if sufficient memory is not available, instability may result. It’s probably
best to clear out the memory before attempting to send the new OS file. If you
have defined a USR drive you will probably need to remove it as well.

Loading an operating system through this method will do the following:

1. Preserve all CR1000 settings

2. Delete all data in final storage

3. Stop current program (Stop and deletes data) and clears run options

4. Deletes data generated using the CardOut() instruction

7.5.2.1.4 OS Update with External Memory and PowerUp.ini File

How

1. Place a powerup.ini (p. 446) text file and operating system .obj file on the
external memory device

2. Attached the external memory device to the datalogger

3. Power cycle the datalogger

Pros/Cons

This is a great way to change the OS without a laptop in the field. The down side
is only if you want to do more than one thing with the powerup.ini, such as
change OS and load a new program, which necessitates that you use separate
cards or modify the .ini file between the two tasks you wish to perform.
Loading an operating system through this method will do the following:

1. Preserve all datalogger settings

2. Delete all data in final storage

3. Preserve USR drive and data stored there

4. Maintains program run options

5. Deletes data generated using the CardOut() or TableFile() instructions

Section 7.

Installation

DevConfig Send OS tab:
e Ifyou are having trouble communicating with the CR1000
e Ifyou want to return the CR1000 to a known configuration
Send Program (p. 537 or Send New... command:
e Ifyou want to send an OS remotely
e Ifyou are not too concerned about the consequences
File Control tab:
e If you want to update the OS remotely

e If your only connection to the CR1000 is over IP

e Ifyou have IP access and want to change the OS for testing purposes

External memory and PowerUp.ini file:

e Ifyou want to change the OS without a PC

7.5.2.2 Factory Defaults — Installation

In DevConfig, clicking the Factory Defaults button at the base of the Settings
Editor tab sends a command to the CR1000 to revert to its factory default
settings. The reverted values will not take effect until the changes have been

applied.

7.5.2.3 Saving and Restoring Configurations — Installation

In DevConfig, clicking Save on a summary screen saves the configuration to an
XML file. This file can be used to load a saved configuration back into the

CR1000 by clicking Read File and Apply.

123

Section 7.

Installation

FIGURE 37: Summary of CR1000 Configuration

datalogger Current Settings

Configuration of CR | 23,877

Configured on: Monday, June 09, 2014 11:07:00 AM

Setting Name 'Setting Value
[0S Version [CR std27
Serial Number [23,877
Station Name 23877
PakBus Address 1

vSecurity Level 1 [o

[Security Level 2 [o

Security Level 3 0

Port Number Via Neighbor Address PakBus Address Response Time

Routes
1 4,092 4,092 5,000
1 4,089 4,089 1,000
Ethernet IP Address 0.0.0.0
Ethernet Subnet Mask 255.255.255.0
[Ethernet Default Gateway [0000
Ok Save Print Compare

7.6 CRBasic Programming — Details

Related Topics:

» CRBasic Programming — Overview (p. 85)
* CRBasic Programming — Details (p. 124)

* Programming Resource Library (p. 176)

» CRBasic Editor Help

Programs are created with either Short Cut p. 541) or CRBasic Editor (p. 127). Read
the instructions for the use of each in their respective Help systems.

7.6.1 Program Structure

Essential elements of a CRBasic program are listed in the table CRBasic Program
Structure (p. 124) and demonstrated in CRBasic example Program Structure (p. 125).

124

Section 7. Installation

TABLE 8: CRBasic Program Structure

Program Element’

Purpose

Const

Public
Dim
Alias

Units

DataTable

Sample()
Average()
Maximum()
Minimum()

BeginProg
Scan()
Measurements
Processing
CallTable()
Controls
NextScan

EndProg

Declare fixed constants.

Declare and dimension variables viewable during program
execution.

Declare and dimension variables not viewable during
program execution.

Assign aliases to variables.

Optional. Assign engineering units to variables. Units are
not active code. The CR1000 makes no use of units nor
checks unit accuracy.

Define stored-data tables.

e Process or store trigger: set triggers when data should
be stored. Triggers may be a fixed interval, a condition,
or both.

e Set the size of a data table.

e Send data to a Campbell Scientific mass storage device
or memory card if available.

Begin the action part of the program.

Set the interval for a series of measurements.

Make measurements.

Process measurement and other data.

Call data tables to process and store data.

Check measurements and initiate any control actions.
Loop back to Scan() and wait for the next scan.

End the program.

! Fine points:

e Maximum program-line length is 512 characters.

e Maximum constant-name length is about 500 characters.

e Processes or calculations repeated during program execution can be packaged in a
subroutine and called when needed rather than repeating the code each time.

125

126

Section 7. Installation

CRBasic Program Structure

'Declarations

'Define Constants
Const RevDiff =1
Const Del = 0 'default
Const Integ = 250
Const Mult = 1

Const Offset = 0

'Define public variables
Pub1lic RefTemp
Public TC(6)

'Define Units
Units RefTemp = degC
Units TC = DegC

'Define data tables
DataTable(Temp,1,2000)
DataInterval(0,10,min,10)
Average(1,RefTemp, FP2,0)
Average(6,TC(),FP2,0)
EndTable

Declare constants

Declare public variables,
dimension array, and
declare units.

Define data table

Declarations

Section 7. Installation

'"Begin Program
BeginProg

'Set scan interval
Scan(1,Sec,3,0)

'Measurements

PanelTemp(RefTemp,250) Measure
TCDiff(TC()...0ffset)

'"Processing (None in this
"example)

Scan loop

"Call data table -
CallTable Temp Call data table

"Controls (None in this
"example)

"Loop to next scan
NextScan

"End Program
EndProg

7.6.2 Writing and Editing Programs
7.6.2.1 Short Cut Programming Wizard

Short Cut is easy-to-use, menu-driven software that presents lists of predefined
measurement, processing, and control algorithms from which to choose. You
make choices, and Short Cut writes the CRBasic code required to perform the
tasks. Short Cut creates a wiring diagram to simplify connection of sensors and
external devices. Quickstart (p. 35 works through a measurement example using
Short Cut.

For many complex applications, Short Cut is still a good place to start. When as
much information as possible is entered, Short Cut will create a program template
from which to work, already formatted with most of the proper structure,
measurement routines, and variables. The program can then be edited further
using CRBasic Program Editor.

7.6.2.2 CRBasic Editor

CR1000 application programs are written in a variation of BASIC (Beginner's
All-purpose Symbolic Instruction Code) computer language, CRBasic (Campbell

127

128

Section 7.

Installation

Recorder BASIC). CRBasic Editor is a text editor that facilitates creation and
modification of the ASCII text file that constitutes the CR1000 application
program. CRBasic Editor is a component of LoggerNet, RTDAQ, and PC400
datalogger support software (p. 89).

Fundamental elements of CRBasic include the following:

e Variables — named packets of CR1000 memory into which are stored
values that normally vary during program execution. Values are typically
the result of measurements and processing. Variables are given an
alphanumeric name and can be dimensioned into arrays of related data.

e Constants — discrete packets of CR1000 memory into which are stored
specific values that do not vary during program executions. Constants are
given alphanumeric names and assigned values at the beginning
declarations of a CRBasic program.

Note Keywords and predefined constants are reserved for internal
CR1000 use. If a user-programmed variable happens to be a keyword or
predefined constant, a runtime or compile error will occur. To correct the
error, simply change the variable name by adding or deleting one or more
letters, numbers, or the underscore (_) from the variable name, then
recompile and resend the program. CRBasic Editor Help provides a list of
keywords and predefined constants.

e Common instructions — instructions (called "commands" in BASIC) and
operators used in most BASIC languages, including program control
statements, and logic and mathematical operators.

e Special instructions — instructions (commands) unique to CRBasic,
including measurement instructions, and processing instructions that

compress many common calculations used in CR1000 dataloggers.

These four elements must be properly placed within the program structure.

7.6.2.2.1 Inserting Comments into Program

Comments are non-executable text placed within the body of a program to
document or clarify program algorithms.

As shown in CRBasic example Inserting Comments (p. 128, comments are inserted
into a program by preceding the comment with a single quote ('). Comments can
be entered either as independent lines or following CR1000 code. When the
CR1000 compiler sees a single quote ('), it ignores the rest of the line.

Section 7. Installation

CRBasic EXAMPLE 4: Inserting Comments

'"This program example demonstrates the insertion of comments into a program. Comments are
'placed in two places: to occupy single lines, such as this explanation does, or to be
'placed after a statement.

'Declaration of variables starts here.
Public Start(6) 'Declare the start time array

BeginProg
EndProg

7.6.2.2.2 Conserving Program Memory

One or more of the following memory-saving techniques can be used on the rare
occasions when a program reaches memory limits:

e Declare variables as DIM instead of Public. DIM variables do not
require buffer memory for data retrieval.

e Reduce arrays to the minimum size needed. Arrays save memory over
the use of scalars as there is less "meta-data" required per value.
However, as a rough approximation, 192000 (4 kB memory) or 87000 (2
kB memory) variables will fill available memory.

e Use variable arrays with aliases instead of individual variables with
unique names. Aliases consume less memory than unique variable
names.

e Confine string concatenation to DIM variables.

e Dimension string variables only to the size required.

Read More More information on string variable-memory use and
conservation is available in String Operations (p. 313).

7.6.3 Programming Syntax
7.6.3.1 Program Statements

CRBasic programs are made up of a series of statements. Each statement
normally occupies one line of text in the program file. Statements consist of
instructions, variables, constants, expressions, or a combination of these.
"Instructions" are CRBasic commands. Normally, only one instruction is
included in a statement. However, some instructions, such as If and Then, are
allowed to be included in the same statement.

Lists of instructions and expression operators can be found in CRBasic Editor
Help . 127).

129

130

Section 7. Installation

7.6.3.1.1 Multiple Statements on One Line

Multiple short statements can be placed on a single text line if they are separated
by a colon (:). This is a convenient feature in some programs. However, in
general, programs that confine text lines to single statements are easier for
humans to read.

In most cases, regarding statements separated by : as being separate lines is safe.
However, in the case of an implied EndIf, CRBasic behaves in what may be an
unexpected manner. In the case of an If...Then...Else...EndIf statement, where
the EndlIf is only implied, it is implied after the last statement on the line. For
example:

If AthenB : C: D
does not mean:

If A then B (implied EndIf) : C : D

Rather, it does mean:

If A then B : C : D (implied EndIf)

7.6.3.1.2 One Statement on Multiple Lines

Long statements that overrun the CRBasic Editor page width can be continued on
the next line if the statement break includes a space and an underscore (_). The
underscore must be the last character in a text line, other than additional white
space.

Note CRBasic statements are limited to 512 characters, whether or not a
line continuation is used.

Examples:

Public A, B, _
c,D, E, F

If (A And B) _
Or (C And D) _
Or (E And F) then ExitScan

7.6.3.2 Single-Statement Declarations

Single-statements are used to declare variables, constants, variable and constant
related elements, station name, and hardware settings. The following instructions
are used usually before the BeginProg instruction:

e Public
e Dim
e Constant

e Units

Section 7. Installation

e Alias
e StationName

The table Rules for Names (p. 164) lists declaration names and allowed lengths.
See Predefined Constants (p. 143) for other naming limitations.

7.6.3.3 Declaring Variables

A variable is a packet of memory that is given an alphanumeric name.
Measurements and processing results pass through variables during program
execution. Variables are declared as Public or Dim. Public variables are
viewable through numeric monitors (. 533. Dim variables cannot be viewed. A
public variables can be set as read-only, using the ReadOnly instruction, so that it
cannot be changed from a numeric monitor. The program, however, continues to
have read/write access to the variable.

Declared variables are initialized once when the program starts. Additionally,
variables that are used in the Function() or Sub() declaration, or that are declared
within the body of the function or subroutine, are local to that function or
subroutine.

Variable names can be up to 39 characters in length, but most variables should be
no more than 35 characters long. This allows for four additional characters that
are added as a suffix to the variable name when it is output to a data table.
Variable names can contain the following characters:

e AtoZ

e atoz

e 0to9

e (underscore)
e §

Names must start with a letter, underscore, or dollar sign. Spaces and quote
marks are not allowed. Variable names are not case sensitive.

Several variables can be declared on a single line, separated by commas:
Public RefTemp, AirTemp2, Batt_Volt

Variables can also be assigned initial values in the declaration. Following is an
example of declaring a variable and assigning it an initial value.

PubTlic SetTemp = {35}

In string variables, string size defaults to 24 characters (changed from 16
characters in April 2013, OS 26).

131

Section 7.

Installation

7.6.3.3.1 Declaring Data Types

Variables and data values stored in final memory can be configured with various
data types to optimize program execution and memory usage.

The declaration of variables with the Dim or Public instructions allows an
optional type descriptor As that specifies the data type. The default data type
(declaration without a descriptor) is IEEE4 floating point, which is equivalent to
the As Float declaration. Variable data types are listed in the table Data Types in
Variable Memory (. 132. Final-data memory data types are listed in the table
Data Types in Final-Storage Memory (. 133. CRBasic example Data Type
Declarations (p. 135 shows various data types in use in the declarations and output
sections of a program.

CRBasic allows mixing data types within a single array of variables; however,
this practice can result in at least one problem. The datalogger support software
is incapable of efficiently handling different data types for the same field name.
Consequently, the software mangles the field names in data file headers.

TABLE 9: Data Types in Variable Memory

Name

Command

Description

Word
Size
(Bytes)

Notes Resolution / Range

Float

As Float
or
As IEEE4

IEEE floating
point

Data type of all variables
4 unless declared otherwise.

IEEE Standard 754

e 24 bits (about 7 digits)
o +1.4E-45to+3.4E38

Long

As Long

Signed integer

Use to store count data in the
range of £2,147,483,648

Speed: integer math is faster
than floating point math.

Resolution: 32 bits. Compare
4 to 24 bits in IEEE4.

Suitable for storing whole
numbers, counting number,
and integers in final-storage
memory. If storing
non-integers, the fractional
portion of the value is lost.

32 bits
-2,147,483,648 to +2,147,483,647

Boolean

As
Boolean

Signed integer

Use to store true or false
states, such as states of flags
and control ports. 0 is always
false. —1 is always true.

4 Depending on the application,
any other number may be
interpreted as true or false.
See the section True = -1,
False = 0 . 168).

True =—1 or any number > 1
False = any number > 0 and < 1

132

Section 7. Installation
TABLE 9: Data Types in Variable Memory
Word
Name |Command | Description Size Notes Resolution / Range
(Bytes)
See caution.!
String size is defined by the

Minimum | CR1000 operating system and
3 (4 CRBasic program. Unless declared otherwise, string size is 24
with null | When converting from pytes or characters. String size is allocated
terminato | STRING to FLOAT, in multl*ples of four bytes; for example,
r) numerics at the beginning of a Strfng : 25, String * 26, String * 27, and
Default: | string convert, but conversion Strn.lg 28 a'lloca.te 28 bytes (27 usable).
24 ' stops when a non-numeric is Minimum string size is 4 (3 usable). See

String | As String ASCIL String | Maximy encountered. If the string CRquic Editor H.elp. fqr more information.
o begins with a non-numeric, Ma>.(1mum length is limited only by .
l'rﬁited the FLOAT will be NAN. If |available CR1000 memory. Asa spemal
1 the string contains multiple case, a string can be declared as String * 1.
only .tO numeric values separated by This allows the efficient storage of a single
;hZileIOf non-numeric characters, the character. The string will t.ake up 4 bytes in
C\iill(a)lOOe SplitStr() instruction can be | MeMory and when stored in a data table,
memory used to parse out the numeric but it will hold only one character.

values. See the sections String
Operations (p. 313) and Serial
/0 . 289.

"CAUTION When using a very long string in a variable declared Public, the operations of datalogger support software . 601) will
frequently transmit the entire string over the communication link. If communication bandwidth is limited, or if communications are
paid for by they byte, declaring the variable Dim may be preferred.

TABLE 10: Data Types in Final-Storage Memory

Word
Name | Argument | Description Size Notes Resolution / Range
(Bytes)
Decimal
Absolute Value Location
0-7.999 X.XXX
Default final-memory data type. 8 —79.99 XX.XX
Campbell Use FP2 for stored data requiring
FP2 FP2 Scientific 2 3 or 4 significant digits. If more 80-799.9 XXX.X
floating point significant digits are needed, use 800 — 7999. XXXX.
IEEE4 or an offset.
Zero Minimum | Maximum
0.000 +0.001 +7999.
1gggs4 | [EEE4or | IEEE floating 4 |IEEE Standard 754 +1.4E-45 to £3.4E38
Float point

133

Section 7. Installation

Argument | Description

Unsigned

UINT2 UINT2 .
integer

Use to store positive count data <
+65535.

Use to store port or flag status. See
CRBasic example Load binary
information into a variable (p. 144).

When Public FLOATS convert to
UINT? at final data storage, values
outside the range 0 — 65535 yield
unusable data. INF converts to
65535. NAN converts to 0.

Resolution / Range

0 to 65535

Boolean | Boolean Signed integer

Use to store true or false states,
such as states of flags and control
ports. 0 is always false. —1 is
always true. Depending on the
application, any other number may
be interpreted as true or false. See
the section True = -1, False = 0 (p.
168). To save memory, consider
using UINT2 or BOOLS.

True =—1 or any number > 1
False = any number > 0 and < 1

134

Section 7. Installation
TABLE 10: Data Types in Final-Storage Memory
Word
Name | Argument | Description Size Notes Resolution / Range
(Bytes)
Divided up as four bytes of
seconds since 1990 and four bytes
NSEC NSEC Time stamp 8 of nanoseconds into the second. 1 nanosecond
Used to record and process time
data. See NSEC Data Type (p. 202
See caution.!
Minimum | String size is defined by the Unless declared otherwise, string size
3 (4 CR1000 operating system and is 24 bytes or characters. String size is
with null | CRBasic program. allocated in multiples of four bytes; for
terminato | When converting from STRING | €Xample, String * 25, String * 26,
r) to FLOAT, numerics at the String * 27, and Strlng'*'28 allocgte
Default: | beginning of a string convert, but 2.8 bytes (27 usable). Minimum string
24 conversion stops when a size is 4 (3 usable). See CRBasic
String String ASCII string | Maximu non-numeric is encountered. If the Edit(?r Help for more 1nformat1on.
m string begins with a non-numeric, | Maximum length is limited only by
bocioq | the FLOAT will be NAN. If the | available CR1000 memory. Asa
p——— string contains multiple numeric speleal :ase, a .strmg can be decl:alred as
the};i ' of values separated by non-numeric String * 1. Th1s allows the efﬁc1ent.
= azble characters, the SplitStr() storage of a single character. The string
CR1000 |instruction can be used to parse will take up 4 bytes in memory and
Iy when stored in a data table, but it will
MEMOLY- | sections String Operations .31 | hold only one character.
and Serial I/0 (p. 289..

CRBasic EXAMPLE 5: Data Type Declarations

'"This program example demonstrates various data type declarations.

'Data type declarations associated with any one variable occur twice: first in a Public
then in a DataTable/EndTable segment.
"types default to floating point: As Float in Public or Dim declarations, FP2 in data

'or Dim statement,
"table declarations.

'"Float Variable Examples
PubTlic Z
PubTic X As Float

"Long Variable Example
PubTic CR1000Time As Long
PubTic PosCounter As Long
PubTlic PosNegCounter As Long

If not otherwise specified, data

135

Section 7. Installation

'Boolean Variable Examples
PubTic Switches(8) As Boolean
PubTic FLAGS(16) As Boolean

'String Variable Example
PubTic FirstName As String * 16 'allows a string up to 16 characters Tlong

DataTable(TableName,True,-1)
'"FP2 Data Storage Example
Sample(1,Z,FP2)

'"IEEE4 / Float Data Storage Example
Sample(1,X,IEEE4)

'"UINT2 Data Storage Example
Sample(1,PosCounter,UINT2)

'"LONG Data Storage Example
Sample(1,PosNegCounter,Long)

'STRING Data Storage Example
Sample(1,FirstName,String)

"BOOLEAN Data Storage Example
Sample(8,Switches(),Boolean)

'BOOL8 Data Storage Example
Sample(2,FLAGS(),Boo18)

'"NSEC Data Storage Example
Sample(1,CR1000Time,Nsec)
EndTable

BeginProg
'"Program logic goes here
EndProg

7.6.3.3.2 Dimensioning Numeric Variables
Some applications require multi-dimension arrays. Array dimensions are
analogous to spatial dimensions (distance, area, and volume). A single-dimension
array, declared as,
PubTlic VariableName(x)
with (x) being the index, denotes x number of variables as a series.
A two-dimensional array, declared as,

Pub1lic VariableName(x,y)

with (x,y) being the indices, denotes (x * y) number of variables in a square x-by-y
matrix.

Three-dimensional arrays, declared as

Public VariableName (x,y,z)

136

Section 7. Installation

with (x,y,z) being the indices, have (x * y ¢ z) number of variables in a cubic
x-by-y-by-z matrix. Dimensions greater than three are not permitted by
CRBasic.

When using variables in place of integers as dimension indices (see CRBasic
example Using Variable Array Dimension Indices (p. 137), declaring the indices As
Long variables is recommended. Doing so allows for more efficient use of
CR1000 resources.

CRBasic EXAMPLE 6: Using Variable Array Dimension Indices

'"This program example demonstrates the use of dimension indices in arrays. The variable
'"VariableName is declared with three dimensions with 4 in each index. This indicates the
'array has means it has 64 elements. Element 24 is loaded with the value 2.718.

Dim aaa As Long

Dim bbb As Long

Dim ccc As Long

Public VariableName(4,4,4) As Float

BeginProg
Scan(1,sec,0,0)
aaa = 3
bbb = 2
ccc =4
VariableName(aaa,bbb,ccc) = 2.718
NextScan
EndProg

7.6.3.3.3 Dimensioning String Variables

Strings can be declared to a maximum of two dimensions. The third "dimension"
is used for accessing characters within a string. See String Operations (p. 313).

String length can also be declared. See table Data Types in Variable Memory. .
132)

A one-dimension string array called StringVar, with five elements in the array
and each element with a length of 36 characters, is declared as

Public StringVar(5) As String * 36
Five variables are declared, each 36 characters long:

StringVar(l)
StringVar(2)
StringVar(3)
StringVar(4)
StringVar(5)

7.6.3.3.4 Declaring Flag Variables

A flag is a variable, usually declared As Boolean (. 517, that indicates True or
False, on or off, go or not go, etc. Program execution can be branched based on
the value in a flag. Sometime flags are simply used to inform an observer that an
event is occurring or has occurred. While any variable of any data type can be
used as a flag, using Boolean variables, especially variables named "Flag", usually

137

Section 7. Installation

138

works best in practice. CRBasic example Flag Declaration and Use (p. 138)
demonstrates changing words in a string based on a flag.

CRBasic EXAMPLE 7: Flag Declaration and Use

rn

Public Flag(2) As Boolean
Public FlagReport(2) As String

BeginProg
Scan(1,Sec,0,0)
If Flag(l) = True Then
FTlagReport(1l) = "High"
Else
FlagReport(1) = "Low"
EndIf
If Flag(2) = True Then
FTagReport(2) = "High"
Else
FlagReport(2) = "Low"
EndIf
NextScan
EndProg

'This program example demonstrates the declaration and use of flags as Boolean variables,
'and the use of strings to report flag status. To run the demonstration, send this program
"to the CR1000, then toggle variables Flag(1l) and Flag(2) to true or false to see how the
'program logic sets the words "High" or "Low" in variables FlagReport(1) and FlagReport(2).
'To set a flag to true when using LoggerNet Connect Numeric Monitor, simply click on the
"forest green dot adjacent to the word "false.
False" is made available.

"

If using a keyboard, a choice of "True" or

7.6.3.4 Using Variable Pointers

A pointer is the memory address of a variable. Use a pointer as a convenient way
to reference the memory location of a variable rather than referencing it by name.
This is useful in a Function() instruction function when parameters are local to the
function and changes to them have no effect on original arguments.

Define a pointer variable using the @ operator. For example:
PTR = @X

Use the ! operator to de-reference a pointer (return the value at the pointer). For
example:

IPTR = Myvar

Use the @ operatore to return the name of the variable stored in a memory
location. For example:

Name=(@) X

Pointer variables must be of type LONG and initialized by the @ operator, or a
variable out-of-bounds error will occur.

Section 7. Installation

When a Function() function returns a pointer, apply the ! operator to the function
call, as shown in the following example:

Function ConstrainFunc(Value As Long,Low As Long,High As Long) As
Long
If !'Value < !Low Then
Return Low
ElseIf !Value > !High Then
Return High
Else
Return Value
EndIf
EndFunction
‘Call within program
FuncF1tRes = !ConstrainFunc(@F1tVal,@F1tLow,@F1tHigh)

7.6.3.5 Declaring Arrays

Related Topics:
» Declaring Arrays (p. 139)
* VarOutOfBounds (p. 499)

Multiple variables of the same root name can be declared. The resulting series of
like-named variables is called an array. An array is created by placing a suffix of
(x) on the variable name. X number of variables are created that differ in name
only by the incrementing number in the suffix. For example, the four statements

PubTic TempCl
PubTic TempC2
PubTic TempC3
PubTic TempC4

can simply be condensed to
PubTic TempC(4).

This statement creates in memory the four variables TempC(1), TempC(2),
TempC(3), and TempC(4).

A variable array is useful in program operations that affect many variables in the
same way. CRBasic example Using a Variable Array in Calculations (p. 140)
shows compact code that converts four temperatures (°C) to °F.

In this example, a For/Next structure with an incrementing variable is used to
specify which elements of the array will have the logical operation applied to
them. The CRBasic For/Next function will only operate on array elements that
are clearly specified and ignore the rest. If an array element is not specifically
referenced, as is the case in the declaration

Dim TempCQ
CRBasic references only the first element of the array, TempC(1).

See CRBasic example Concatenation of Numbers and Strings (. 314) for an
example of using the += assignment operator when working with arrays.

139

Section 7. Installation

CRBasic EXAMPLE 8: Using a Variable Array in Calculations

'"This program example demonstrates the use of a variable array to reduce code. In this
'example, two variable arrays are used to convert four temperature measurements from
'degree C to degrees F.

Public TempC(4)
PubTic TempF(4)

Dim T
BeginProg
Scan(1,Sec,0,0)
Therm107(TempC(1),1,1,Vx1,0,250,1.0,0)
Therm107 (TempC(2),1,2,Vx1,0,250,1.0,0)
Therm107(TempC(3),1,3,Vvx1,0,250,1.0,0)
Therm107(TempC(4),1,4,Vx1,0,250,1.0,0)

For T =1 To 4
TempF(T) = TempC(T) * 1.8 + 32
Next T

NextScan
EndProg

7.6.3.5.1 Advanced Array Declaration
This section describes syntax that facilitates array filling, scaling, copying, etc.
The main applications are as follows:
a) initiating an array

b) scaling an array, for example converting all of the FREQ/HZ returned by a
group of AVW200's into digits, strain, level, etc.

¢) creating boolean arrays based on comparisons with a scalar or another array
The main drivers at the time of starting down this path were

1) multiple years of feedback from customers asking me how to more tersely
initialize and scale arrays - often trying to compare CRBasic to Matlab or Python.

2) Easier ways to scale vibrating wire measurements and transpose their resulting
data arrays:

CRBasic provides an array notation that allows one to easily operate on a single
dimension of an array. Using this notation one can easily:

e initialize an array dimension

e copy a dimension to a new location

140

Section 7. Installation

e scale an array dimension

e perform a mathematical or logical operation for each element in a
dimension using scalar or similarly located elements in different arrays
and dimensions

Here are some syntax rules and behaviors. Given the array, Array(A,B,C):

e The () pair must always be present, i.e., reference the array as Array() or
Array(A,B,C)().

e Only 1 dimension of the array can be operated on at a time. To select the
dimension, negate the element index.

e Operations will not cross from 1 dimension into another. We access
from the specified starting point to the end of the dimension, where the
dimension is specified by a negative or by default is the least significant.

e Ifindices are not specified, or none have been negated, the least
significant dimension of the array will be assumed.

e The offset into the dimension being accessed is given by A,B, and C in
Array(A,B,C)().

e Ifthe Array is referenced as Array(), then the starting point is assumed
Array(1,1,1) and the least significant dimensioned is accessed.

7.6.3.6 Declaring Local and Global Variables

Advanced programs may use subroutines (p. 317) or functions, each of which can
have a set of Dim variables dedicated to that subroutine or function. These are
called local variables. Names of local variable can be identical to names of
global variables (p. 527 and to names of local variables declared in other
subroutines and functions. This feature allows creation of a CRBasic library of
reusable subroutines and functions that will not cause variable name conflicts. If
a program with local Dim variables attempts to use them globally, the compile
error undeclared variable will occur.

To make a local variable displayable, in cases where making it public creates a
naming conflict, sample the local variable to a data table and display the data

element table in a numeric monitor (p. 533).

When exchanging the contents of a global and local variables, declare each
passing / receiving pair with identical data types and string lengths.

7.6.3.7 Initializing Variables

By default, variables are set equal to zero at the time the datalogger program
compiles. Variables can be initialized to non-zero values in the declaration.
Examples of syntax are shown in CRBasic example Initializing Variables (p. 141).

141

Section 7.

142

CRBasic EXAMPLE 9: Initializing Variables

BeginProg
EndProg

PubTic ccc As Boolean = True

'Initialize variable eee
Dim eee = 1.5

'This program example demonstrates how variables can be declared as specific data types.
'"Variables not declared as a specific data type default to data type Float. Also
"demonstrated is the loading of values into variables that are being declared.

Public aaa As Long = 1 'Declaring a single variable As Long and loading the value of 1.
Public bbb(2) As String *20 = {"String_1", "String_2"} 'Declaring an array As String and

"loading strings in each element.
'Declaring a variable As Boolean and loading the value of True.

'Initialize variable ddd elements 1,1 1,2 1,3 & 2,1.
'"Elements (2,2) and (2,3) default to zero.
Dim ddd(2,3)= {1.1, 1.2, 1.3, 2.1}

7.6.3.8 Declaring Constants

Declare a constant name at the beginning of a program to use the alphanumeric
name in place of a numeric or string value. In the body of the program, use the
name rather than the value itself to make the program more secure against
unintended changes, and easier to read and modify. CRBasic example Using the
Const Declaration (p. 143) shows how to declare and use constants.

If declared using ConstTable / EndConstTable instructions, constants can be
changed on the CR1000KD Keyboard/Display while the program is running
(Configure, Settings | Constant Table). Changes can also be made with the C
command in a terminal emulator (see Troubleshooting — Using Terminal Mode (p.
509)).

Constants, in memory, are four-byte signed integers or floating point numbers of
up to about 500 characters in length (length limited to the maximum command
line (p. 519) length).

CRBasic syntax does not have a provision for declaring a data type for a constant,
so the compiler infers data type based on the format of the constant value
expression, which is usually a single scalar. There are three possible outcomes:

e string — the constant expression produces a string or the value is
enclosed in quotes

e integer — the constant expression does not produce a floating point
value or the constant does not have a decimal point. Range =
—2,147,483,648 to 2,147,483,647

e floating point. Range ~—-1E38 to 1E38

If the constant is not written as a decimal, the compiler treats the value as an
integer. Integer and floating point values are represented by 32 bits. A
floating-point value achieves its extended range by using a base-two exponential
format. The range of integers that a floating-point value can reliably store is

Section 7. Installation

limited by the size of the mantissa, which is £16,777,216. If the attempt is made
to express a floating-point constant outside of this range, precision may be lost.

Constants in a constant table can also be changed using the SetSetting()
instruction and the constant table using the CR1000KD.

Note Using all uppercase for constant names may make them easier to
recognize.

CRBasic EXAMPLE 10: Using the Const Declaration

'"This program example demonstrates the use of the Const declaration.

'Declare variables
PubTic PTempC
PubTlic PTempF

'Declare constants
Const CtoF_Mult = 1.8
Const CtoF_Offset = 32

BeginProg
Scan(1,Sec,0,0)
Pane1Temp(PTempC,250)
PTempF = PTempC * CtoF_Mult + CtoF_Offset
NextScan
EndProg

7.6.3.8.1 Predefined Constants

Many words are reserved for use by CRBasic. These words cannot be used as
variable or table names in a program. Predefined constants include instruction
names and valid alphanumeric names for instruction parameters. On account the
list of predefined constants is long and frequently increases as the operating
system is developed, the best course is to compile programs frequently during
CRBasic program development. The compiler will catch the use of any reserved
words. Following are listed predefined constants that are assigned a value:

e LoggerType = 1000 (as in CR1000)

These may be useful in programming.

7.6.3.9 Declaring Aliases and Units

A variable can be assigned a second name, or alias, in the CRBasic program.
Aliasing is particularly useful when using arrays. Arrays are powerful tools for
complex programming, but they place near identical names on multiple variables.
Aliasing allows the power of the array to be used with the clarity of unique
names.

The declared variable name can be used interchangeably with the declared alias in
the body of the CRBasic program. However, when a value is stored to
final-memory, the value will have the alias name attached to it. So, if the

144

Section 7.

Installation

CRBasic program needs to access that value, the program must use the the
alias-derived name.

Variables in one, two, and three dimensional arrays can be assigned units. Units
are not used elsewhere in programming, but add meaning to resultant data table
headers. If different units are to be used with each element of an array, first
assign aliases to the array elements and then assign units to each alias. For
example:

solar_radiation
quanta

Alias var_array(1l)
Alias var_array(2)

Units solar_radiation = Wm-2
Units variable2 = moles_m-2_s-1

7.6.3.10 Numerical Formats

Four numerical formats are supported by CRBasic. Most common is the use of
base-10 numbers. Scientific notation, binary, and hexadecimal formats can also
be used, as shown in the table Formats for Entering Numbers in CRBasic (p. 144).
Only standard, base-10 notation is supported by Campbell Scientific hardware and
software displays.

TABLE 11: Formats for Entering Numbers in CRBasic

Format Example Base 10 Equivalent Value
Standard 6.832 6.832
Scientific notation 5.67E-8 5.67x 108
Binary &B1101 13
Hexadecimal &HFF 255

Binary format (1 = high, 0 = low) is useful when loading the status of multiple
flags or ports into a single variable. For example, storing the binary number
&B11100000 preserves the status of flags 8 through 1: flags 1 to 5 are low, 6 to 8
are high. CRBasic example Load Binary Information into a Variable (p. 144 shows
an algorithm that loads binary status of flags into a LONG integer variable.

Section 7. Installation

CRBasic EXAMPLE 11: Load binary information into a variable

'"This program example demonstrates how binary data are loaded into a variable. The binary
"format (1 = high, 0 = Tow) is useful when loading the status of multiple flags

"or ports into a single variable. For example, storing the binary number &B11100000
'preserves the status of flags 8 through 1: flags 1 to 5 are Tow, 6 to 8 are high.

'This example demonstrates an algorithm that Tloads binary status of flags into a LONG
"integer variable.

Public FlagInt As Long

Public Flag(8) As Boolean
Public I

DataTable(FlagOut,True,-1)
Sample(1,FlagInt,UINT2)
EndTable

BeginProg
Scan(1,Sec,3,0)

FlagInt = 0
For T =1 To 8
If Flag(I) = true Then
FlagInt = FlagInt + 2 A (I - 1)
EndIf
Next I
CallTable FlagOut

NextScan
EndProg

7.6.3.11 Multi-Statement Declarations

Multi-statement declarations are used to declare data tables, subroutines,
functions, and incidentals. Related instructions include the following:

e DataTable() / EndTable

e Sub() / EndSub

¢ Function() / EndFunction

e ShutDown / ShutdownEnd

e DialSequence() / EndDialSequence

e ModemHangup() / EndModemHangup

e WebPageBegin() / WebPageEnd
Multi-statement declarations can be located as follows:

e Prior to BeginProg,

145

146

Section 7. Installation
e After EndSequence or an infinite Scan() / NextScan and before
EndProg or SlowSequence
e Immediately following SlowSequence. SlowSequence code starts
executing after any declaration sequence. Only declaration sequences can
occur after EndSequence and before SlowSequence or EndProg.
7.6.3.11.1 Declaring Data Tables

Data are stored in tables as directed by the CRBasic program. A data table is
created by a series of CRBasic instructions entered after variable declarations but
before the BeginProg instruction. These instructions include:

DataTable()
"Output Trigger Condition(s)
"Output Processing Instructions
EndTable

A data table is essentially a file that resides in CR1000 memory. The file is
written to each time data are directed to that file. The trigger that initiates data
storage is tripped either by the CR1000 clock, or by an event, such as a high
temperature. The maximum number of data tables is 253 (prior to OS 28, the
limit was 30 data tables), but the maximum can vary with other programming
considerations. If your need for data tables approaches the maximum, only
testing will define your limit. Data tables may store individual measurements,
individual calculated values, or summary data such as averages, maxima, or
minima to data tables.

Each data table is associated with overhead information that becomes part of the
ASCII file header (first few lines of the file) when data are downloaded to a PC.
Overhead information includes the following:

e Table format

e Datalogger type and operating system version

e Name of the CRBasic program running in the datalogger

e Name of the data table (limited to 20 characters)

e Alphanumeric field names to attach at the head of data columns

This information is referred to as "table definitions."

Section 7. Installation

TABLE 12: Typical Data Table

TOAS CR1000 CR1000 1048 CR1000.Std.13.06 CPU:Data.crl 35723 OneMin

TIMESTAMP RECORD | BattVolt_Avg PTempC_Avg TempC_Avg(1) TempC_Avg(2)

TS RN Volts Deg C Deg C Deg C

Avg Avg Avg Avg

7/11/2007 16:10 0 13.18 235 23.54 25.12
7/11/2007 16:20 1 13.18 23.5 23.54 25.51
7/11/2007 16:30 2 13.19 23.51 23.05 25.73
7/11/2007 16:40 3 13.19 23.54 23.61 25.95
7/11/2007 16:50 4 13.19 23.55 23.09 26.05
7/11/2007 17:00 5 13.19 23.55 23.05 26.05
7/11/2007 17:10 6 13.18 23.55 23.06 25.04

The table Typical Data Table . 146) shows a data file as it appears after the
associated data table is downloaded from a CR1000 programmed with the code in
CRBasic example Declaration and Use of a Data Table (p. 148. The data file
consists of five or more lines. Each line consists of one or more fields. The first
four lines constitute the file header. Subsequent lines contain data.

Note Discrete data files (ASCII or binary) can also be written to a CR1000
memory drive using the TableFile() instruction.

The first header line is the environment line. It consists of eight fields, listed in
table TOAS5 Environment Line (p. 147).

TABLE 13: TOAS Environment Line

Field Description Changed By
1 TOAS
2 Station name As named in datalogf]e;)support software (p.
3 Datalogger model
4 Datalogger serial number
5 Datalogger OS version New OS
6 Datalogger program name New program
7 Datalogger program signature New or revised program
8 Table name Revised program

The second header line reports field names. This line consists of a set of
comma-delimited strings that identify the name of individual fields as given in the
datalogger program. If the field is an element of an array, the name will be
followed by a comma-separated list of subscripts within parentheses that

147

Section 7. Installation

identifies the array index. For example, a variable named Values, which is
declared as a two-by-two array in the datalogger program, will be represented by
four field names: Values(1,1), Values(1,2), Values(2,1), and Values(2,2). Scalar
variables will not have array subscripts. There will be one value on this line for
each scalar value defined by the table. Default field names are a combination of
the variable names (or alias) from which data are derived and a three-letter suffix.
The suffix is an abbreviation of the data process that outputs the data to storage.
For example, Avg is the abbreviation for the data process called by the Average()
instruction. If the default field names are not acceptable to the programmer,
FieldNames() instruction can be used to customize the names. TIMESTAMP,
RECORD, Batt_Volt_Avg, PTemp_C_Avg, TempC_Avg(1), and
TempC_Avg(2) are the default field names in the table Typical Data Table (p. 146).

The third-header line identifies engineering units for that field of data. These
units are declared at the beginning of a CRBasic program, as shown in CRBasic
example Declaration and Use of a Data Table (p. 148). Units are strictly for
documentation. The CR1000 does not make use of declared units, nor does it
check their accuracy.

The fourth line of the header reports abbreviations of the data process used to
produce the field of data. See the table Data Process Abbreviations (p. 173).

Subsequent lines are observed data and associated record keeping. The first field
being a time stamp, and the second being the record (data line) number.

As shown in CRBasic example Declaration and Use of a Data Table (p. 148), data
table declaration begins with the DataTable() instruction and ends with the
EndTable() instruction. Between DataTable() and EndTable() are instructions
that define what data to store and under what conditions data are stored. A data
table must be called by the CRBasic program for data storage processing to occur.
Typically, data tables are called by the CallTable() instruction once each Scan.

CRBasic EXAMPLE 12: Declaration and Use of a Data Table

'This program example demonstrates declaration and use of data tables.

'Declare Variables
PubTic Batt_Volt
PubTic PTemp_C
Public Temp_C(2)

'Define Units

Units Batt_Volt=Volts
Units PTemp_C=Deg_C
Units Temp_C()=Deg_C

'Define Data Tables

DataTable(OneMin,True,-1) 'Required beginning of data table declaration
DataInterval(0,1,Min,10) "Optional instruction to trigger table at one-minute interval
Average(l,Batt_Volt,FP2,False) 'Optional instruction to average variable Batt_Volt
Average(l,PTemp_C,FP2,False) '"Optional instruction to average variable PTemp_C
Average(2,Temp_C(Q,FP2,False) '"Optional instruction to average variable Temp_C

EndTable 'Required end of data table declaration

148

Section 7. Installation

DataTable(Tablel,True,-1)
DataInterval(0,1440,Min,0) 'Optional instruction to trigger table at 24-hour interval
Minimum(1l,Batt_Volt,FP2,False,False) 'Optional instruction to determine minimum Batt_Volt
EndTable

'"Main Program
BeginProg
Scan(5,Sec,1,0)

'Default Datalogger Battery Voltage measurement Batt_Volt:
Battery(Batt_Volt)

"Wiring Panel Temperature measurement PTemp_C:
PanelTemp(PTemp_C,_60Hz)

'"Type T (copper-constantan) Thermocouple measurements Temp_C:
TCDiff(Temp_C(),2,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

'"Call Data Tables and Store Data
CallTable(OneMin)
CallTable(Tablel)

NextScan
EndProg

DataTable() / EndTable Instructions

The DataTable() instruction has three parameters: a user-specified alphanumeric
name for the table such as OneMin, a trigger condition (for example, True), and
the size to make the table in memory such as -1 (automatic allocation).

e Name — The table name can be any combination of numbers, letters,
and underscore up to 20 characters in length. The first character must be
a letter or underscore.

Note While other characters may pass the precompiler and compiler,
runtime errors may occur if these naming rules are not adhered to.

e TrigVar — Controls whether or not data records are written to storage.
Data records are written to storage if TrigVar is true and if other
conditions, such as Datalnterval(), are met. Default setting is -1 (True).
TrigVar may be a variable, expression, or constant. 7TrigVar does not
control intermediate processing. Intermediate processing is controlled by
the disable variable, DisableVar, which is a parameter in all output
processing instructions. See Data Output: Processing Instructions (p. 152).

Read More Data Output: Triggers and Omitting Samples (p. 197)
discusses the use of TrigVar and DisableVar in special applications.

e Size — Table size is the number of records to store in a table before new
data begins overwriting old data. If 70 is entered, 10 records are stored in
the table; the eleventh record will overwrite the first record. If -1 is
entered, memory for the table is allocated automatically at the time the
program compiles. Automatic allocation is preferred in most
applications since the CR1000 sizes all tables such that they fill (and

149

150

Section 7.

Installation

begin overwriting the oldest data) at about the same time.
Approximately 2 kB of extra data-table space are allocated to minimize
the possibility of new data overwriting the oldest data in ring memory
when datalogger support software (p. 89) collects the oldest data at the
same time new data are written. These extra records are not reported in
the Status table and are not reported to the support software and so are
not collected.

Rules on table size change if a CardOut() instruction or TableFile()
instruction with Option 64 are included in the table declaration. These
instructions support writing of data to a memory card. Writing data to a card
requires additional memory be allocated as a data copy buffer. The CR1000
automatically determines the size the buffer needs to be. See Memory Cards
and Record Numbers (p. 439).

CRBasic example Declaration and Use of a Data Table (p. 148) creates a data table
named OneMin, stores data once a minute as defined by Datalnterval(), and
retains the most recent records in SRAM. DataRecordSize entries in the
DataTableInformation table report allocated memory in terms of number of
records the tables hold.

Datalnterval() Instruction

Datalnterval() instructs the CR1000 to both write data records at the specified
interval and to recognize when a record has been skipped. The interval is
independent of the Scan() / NextScan interval; however, it must be a multiple of
the Scan() / NextScan interval.

Sometimes, usually because of a timing issue, program logic prevents a record
from being written. If a record is not written, the CR1000 recognizes the omission
as a "lapse" and increments the SkippedRecord counter in the Status table.
Lapses waste significant memory in the data table and may cause the data table to
fill sooner than expected. Datalnterval() instruction parameter Lapses controls
the CR1000 response to a lapse. See table Datalnterval () Lapse Parameter
Options (p. 151) for more information.

Note Program logic that results in lapses includes scan intervals
inadequate to the length of the program (skipped scans), the use of
Datalnterval() in event-driven data tables, and logic that directs program
execution around the CallTable() instruction.

A data table consists of successive | KB data frames. Each data frame contains a
time stamp, frame number, and one or more records. By default, a time stamp and
record number are not stored with each record. Rather, the datalogger support
software data extraction extraction routine uses the frame time stamp and frame
number to time stamp and number each record as it is stored to computer memory.
This technique saves comms bandwidth and 16 bytes of CR1000 memory per
record. However, when a record is skipped, or several records are skipped
contiguously, a lapse occurs, the SkippedRecords status entry is incremented,
and a 16-byte sub-header with time stamp and record number is inserted into the

Section 7. Installation

data frame before the next record is written. Consequently, programs that lapse
frequently waste significant memory.

If Lapses is set to an argument of 20, the memory allocated for the data table is
increased by enough memory to accommodate 20 sub-headers (320 bytes). If
more than 20 lapses occur, the actual number of records that are written to the
data table before the oldest is overwritten (ring memory) may be less than what
was specified in the DataTable(), or the CF CardOut() instruction, or a
TableFile() instruction with Option 64.

If a program is planned to experience multiple lapses, and if comms bandwidth is
not a consideration, the Lapses parameter should be set to 0 to ensure the CR1000
allocates adequate memory for each data table.

TABLE 14: Datalnterval() Lapse Parameter Options

Datalnterval() Lapse
Argument Effect

If table record number is fixed, X data frames (1
kB per data frame) are added to data table if

Lapse >0 memory is available. If record number is
auto-allocated, no memory is added to table.
Lapse =0 Time stamp and record number are always stored

with each record.

When lapse occurs, no new data frame is created.
Lapse <0 Record time stamps calculated at data extraction
may be in error.

Scan Time and System Time

In some applications, system time (see System Time (p. 544)), rather than scan time
(see Scan Time . 540, is desired. To get the system time, the CallTable()
instruction must be run outside the Scan() loop. See Time Stamps (p. 321).

Openinterval() Instruction

By default, the CR1000 uses closed intervals. Data output to a data table based on
Datalnterval() includes measurements from only the current interval.
Intermediate memory that contains measurements is cleared the next time the data
table is called regardless of whether or not a record was written to the data table.

Typically, time series data (averages, totals, maxima, etc.), that are output to a
data table based on an interval, only include measurements from the current
interval. After each data-output interval, the memory that contains the
measurements for the time series data are cleared. If a data-output interval is
missed (because all criteria are not met for output to occur), the memory is cleared
the next time the data table is called. If the OpenlInterval instruction is
contained in the DataTable() declaration, the memory is not cleared. This results
in all measurements being included in the time series data since the last time data
were stored (even though the data may span multiple data-output intervals).

151

Section 7. Installation

Note Array-based dataloggers, such as CR10X and CR23X, use open
intervals exclusively.

Data Output Processing Instructions

Data-storage processing instructions (aka, "output processing" instructions)
determine what data are stored in a data table. When a data table is called in the
CRBasic program, data-storage processing instructions process variables holding
current inputs or calculations. If trigger conditions are true, for example if the
data-output interval has expired, processed values are stored into the data table. In
CRBasic example Declaration and Use of a Data Table (p. 149), three averages are
stored.

Consider the Average() instruction as an example data-storage processing
instruction. Average() stores the average of a variable over the data-output
interval. Its parameters are:

e Reps — number of sequential elements in the variable array for which
averages are calculated. Reps is set to I to average PTemp, and set to 2
to average two thermocouple temperatures, both of which reside in the
variable array Temp_ C.

e Source — variable array to average. Variable arrays PTemp_C (an array
of 1) and Temp_C() (an array of 2) are used.

e DataType — Data type for the stored average (the example uses data
type FP2 . 585)).

Read More See Declaring Data Types (p. 132 for more information on available
data types.

e DisableVar — controls whether a measurement or value is included in
an output processing function. A measurement or value is not included
if DisableVar is true (# 0). For example, if the disable variable in an
Average() instruction is #rue, the current value will not be included in
the average. CRBasic example Use of the Disable Variable (. 152) and
CRBasic example Using NAN to Filter Data (p. 495 show how DisableVar
can be used to exclude values from an averaging process. In these
examples, DisableVar is controlled by Flagl. When Flagl is high, or
True, DisableVar is True. When it is False, DisableVar is False.
When False is entered as the argument for DisableVar, all readings are
included in the average. The average of variable Oscillator does not
include samples occurring when Flagl is high (True), which results in
an average of 2; when Flagl is low or False (all samples used), the
average is 1.5.

Read More Data Output: Triggers and Omitting Samples (p. 197) and
Measurements and NAN (p. 493) discuss the use of TrigVar and DisableVar in
special applications.

152

Section 7. Installation

CRBasic EXAMPLE 13: Use of the Disable Variable

'"This program example demonstrates the use of the 'disable' variable, or DisableVar, which
'is a parameter in many output processing instructions. Use of the 'disable' variable
'allows source data to be selectively included in averages, maxima, minima, etc. If the
"'disable' variable equals -1, or true, data are not included; if equal to 0, or false,
'"data are included. The 'disable' variable is set to false by default.

'Declare Variables and Units
Public Oscillator As Long
Public Flag(l) As Boolean
PubTlic DisableVar As Boolean

'Define Data Tables
DataTable(OscAvgData,True,-1)
DatalInterval(0,1,Min,10)
Average(1l,0scillator,FP2,DisableVar)
EndTable

'"Main Program
BeginProg
Scan(1,Sec,1,0)

'Reset and Increment Counter
If Oscillator = 2 Then Oscillator = 0
Oscillator = Oscillator + 1

'"Process and Control
If Oscillator =1
If Flag(l) = True Then
DisableVar = True
EndIf
Else
DisableVar = False
EndIf

'"Call Data Tables and Store Data
CallTable(0OscAvgData)

NextScan
EndProg

Numbers of Records

The exact number of records that can be stored in a data table is governed by a
complex set of rules, the summary of which can be found in Memory Cards and

Record Numbers (p. 439).

7.6.3.11.2 Declaring Subroutines

Read More See Subroutines (p. 317) for more information on programming
with subroutines.

Subroutines allow a section of code to be called by multiple processes in the main
body of a program. Subroutines are defined before the main program body of a

program.

153

Section 7. Installation

154

Note A particular subroutine can be called by multiple program
sequences simultaneously. To preserve measurement and processing
integrity, the CR1000 queues calls on the subroutine, allowing only one
call to be processed at a time in the order calls are received. This may
cause unexpected pauses in the conflicting program sequences.

7.6.3.11.3 Declaring Subroutines

Function() / EndFunction instructions allow you to create a customized CRBasic
instruction. The declaration is similar to a subroutine declaration.

7.6.3.11.4 Declaring Incidental Sequences

A sequence is two or more statements of code. Data-table sequences are
essential features of nearly all programs. Although used less frequently,
subroutine and function sequences also have a general purpose nature. In
contrast, the following sequences are used only in specific applications.

Also see ApplyAndRestartSequence() instruction.

Shut-Down Sequences

Dial Sequences

The ShutDownBegin / ShutDownEnd instructions are used to define code that
will execute whenever the currently running program is shutdown by prescribed
means. More information is available in CRBasic Editor Help.

The DialSequence / EndDialSequence instructions are used to define the code
necessary to route packets to a PakBus® device. More information is available in
CRBasic Editor Help.

Modem-Hangup Sequences

The ModemHangup / EndModemHangup instructions are used to enclose code
that should be run when a COM port hangs up communication. More information
is available in CRBasic Editor Help.

Web Page Sequences

The WebPageBegin / WebPageEnd instructions are used to declare a web page
that is displayed when a request for the defined HTML page comes from an
external source. More information is available in CRBasic Editor Help.

Section 7. Installation

7.6.3.12 Execution and Task Priority
Execution of program instructions is divided among the following three tasks:

e Measurement task — rigidly timed measurement of sensors connected
directly to the CR1000

e CDM task — rigidly timed measurement and control of CDM/CPI (. 518)
peripheral devices

e Digital task (a.k.a, SDM task) — rigidly timed measurement and control
of SDM (p. 5409) peripheral devices, pulse measurements, and RS-232
measurements.

e Processing task — converts measurements to numbers represented by
engineering units, performs calculations, stores data, makes decisions to
actuate controls, and performs serial /O communication.

Instructions or commands that are handled by each task are listed in table
Program Tasks (p. 155).

These tasks are executed in either pipeline or sequential mode. When in pipeline
mode, tasks run more or less in parallel. When in sequential mode, tasks run
more or less in sequence. When a program is compiled, the CR1000 evaluates
the program and automatically determines which mode to use. Using the
PipelineMode or SequentialMode instruction at the beginning of the program
will force the program into one mode or the other. Mode information is included
in a message returned by the datalogger, which is displayed by the datalogger
support software . 89. The CRBasic Editor pre-compiler returns a similar
message.

Note A program can be forced to run in sequential or pipeline mode by
placing the SequentialMode or PipelineMode instruction in the
declarations section of the program.

Some tasks in a program may have higher priorities than others. Measurement
tasks generally take precedence over all others. Task priorities are different for
pipeline mode and sequential mode.

155

156

Section 7. Installation
TABLE 15: Program Tasks
Measurement Task Digital Task Processing Task
e Analog SDM Processing
measurements instru:tions, Output
e Excitation cxcep .
SDMSI04() and Serial I/O
L SDMI016() SDMSIO4()
counters
(Pulse()) CDM SDMIO16()
instructions / CPI ReadlIO()
e Read control devices. }
ports Pul WritelO()
(GetPort()) ulse counters e Expression evaluation
e Set control ports and variable setting in
(SetPort()) measurement and SDM
e VibratingWire(LR
)
e PeriodAvg()
e (CS616()
e Calibrate()
7.6.3.12.1 Pipeline Mode

Pipeline mode handles measurement, most digital, and processing tasks
separately, and, in many cases, simultaneously. Measurements are scheduled to
execute at exact times and with the highest priority, resulting in more precise
timing of measurement, and usually more efficient processing and power
consumption.

Pipeline scheduling requires that the program be written such that measurements
are executed every scan. Because multiple tasks are taking place at the same time,
the sequence in which the instructions are executed may not be in the order in
which they appear in the program. Therefore, conditional measurements are not
allowed in pipeline mode. Because of the precise execution of measurement
instructions, processing in the current scan (including update of public variables
and data storage) is delayed until all measurements are complete. Some
processing, such as transferring variables to control instructions, like PortSet()
and ExciteV(), may not be completed until the next scan.

When a condition is true for a task to start, it is put in a queue. Because all tasks
are given the same priority, the task is put at the back of the queue. Every 10 ms
(or faster if a new task is triggered) the task currently running is paused and put at
the back of the queue, and the next task in the queue begins running. In this way,
all tasks are given equal processing time by the CR1000.

All tasks are given the same general priority. However, when a conflict arises
between tasks, program execution adheres to the following priority schedule:

1. Measurements in main program

2. Auto self-calibration

Section 7. Installation

3. Measurements in slow sequences

4. Processing tasks

7.6.3.12.2 Sequential Mode

Sequential mode executes instructions in the sequence in which they are written in
the program. Sequential mode may be slower than pipeline mode since it executes
only one line of code at a time. After a measurement is made, the result is
converted to a value determined by processing arguments that are included in the
measurement command, and then program execution proceeds to the next
instruction. This line-by-line execution allows writing conditional measurements
into the program.

Note The exact time at which measurements are made in sequential
mode may vary if other measurements or processing are made
conditionally, if there is heavy communication activity, or if other interrupts,
such as accessing a Campbell Scientific mass storage device or memory
card, occur.

When running in sequential mode, the datalogger uses a queuing system for
processing tasks similar to the one used in pipeline mode. The main difference
when running a program in sequential mode is that there is no pre-scheduling of
measurements; instead, all instructions are executed in the programmed order.

A priority scheme is used to avoid conflicting use of measurement hardware. The
main scan has the highest priority and prevents other sequences from using
measurement hardware until the main scan, including processing, is complete.
Other tasks, such as processing from other sequences and communications, can
occur while the main sequence is running. Once the main scan has finished, other
sequences have access to measurement hardware with the order of priority being
the auto self calibration sequence followed by the slow sequences in the order
they are declared in the program.

Note Measurement tasks have priority over other tasks such as
processing and communication to allow accurate timing needed within
most measurement instructions.

Care must be taken when initializing variables when multiple sequences are used
in a program. If any sequence relies on something (variable, port, etc.) that is
initialized in another sequence, there must be a handshaking scheme placed in the
CRBasic program to make sure that the initializing sequence has completed
before the dependent task can proceed. This can be done with a simple variable or
even a delay, but understand that the CR1000 operating system will not do this
handshaking between independent tasks.

A similar concern is the reuse of the same variable in multiple tasks. Without
some sort of messaging between the two tasks placed into the CRBasic program,
unpredictable results are likely to occur. The SemaphoreGet() and
SemaphoreRelease() instruction pair provide a tool to prevent unwanted access
of an object (variable, COM port, etc.) by another task while the object is in use.
Consult CRBasic Editor Help for information on using SemaphoreGet() and
SemaphoreRelease().

157

158

Section 7. Installation

7.6.3.13 Execution Timing

Timing of program execution is regulated by timing instructions listed in the

following table.

TABLE 16: Program Timing Instructions

Instructions General Guidelines Syntax Form
BeginProg
. Scan()
Use in most programs. L
Scan() / NextScan | Begins / ends the main "
scan. "
NextScan
EndProg
BeginProg
Scan()
Use when measurements N : s
or processing must run extscan
SlowSequence / Ii fr g R SlowSequence
EndSequence at slower frequencies Scan0
than that of the main '
program. .
NextScan
EndSequence
EndProg
BeginProg
Scan()
Use when measurements : 0
or processing must run .
SubScan / F f § mus SubScan()
NextSubScan at faster equencies ;
than that of the main 7
program. '
NextSubScan
NextScan
EndProg
7.6.3.13.1 Scan() / NextScan

Simple CR1000 programs are often built entirely within a single Scan() /
NextScan structure, with only variable and data-table declarations outside the
scan. Scan() / NextScan creates an infinite loop; each periodic pass through the
loop is synchronized to the CR1000 clock. Scan() parameters allow modification
of the period in 10 ms increments up to 24 hours. As shown in CRBasic example
BeginProg / Scan() / NextScan / EndProg Syntax (p. 158), the CRBasic program

may be relatively short.

Section 7. Installation

CRBasic EXAMPLE 14: BeginProg/ Scan() / NextScan / EndProg Syntax

'"This program example demonstrates the use of BeginProg/EndProg and Scan()/NextScan syntax.
PubTic PanelTemp_
DataTable(PanelTempData,True,-1)

DataInterval(0,1,Min,10)
Sample(1,PanelTemp_, FP2)

EndTable
BeginProg ' <<<<<<<BeginProg
Scan(1,Sec,3,0) ' <<<<<<< Scan

Pane1Temp(PanelTemp_,250)
CallTable PanelTempData
NextScan '
EndProg '

<<<<<<< NextScan
<<<<<<<EndProg

Scan() determines how frequently instructions in the program are executed, as
shown in the following CRBasic code snip:

'Scan(Interval, Units, BufferSize, Count)
Scan(1,Sec,3,0)

"CRBasic instructions go here
ExitScan

Scan() has four parameters:

e Interval — the interval between scans. Interval is 10 ms < Interval < 1
day.

e Units — the time unit for the interval.

o BufferSize — the size (number of scans) of a buffer in RAM that holds
the raw results of measurements. When running in pipeline mode, using
a buffer allows the processing in the scan to lag behind measurements at
times without affecting measurement timing. Use of the CRBasic Editor
default size is normal. Refer SkippedScan (p. 498) for troubleshooting tips.

e Count — number of scans to make before proceeding to the instruction
following NextScan. A count of 0 means to continue looping forever (or
until ExitScan).

7.6.3.13.2 SlowSequence / EndSequence

Slow sequences include automatic and programmed sequences. Auto
self-calibration calibration is an automatic slow sequence.

User-entered slow sequences are declared with the SlowSequence instruction and
run outside the main-program scan. Slow sequences typically run at a slower rate
than the main scan. Up to four slow-sequence scans can be defined in a program.

Instructions in a slow-sequence scan are executed when the main scan is not

active. When running in pipeline mode, slow-sequence measurements are spliced
in after measurements in the main program, as time allows. Because of this

159

160

Section 7. Installation

7.6.3.13.3

7.6.3.13.4

Main Scans

splicing, measurements in a slow sequence may span across multiple-scan
intervals in the main program. When no measurements need to be spliced, the
slow-sequence scan will run independent of the main scan, so slow sequences
with no measurements can run at intervals < main-scan interval (still in 10 ms
increments) without skipping scans. When measurements are spliced, checking
for skipped slow scans is done after the first splice is complete rather than
immediately after the interval comes true.

In sequential mode, all instructions in slow sequences are executed as they occur
in the program according to task priority.

Auto self-calibration is an automatic, slow-sequence scan, as is the watchdog task.

Read More See Auto Self-Calibration — Overview (p. 91).

SubScan() / NextSubScan

SubScan() / NextSubScan are used in the control of analog multiplexers (4nalog
Multiplexers — List (p. 590 or to measure analog inputs at a faster rate than the
program scan. SubScan() / NextSubScan can be used in a SlowSequenc /
EndSequence with an interval of 0. SubScan cannot be nested. PulseCount or
SDM measurement cannot be used within a sub scan.

Scan Priorities in Sequential Mode

Note Measurement tasks have priority over other tasks such as
processing and communication to allow accurate timing needed within
most measurement instructions.

A priority scheme is used in sequential mode to avoid conflicting use of
measurement hardware. As illustrated in figure Sequential-Mode Scan Priority
Flow Diagrams (p. 162), the main scan sequence has the highest priority. Other
sequences, such as slow sequences and auto self-calibration scans, must wait to
access measurement hardware until the main scan, including measurements and
processing, is complete.

Execution of the main scan usually occurs quickly, so the processor may be idle
much of the time. For example, a weather-measurement program may scan once
per second, but program execution may only occupy 250 ms, leaving 75% of
available scan time unused. The CR1000 can make efficient use of this
interstitial-scan time to optimize program execution and communication control.
Unless disabled, or crowded out by a too demanding schedule, self-calibration
(see Auto Self-Calibration — Overview (. 91)) has priority and uses some
interstitial scan time. If self-calibration is crowded out, a warning message is
issued by the CRBasic pre-compiler. Remaining priorities include
slow-sequence scans in the order they are programmed and digital triggers.
Following is a brief introduction to the rules and priorities that govern use of
interstitial-scan time in sequential mode. Rules and priorities governing pipeline
mode are somewhat more complex and are not expanded upon.

Section 7. Installation

Permission to proceed with a measurement is granted by the measurement
semaphore (p. 541. Main scans with measurements have priority to acquire the
semaphore before measurements in a calibration or slow-sequence scan. The
semaphore is taken by the main scan at its beginning if there are measurements
included in the scan. The semaphore is released only after the last instruction in
the main scan is executed.

Slow-Sequence Scans

WaitDigTrig Scans

Slow-sequence scans begin after a SlowSequence instruction. They start
processing tasks prior to a measurement but stop to wait when a measurement
semaphore is needed. Slow sequences release the semaphore (p. 541) after complete
execution of each measurement instruction to allow the main scan to acquire the
semaphore when it needs to start. If the measurement semaphore is set by a
slow-sequence scan and the beginning of a main scan gets to the top of the queue,
the main scan will not start until it can acquire the semaphore; it waits for the
slow sequence to release the semaphore. A slow-sequence scan does not hold the
semaphore for the whole of its scan. It releases the semaphore after each use of
the hardware.

Read More See Synchronizing Measurements — Details (p. 409).

Main scans and slow sequences usually trigger at intervals defined by the Scan()
instruction. Some applications, however, require the main- or slow-sequence scan
to be started by an external digital trigger such as a 5 Vdc pulse on a control port.
The WaitDigTrig() instruction activates a program when an external trigger is
detected. WaitDigTrig() gives priority to begin a scan, but the scan will execute
and acquire the semaphore (. 541) according to the rules stated in Main Scans (. 160)
and Slow-Sequence Scans (p. 161). Any processing will be time sliced with
processing from other sequences. Every time the program encounters
WaitDigTrig(), it will stop and wait to be triggered.

Note WaitDigTrig() can be used to program a CR1000 to control
another CR1000.

161

Section 7.

Installation

FIGURE 38: Sequential-Mode Scan Priority Flow Diagrams

Main Scan

—

Slow Sequence

| WaitDigTrig Present?’ [N Start Time?] —>[WaitDigTrig Present?’ } No Start Time?
|Yes lNo lYes Yes |No
. . , No B : No . .
Digital Trigger? Wait for Trigger Wait For Start Time Digital Trigger? Wait for Trigger Wait For Start Time
Yes lYes
Measurement to be Start Scan] [Start Scan]
made? l
No N | Time Slice Processing (if
Does another sequence |0,] Aquire Semaphore any)® with Main Scan
(Cal or Slow) have P N
rocessing
Semaphore? l
Yes
Start Scan
Measurement to be »-| Time Slice Processing (if
Wait for Other Sequence made? any)’ with Main Scan
to finish Current Processing
Measurement Time Slice Processing (if
any) with any Queued
Slow Sequence or Cal Does Main or Call Scan Aquire Semaphore
Sequence Processing’ want / have Semaphore? l
- Complete Current
Make Measurement Wait for other scan to Measurement
‘ finish
Time Slice Processing (if
any) with any Queued Release Semaphore
Slow Sequence or Cal]
Sequence Processing2
Finish Scan / Release
Semaphore if Held

1- Program with WaitDigTrig() immediately after Scan()

2- Processing (if any) time sliced with slow sequence processing only if no measurements in main scan

3- Processing time sliced with main scan processing if no measurements in main scan, otherwise time sliced with whole main scans

7.6.3.14 Programming Instructions

7.6.3.14.1

162

In addition to BASIC syntax, additional instructions are included in CRBasic to
facilitate measurements and store data. See CRBasic Editor Help (. 127) for a
comprehensive list of these instructions.

Measurement and Data Storage Processing

CRBasic instructions have been created for making measurements and storing
data. Measurement instructions set up CR1000 hardware to make measurements
and store results in variables. Data storage instructions process measurements into
averages, maxima, minima, standard deviation, FFT, etc.

Each instruction is a keyword followed by a series of informational parameters

needed to complete the procedure. For example, the instruction for measuring
CR1000 panel temperature is:

PanelTemp(Dest,Integ)

PanelTemp is the keyword. Two parameters follow: Dest, a destination variable
name in which the temperature value is stored; and Infeg, of a length of time to
integrate the measurement. To place the panel temperature measurement in the

Section 7. Installation

variable RefTemp, using a 250 ps integration time, the syntax is as shown in
CRBasic example Measurement Instruction Syntax (p. 163).

CRBasic EXAMPLE 15: Measurement Instruction Syntax

'"This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR1000 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) '<<<<<<Instruction to make measurement
NextScan
EndProg

7.6.3.14.2 Argument Types

Most CRBasic commands (instructions) have sub-commands (parameters).
Parameters are populated by the programmer with arguments. Many instructions
have parameters that allow different types of arguments. Common argument types
are listed below. Allowed argument types are specifically identified in the
description of each instruction in CRBasic Editor Help.

e Constant, or expression that evaluates as a constant

e Variable

e Variable or array

e Constant, variable, or expression

e Constant, variable, array, or expression

e Name

e Name or list of names

e Variable, or expression

e Variable, array, or expression

7.6.3.14.3 Names in Arguments

Table Rules for Names (p. 164 lists the maximum length and allowed characters for
the names for variables, arrays, constants, etc. The CRBasic Editor pre-compiler
will identify names that are too long or improperly formatted.

Caution Concerning characters allowed in names, characters not listed
in in the table, Rules for Names, may appear to be supported in a specific
operating system. However, they may not be supported in future
operating systems.

163

Section 7. Installation

164

TABLE 17: Rules for Names

Maximum
Name (nﬁf:lgetf of
1
Category characters) Allowed characters
Variable or array 39
Constant 38
Units 38 Letters A to Z, ato z, _(underscore),
and numbers 0 to 9. Names must start
with a letter or underscore. CRBasic
Alias 39 is n.ot case sensitive.
Units are excepted from the above
rules. Since units are strings that ride
Station name 64 alor}g with the dataj they are not
subjected to the stringent syntax
checking that is applied to variables,
constants, subroutines, tables, and
Data-table name 20 other names.
Field name 39
Fleld-'na'me 64
description

' Variables, constants, units, aliases, station names, field names, data table
names, and file names can share identical names; that is, once a name is used,
it is reserved only in that category. See Predefined Constants (p. 143) for another
naming limitation.

7.6.3.15 Expressions in Arguments

Read More See Programming Expression Types (p. 165).

Many CRBasic instruction parameters allow the entry of arguments as
expressions. If an expression is a comparison, it will return -1 if true and 0 if false.
See Logical Expressions (. 168. The following code snip shows the use of an
expressions as an argument in the TrigVar parameter of the DataTable()
instruction:

'DataTable(Name, TrigVar, Size)
DataTable(Temp, TC > 100, 5000)

When the trigger is TC > 100, a thermocouple temperature greater than 100 sets
the trigger to True and data are stored.

Section 7. Installation

7.6.3.16 Programming Expression Types

An expression is a series of words, operators, or numbers that produce a value or
result. Expressions are evaluated from left to right, with deference to precedence
rules. The result of each stage of the evaluation is of type Long (integer, 32 bits) if
the variables are of type Long (constants are integers) and the functions give
integer results, such as occurs with INTDV(). If part of the equation has a
floating point variable or constant (24 bits), or a function that results in a floating
point, the rest of the expression is evaluated using floating-point, 24-bit math,
even if the final function is to convert the result to an integer, so precision can be
lost; for example, INT((rtYear-1993)*.25). This is a critical feature to consider
when, 1) trying to use integer math to retain numerical resolution beyond the limit
of floating point variables, or 2) if the result is to be tested for equivalence against
another value. See Floating-Point Arithmetic (p. 165) for limits.

Two types of expressions, mathematical and programming, are used in CRBasic.
A useful property of expressions in CRBasic is that they are equivalent to and

often interchangeable with their results.

Consider the expressions:

x = (z * 1.8) + 32 "(mathematical expression)
If x = 23 theny =5 '(programming expression)

The variable x can be omitted and the expressions combined and written as:
If (z * 1.8 + 32 = 23) theny =5

Replacing the result with the expression should be done judiciously and with the
realization that doing so may make program code more difficult to decipher.

7.6.3.16.1 Floating-Point Arithmetic

Related Topics:

* Floating-Point Arithmetic (p. 165)

» Floating-Point Math, NAN, and +INF (p. 493)

» TABLE: Data Types in Variable Memory (p. 132)

All arithmetic in the CR1000, and all declared variables, are single precision IEEE
four-byte floating point.

A few operations are performed as double precision. These are AddPrecise(),
Average(), AvgRun(), AvgSpa(), CovSpa(), MovePrecise(), RMSSpa(),
StdDev(), StdDevSpa(), Totalize(), and TotRun().

Floating-point arithmetic is common in many electronic, computational systems,
but it has pitfalls high-level programmers should be aware of. Several sources
discuss floating-point arithmetic thoroughly. One readily available source is the
topic Floating Point at www.wikipedia.org. In summary, CR1000 programmers
should consider at least the following:

¢ Floating-point numbers do not perfectly mimic real numbers.

165

166

Section 7. Installation

e Floating-point arithmetic does not perfectly mimic true arithmetic.

e Avoid use of equality in conditional statements. Use >= and <= instead.
For example, use If X >=Y then do rather than If X =Y then do.

e When programming extended-cyclical summation of non-integers, use
the AddPrecise() instruction. Otherwise, as the size of the sum
increases, fractional addends will have an ever decreasing effect on the
magnitude of the sum, because normal floating-point numbers are limited
to about 7 digits of resolution.

7.6.3.16.2 Arithmetic Operations

Arithmetic operations are written out in CRBasic syntax much as they are in
common algebraic notation. For example, to convert Celsius temperature to
Fahrenheit, the syntax is:

TempF = TempC * 1.8 + 32

Read More Code space can be conserved while filling an array or partial
array with the same value. See an example of how this is done in the
CRBasic example Use of Move() to Conserve Code Space (p. 166).
CRBasic example Use of Variable Arrays to Conserve Code Space (p. 166)
shows example code to convert twenty temperatures in a variable array
from °C to °F.

CRBasic EXAMPLE 16: Use of Move() to Conserve Code Space

Move(counter(1),6,0,1) 'Reset six counters to zero. Keep array
"filled with the ten most current readings
Move (TempC(2),9,TempC(1),9) 'Shift previous nine readings to make room

"for new measurement
'New measurement:
TCDiff(TempC(1),1,mvV2_5C,8,TypeT,PTemp,True,0,_60Hz,1.0,0)

CRBasic EXAMPLE 17: Use of Variable Arrays to Conserve Code Space

For I = 1 to 20
TCTemp(I) = TCTemp(I) * 1.8 + 32
Next I

7.6.3.16.3 Expressions with Numeric Data Types

FLOATSs, LONGs and Booleans are cross-converted to other data types, such as
FP2, by using '=".

Boolean from FLOAT or LONG

When a FLOAT or LONG is converted to a Boolean as shown in CRBasic
example Conversion of FLOAT / LONG to Boolean (p. 166), zero becomes false (0)
and non-zero becomes true (-1).

Section 7. Installation

CRBasic EXAMPLE 18: Conversion of FLOAT / LONG to Boolean

'"This program example demonstrates conversion of Float and Long data types to Boolean
"data type.

Pub1ic
PubTic
PubTic
Pub1ic
PubTic
Public

BeginPr
Fa =
Fb

L = 126

Ba
Bb
Bc
EndProg

Fa As Float
Fb As Float

L As Long

Ba As Boolean
Bb As Boolean
Bc As Boolean

o9
0
0.125

Fa 'This will set Ba = False (0)
Fb '"This will Set Bb = True (-1)
L 'This will Set Bc = True (-1)

FLOAT from LONG or Boolean

When a LONG or Boolean is converted to FLOAT, the integer value is loaded
into the FLOAT. Booleans are converted to -1 or 0. LONG integers greater
than 24 bits (16,777,215; the size of the mantissa for a FLOAT) will lose
resolution when converted to FLOAT.

LONG from FLOAT or Boolean

When converted to Long, Boolean is converted to -1 or 0. When a FLOAT is
converted to a LONG, it is truncated. This conversion is the same as the INT
function (Arithmetic Functions). The conversion is to an integer equal to or less
than the value of the float; for example, 4.6 becomes 4 and —4.6 becomes —5).

If a FLOAT is greater than the largest allowable LONG (+2,147,483,647), the
integer is set to the maximum. If a FLOAT is less than the smallest allowable
LONG (-2,147,483,648), the integer is set to the minimum.

Integers in Expressions

LONGsS are evaluated in expressions as integers when possible. CRBasic example
Evaluation of Integers (. 167) illustrates evaluation of integers as LONGs and
FLOATS.

167

Section 7. Installation

CRBasic EXAMPLE 19: Evaluation of Integers

'"This program example demonstrates the evaluation of integers.

PubTic I As Long
PubTic X As Float

BeginProg
I =126
X = (I+3) * 3.4
'I+3 is evaluated as an integer, then converted to Float data type before it is
'multiplied by 3.4.
EndProg

Constants Conversion

Constants are not declared with a data type, so the CR1000 assigns the data type

as needed. If a constant (either entered as a number or declared with CONST) can
be expressed correctly as an integer, the compiler will use the type that is most
efficient in each expression. The integer version is used if possible, for example, if
the expression has not yet encountered a FLOAT. CRBasic example Constants to
LONGs or FLOATS (p. 168 lists a programming case wherein a value normally
considered an integer (10) is assigned by the CR1000 to be As FLOAT.

CRBasic EXAMPLE 20: Constants to LONGs or FLOATS

'"This program example demonstrates conversion of constants to Long or Float data types.

PubTic L As Long
PubTic F1 As Float
PubTic F2 As Float
Const ID = 10

BeginProg
F1 =F2 + ID
L=1ID*5
EndProg

In the just previous CRBasic example, L is an integer. F1 and F2 are FLOATS.
The numeral 5 is loaded As FLOAT to add efficiently with constant ID, which
was compiled As FLOAT for the previous expression to avoid an inefficient
runtime conversion from LONG to FLOAT before each floating point addition.

7.6.3.16.4 Logical Expressions

Measurements can indicate absence or presence of an event. For example, an RH
measurement of 100% indicates a condensation event such as fog, rain, or dew.
The CR1000 can render the state of the event into binary form for further
processing, so the event is either occurring (true), or the event has not occurred

(false).
True =-1, False =0

In all cases, the argument 0 is translated as FALSE in logical expressions; by
extension, any non-zero number is considered "non-FALSE." However, the

168

Section 7. Installation

argument TRUE is predefined in the CR1000 operating system to only equal -1,
so only the argument -1 is a/ways translated as TRUE. Consider the expression

If Condition(1l) = TRUE Then...

This condition is true only when Condition(1) =-1. If Condition(1) is any other
non-zero, the condition will not be found true because the constant TRUE is
predefined as -1 in the CR1000 system memory. By entering = TRUE, a literal
comparison is done. So, to be absolutely certain a function is true, it must be set
to TRUE or -1.

Note TRUE is -1 so that every bit is set high (-1 is &B11111111 for all
four bytes). This allows the AND operation to work correctly. The AND
operation does an AND boolean function on every bit, so TRUE AND X
will be non-zero if at least one of the bits in X is non-zero (if X is not zero).
When a variable of data type BOOLEAN is assigned any non-zero
number, the CR1000 internally converts it to -1.

The CR1000 is able to translate the conditions listed in table Binary Conditions of
TRUE and FALSE (. 169 to binary form (-1 or 0), using the listed instructions and
saving the binary form in the memory location indicated. Table Logical
Expression Examples (p. 170) explains some logical expressions.

Non-Zero = True (Sometimes)

Any argument other than 0 or -1 will be translated as TRUE in some cases and
FALSE in other cases. While using only -7 as the numerical representation of
TRUE is safe, it may not always be the best programming technique. Consider
the expression

If Condition(1l) then...

Since = True is omitted from the expression, Condition(1) is considered true if it
equals any non-zero value.

TABLE 18: Binary Conditions of TRUE and FALSE

(Rl Instrui’;f:(ssi)c Used Merg;;,r:r}l;c’)::st:'lc;? of

Time TimelntolInterval() Variable, System

IfTime() Variable, System

TimelsBetween() Variable, System
Control Port Trigger WaitDigTrig() System
Communications VoiceBeg() System
ComPortlIsActive() Variable
PPPClose() Variable
Measurement Event DataEvent() System

169

Section 7. Installation

Using TRUE or FALSE conditions with logic operators such as AND and OR,
logical expressions can be encoded to perform one of the following three general
logic functions. Doing so facilitates conditional processing and control
applications:

1. Evaluate an expression, take one path or action if the expression is true (= —1),
and / or another path or action if the expression is false (= 0).

2. Evaluate multiple expressions linked with AND or OR.
3. Evaluate multiple AND or OR links.
The following commands and logical operators are used to construct logical

expressions. TABLE: Logical Expression Examples (p. 170) demonstrate some
logical expressions.

e IF

e AND
e OR

e NOT
e XOR
e IMP
e IIF

TABLE 19: Logical Expression Examples

If X >=5 thenY =0

Sets the variable Y to 0 if the expression "X >= 5" is true, i.e. if X is greater than or equal to 5. The
CR1000 evaluates the expression (X >= 5) and registers in system memory a -1 if the expression is true,
or a 0 if the expression is false.

If X>=50RZ =2 thenY =0
Sets Y = 0 if either X >= 5 or Z = 2 is true.

If X>=5AND Z =2 thenY =0
Sets Y = 0 only if both X >=5 and Z = 2 are true.

If 6 then Y = 0.
If 6 is true since 6 (a non-zero number) is returned, so Y is set to 0 every time the statement is executed.

If 0 then Y = 0.
If 0 is false since 0 is returned, so Y will never be set to 0 by this statement.

Z=X>Y).
Zequals -1 if X >Y, or Zwill equal 0 if X <=Y.

170

Section 7. Installation

TABLE 19: Logical Expression Examples

The NOT operator complements every bit in the word. A Boolean can be FALSE (0 or all bits set to 0) or TRUE
(-1 or all bits set to 1). Complementing a Boolean turns TRUE to FALSE (all bits complemented to 0).

Example Program
"(a AND b) = (26 AND 26) = (&b11010 AND &b11010) =
'&11010. NOT (&b11010) yields &b00101.

'"This is non-zero, so when converted to a
"BOOLEAN, it becomes TRUE.

PubTic a As LONG

PubTic b As LONG

PubTlic is_true As Boolean

PubTic not_is_true As Boolean

PubTic not_a_and_b As Boolean

BeginProg
a = 26
b =a
Scan (1,Sec,0,0)
is_true = a AND b 'This evaluates to TRUE.

not_is_true = NOT (is_true) 'This evaluates to FALSE.
not_a_and_b = NOT (a AND b) 'This evaluates to TRUE!
NextScan
EndProg

7.6.3.16.5 String Expressions

CRBasic facilitates concatenation of string variables to variables of all data types
using & and + operators. To ensure consistent results, use & when concatenating
strings. Use + when concatenating strings to other variable types. CRBasic
example String and Variable Concatenation p. 171 demonstrates CRBasic code for
concatenating strings and integers. See section String Operations (p. 313) in the
Programming Resource Library (p. 176) for more information on string
programming.

CRBasic EXAMPLE 21: String and Variable Concatenation

'"This program example demonstrates the concatenation of variables declared As String to
'other strings and to variables declared as other data types.

'Declare Variables

Dim PhraseNum(2) As Long

Dim Word(15) As String * 10

Public Phrase(2) As String * 80

'Declare Data Table

DataTable(HAL,1,-1)
DataInterval(0,15,Sec,10)
'"Write phrases to data table "Test"
Sample(2,Phrase,String)

EndTable

171

Section 7. Installation

'"Program
BeginProg
Scan(1,Sec,0,0)

'Assign strings to String variables
Word(1) = "Good"
Word(2) = "morning"
Word(3) = "Dave"
Word(4) = "I'm"
Word(5) = "sorry"
Word(6) = "afraid"
Word(7) = "I"
Word(8) = "can't"
Word(9) = "do"
Word(10) "that"
Word(11) = " "
Word(12) "
Word(13) "t
Word(14) "
Word(15) = Chr(34)

'Assign integers to Long variables
PhraseNum(1l) = 1
PhraseNum(2) = 2

'Concatenate string "1. Good morning, Dave"
Phrase(1l) = PhraseNum(1)&Word(14)&Word(11)&Word(15)&Word(1)&Word(11)&Word(2)& _
Word(12)&Word(11)&Word(3)&Word(14)&Word(15)

"Concatenate string "2. I'm afraid I can't do that, Dave."

Phrase(2) = PhraseNum(2)&Word(14)&Word(11)&Word(15)&Word(4)&Word(11)&Word(6)&Word(11)& _
Word(7)&Word(11)&Word(8)&Word(11)&Word(9)&Word(11)&Word(10)&Word(12)& _
Word(11)&Word(3)&Word(14)&Word(15)

CallTable HAL

NextScan
EndProg

7.6.3.17 Programming Access to Data Tables

A data table is a memory location where data records are stored. Sometimes, the
stored data needs to be used in the CRBasic program. For example, a program
can be written to retrieve the average temperature of the last five days for further
processing. CRBasic has syntax provisions facilitating access to these table data,
or to meta data relating to the data table. Except when using the GetRecord()
instruction, the syntax is entered directly into the CRBasic program through a
variable name. The general form is:

TableName.FieldName_Prc(Fieldname Index, Records Back)
Where:
e TableName is the name of the data table.

o FieldName is the name of the variable from which the processed value is
derived.

172

Section 7. Installation

e Prc is the abbreviation of the name of the data process used. See table
Data Process Abbreviations (p. 173 for a complete list of these
abbreviations. This is not needed for values from Status or Public tables.

e Fieldname Index is the array element number in fields that are arrays
(optional).

e Records Back is how far back into the table to go to get the value
(optional). If left blank, the most recent record is acquired.

TABLE 20: Data Process Abbreviations

Abbreviation Process Name
Tot Totalize
Avg Average
Max Maximum
Min Minimum
SMM Sample at Max or Min
Std Standard Deviation
MMT Moment
No abbreviation Sample
Hist Histogram !
H4D Histogram4D
FFT FFT
Cov Covariance
RFH Rainflow Histogram
LCr Level Crossing
WVe WindVector
Med Median
ETsz ET
RSo Solar Radiation (from ET)
TMx Time of Max
TMn Time of Min

"Hst is reported in the form Hst,20,1.0000e+00,0.0000e+00,1.0000e+01
where Hst denotes a histogram, 20 = 20 bins, 1 = weighting factor, 0 = lower
bound, 10 = upper bound.

For example, to access the number of watchdog errors, use the statement

wderr = status.watchdogerrors

173

Section 7. Installation

where wderr is a declared variable, status is the table name, and watchdogerrors
is the keyword for the watchdog error field.

Seven special variable names are used to access information about a table.

e EventCount

e EventEnd
e Output
e Record

e TableFull
e TableSize
e TimeStamp

Consult CRBasic Editor Help index topic DataTable access for complete
information.

The DataTableInformation table also include this information. See Info Tables
and Settings (p. 553).

7.6.3.18 Programming to Use Signatures

Signatures help assure system integrity and security. The following resources
provide information on using signatures.

e Signature() instruction in Diagnostics

e RunSignature (. 575

e ProgSignature . 5749

e OSSignature (. 572

o Security — Overview (p. 86)
Many signatures are recorded in the Status table, which is a type of data table.
Signatures recorded in the Status table can be copied to a variable using the
programming technique described in the Programming Access to Data Tables (p.

172 Once in variable form, signatures can be sampled as part of another data
table for archiving.

7.6.3.19 Functions (with a capital F)

A Function is a subroutine that returns only one value of any data type (p. 132).
Use a Function to create a custom CRBasic "Instruction." It is declared with
Function(). An example is a Function that returns a string containing the day of

174

Section 7. Installation

the week, such as Monday or Friday. See CRBasic Editor Help topic
Function/EndFunction

7.6.4 Sending CRBasic Programs

The CR1000 requires that a CRBasic program file be sent to its memory to direct
measurement, processing, and data storage operations. The program file can
have the extension crl or .dld and can be compressed using the GZip algorithm
before sending it to the CR1000. Upon receipt of the file, the CR1000
automatically decompresses the file and uses it just as any other program file. See
Program and OS Compression Q and A (p. 419) for more information..

Options for sending a program include the following:
e Program Send (. 537 command in datalogger-support software (p. 89)

e Program send command in Device Configuration Utility (DevConfig (p.
107))

e Campbell Scientific mass storage device (p. 5999 or memory card

A good practice is to always retrieve data from the CR1000 before sending a
program; otherwise, data may be lost.

Note See File Management (p. 442) and the Campbell Scientific mass
storage device or memory card documentation available at
www.campbellsci.com.

7.6.4.1 Preserving Data at Program Send

You can send CRBasic programs to the CR1000 in multiple ways. Depending on
the way you choose, the CR1000 keeps or deletes data already stored in memory.
Regardless of the program-upload tool used, if any change occurs to the following
data table structures, data are erased when a new program is sent:

e Data table name(s)

e Data-output interval or offset

e Number of fields per record

e Number of bytes per field

e Field type, size, name, or position

e Number of records in table
The program sending command path options listed in table Program Send Options
That Reset Memory (p. 176) reset CR1000 memory and erase data. To keep data,

send programs using the File Control Send (. 525 command in datalogger support
software (p. 521), or the Compile > Compile, Save, Send command in CRBasic

175

Section 7. Installation

Editor. Compile > Compile, Save, Send displays the window shown in figure
CRBasic Editor Program Send File Control Window . 176) before the program is
sent. To keep data, select Run Now, Run On Power-up, and Preserve data if no
table changed, then press Send Program.

Note To retain data, Preserve data if no table changed must be
selected whether or not a Campbell Scientific mass storage device or
memory card is connected.

TABLE 21: Program Send Options That Reset Memory'

Datalogger Support First Click Next Click
Software
LoggerNet > Connect > Program Send
PC400> Clock/Program > Send Program
PC200W > Clock/Program > Send Program
RTDAQ > Clock/Program > Send Program
DevConfig > Logger Control > Send Program

'Reset memory and set CRBasic program attributes to Run Always

FIGURE 39: CRBasic Editor Program Send File Control

window
Download Temperature.CR! -
Select the destination Run Options
cREm | 2 Run Now
Q) Preserve data if no table changed
Delete associated data tables
Run On Power-up
Compress File
Send Cancel Help Select Server...

7.7 Programming Resource Library

This library of notes and CRBasic code addresses a narrow selection of CR1000
applications.

7.7.1 Advanced Programming Techniques
7.7.1.1 Capturing Events

CRBasic example Capturing Events (p. 177) demonstrates programming to output
data to a data table at the occurrence of an event.

176

Section 7. Installation

CRBasic EXAMPLE 22: BeginProg / Scan / NextScan / EndProg Syntax

'"This program example demonstrates detection and recording of an event. An event has a
'"beginning and an end. This program records an event as occurring at the end of the event.
'"The event recorded is the transition of a delta temperature above 3 degrees. The event is
"recorded when the delta temperature drops back below 3 degrees.

'"The DataEvent instruction forces a record in data table Event each time an
'"event ends. Number of events is written to the reserved variable
"EventCount(1,1). In this program, EventCount(1,1) is recorded in the
'"OneMinute Table.

'"Note : the DataEvent instruction must be used within a data table with a
'more frequent record interval than the expected frequency of the event.

'Declare Variables
Public PTemp_C, AirTemp_C, DeltaT_C
Pub1lic EventCounter

'Declare Event Driven Data Table

DataTable(Event,True,1000)
DataEvent(0,DeltaT_C>=3,DeltaT_C<3,0)
Sample(1,PTemp_C, FP2)
Sample(1,AirTemp_C, FP2)
Sample(1,DeltaT_C, FP2)

EndTable

'Declare Time Driven Data Table
DataTable(OneMin,True,-1)
DatalInterval(0,1,Min,10)
Sample(1,EventCounter, FP2)
EndTable

BeginProg
Scan(1,Sec,1,0)

'"Wiring Panel Temperature
Pane1Temp (PTemp_C,_60Hz)

"Type T Thermocouple measurements:
TCDiff(AirTemp_C,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

'"Update Event Counter (uses special syntax Event.EventCount(1,1))
EventCounter = Event.EventCount(1,1)

"Call data table(s)
CallTabTle(Event)
CallTable(OneMin)

NextScan
EndProg

7.7.1.2 Conditional Output

CRBasic example Conditional Output . 178) demonstrates conditionally sending
data to a data table based on a trigger other than time.

177

178

Section 7. Installation

CRBasic EXAMPLE 23: Conditional Output

'also demonstrates use of StationName() and Units instructions.

'Declare Station Name (saved to Status table)
StationName(Delta_Temp_Station)

'Declare Variables
Public PTemp_C, AirTemp_C, DeltaT_C

'Declare Units

Units PTemp_C = deg C
Units AirTemp_C = deg C
Units DeltaT_C = deg C

'Declare Output Table -- Output Conditional on Delta T >=3
'Table stores data at the Scan rate (once per second) when condition is met
'because Datalnterval instruction is not included in the table declaration
'after the DataTable declaration.
DataTable(DeltaT,DeltaT_C >= 3,-1)

Sample(1,Status.StationName,String)

Sample(1,DeltaT_C,FP2)

Sample(1,PTemp_C,FP2)

Sample(1,AirTemp_C,FP2)
EndTable

BeginProg
Scan(1,Sec,1,0)
'Measure wiring panel temperature
PanelTemp (PTemp_C,_60Hz)

'Measure type T thermocouple
TCDiff(AirTemp_C,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

'"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

"Call data table(s)
CallTable(DeltaT)

NextScan
EndProg

'This program example demonstrates the conditional writing of data to a data table.

It

7.7.1.3 Groundwater Pump Test

CRBasic example Groundwater Pump Test (p. 178 shows how to do the following:

e Write multiple-interval data to the same data table

e Use program control instructions outside the Scan() / NextScan structure

e Execute conditional code

e Use multiple sequential scans, each with a scan count

Section 7. Installation

CRBasic EXAMPLE 24: Groundwater Pump Test

'"This program example demonstrates the use of multiple scans in a program by running a
'"groundwater pump test. Note that Scan() time units of Sec have been changed to mSec for
"this demonstration to allow the program to run its course in a short time. To use this
'program for an actual pump test, change the Scan() instruction mSec arguments to Sec. You
'will also need to put a level measurement in the Measurelevel subroutine.

'A groundwater pump test requires that water Tlevel be measured and recorded
'according to the following schedule:

'"Minutes into Test Data-Output Interval
! 0-10 10 seconds
! 10-30 30 seconds
! 30-100 60 seconds
! 100-300 120 seconds
" 300-1000 300 seconds
! 1000+ 600 seconds

'Declare Variables

PubTic PTemp

Public Batt_Volt

Public Level

PubTic LevelMeasureCount As Long
PubTic ScanCounter(6) As Long

'Declare Data Table

DataTable(LogTable,1,-1)
Minimum(1l,Batt_Volt,FP2,0,False)
Sample(1,PTemp,FP2)
Sample(1,Level,FP2)

EndTable

'Declare Level Measurement Subroutine

Sub Measurelevel
LevelMeasureCount = LevelMeasureCount + 1 'Included to show passes through sub-routine

"Level measurement instructions goes here
EndSub

'"Main Program
BeginProg

'Minute 0 to 10 of test: 10-second data-output interval
Scan(10,mSec,0,60) 'There are 60 10-second scans in 10 minutes
ScanCounter(l) = ScanCounter(l) + 1 'Included to show passes through this scan
Battery(Batt_volt)
Panel1Temp(PTemp,250)
Call MeasurelLevel

"Call Output Tables
CallTable LogTable
NextScan

179

Section 7. Installation

180

'Minute 10 to 30 of test: 30-second data-output interval
Scan(30,mSec,0,40) 'There are 40 30-second scans in 20 minutes
ScanCounter(2) = ScanCounter(2) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp (PTemp, 250)
Call MeasurelLevel

"Call Output Tables
CallTable LogTable
NextScan

'Minute 30 to 100 of test: 60-second data-output interval
Scan(60,mSec,0,70) 'There are 70 60-second scans in 70 minutes
ScanCounter(3) = ScanCounter(3) + 1 'Included to show passes through this scan
Battery(Batt_volt)
Panel1Temp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

'Minute 100 to 300 of test: 120-second data-output interval
Scan(120,mSec,0,200) 'There are 200 120-second scans in 10 minutes
ScanCounter(4) = ScanCounter(4) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call MeasurelLevel

'Call Output Tables
CallTable LogTable
NextScan

'Minute 300 to 1000 of test: 300-second data-output interval
Scan(300,mSec,0,140) 'There are 140 300-second scans in 700 minutes
ScanCounter(5) = ScanCounter(5) + 1 'Included to show passes through this scan
Battery(Batt_volt)
Panel1Temp(PTemp,250)
Call MeasurelLevel

"Call Output Tables
CallTable LogTable
NextScan

'Minute 1000+ of test: 600-second data-output interval

Scan(600,mSec,0,0) "At minute 1000, continue 600-second scans indefinitely
ScanCounter(6) = ScanCounter(6) + 1 'Included to show passes through this scan
Battery(Batt_volt)
Panel1Temp(PTemp,250)
Call MeasurelLevel

"Call Output Tables
CallTable LogTable
NextScan

EndProg

Section 7. Installation

7.7.1.4 Miscellaneous Features

CRBasic example Miscellaneous Program Features (p. 181 shows how to use

several CRBasic features: data type, units, names, event counters, flags,
data-output intervals, and control statements.

CRBasic EXAMPLE 25: Miscellaneous Program Features

'"This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR1000 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp,250) 'Instruction to make measurement
NextScan
EndProg

'A program can be (and should be!) extensively documented. Any text preceded by an
"apostrophe is ignored by the CRBasic compiler.

'"One thermocouple is measured twice using the wiring panel temperature as the reference
"temperature. The first measurement is reported in Degrees C, the second in Degrees F.
'"The first measurement is then converted from Degree C to Degrees F on the subsequent
"line, the result being placed in another variable. The difference between the panel
'reference temperature and the first measurement is calculated, the difference is then
'used to control the status of a program control flag. Program control then
"transitions into device control as the status of the flag is used to determine the
'state of a control port that controls an LED (light emitting diode).

'Battery voltage is measured and stored just because good programming practice dictates
"it be so.

'"Two data storage tables are created. Table “OneMin” is an interval driven table that
'stores data every minute as determined by the CR1000 clock. Table “Event” is an event

'"driven table that only stores data when certain conditions are met.

'Declare Public (viewable) Variables

PubTic Batt_Volt As FLOAT 'Declared as Float
Pub1lic PTemp_C '"Float by default
Public AirTemp_C '"Float by default
Public AirTemp_F '"Float by default
Public AirTemp2_F '"Float by default
Public DeltaT_C '"Float by default
PubTic HowMany '"Float by default
Public Counter As Long 'Declared as Long so counter does not have

"rounding error
Public SiteName As String * 16 'Declared as String with 16 chars for a
'site name (optional)

'Declare program control flags & terms. Set the words “High” and “Low” to equal “TRUE”
"and “FALSE” respectively

Public Flag(l) As Boolean

Const High = True

Const Low = False

181

182

Section 7. Installation

'Optional - Declare a Station Name into a Tlocation in the Status table.
StationName (CR1000_on_desk)

'"Optional -- Declare units. Units are not used in programming, but only appear in the
'data file header.

Units Batt_Volt = Volts

Units PTemp = deg C

Units AirTemp = deg C

Units AirTempF2 = deg F

Units DeltaT_C = deg C

'Declare an interval driven output table

DataTable(OneMin,True,-1) "Time driven data storage
DataInterval(0,1,Min,0) "Controls the interval
Average(1l,AirTemp_C,IEEE4,0) 'Stores temperature average in high

'resolution format
Maximum(1l,AirTemp_C,IEEE4,0,False) 'Stores temperature maximum in high
'resolution format
Minimum(1,AirTemp_C,FP2,0,False) 'Stores temperature minimum in Tow
'resolution format
Minimum(1l,Batt_Volt,FP2,0,False) 'Stores battery voltage minimum in Tow
'resolution format
Sample(1,Counter,Long) 'Stores counter in integer format
Sample(1,SiteName,String) 'Stores site name as a string
Sample(1,HowMany, FP2) 'Stores how many data events in Tow

'resolution format
EndTable

'Declare an event driven data output table

DataTable(Event,True,1000) 'Data table - event driven
DataInterval(0,5,Sec,10) "-AND 1interval driven
DataEvent(0,DeltaT_C >= 3,DeltaT_C < 3,0) "-AND event range driven
Maximum(1l,AirTemp_C,FP2,0,False) 'Stores temperature maximum in Tow

'resolution format
Minimum(1,AirTemp_C,FP2,0,False) 'Stores temperature minimum in Tow
'resolution format
SampTle(1,DeltaT_C, FP2) 'Stores temp difference sample in Tow
'resolution format
Sample(1,HowMany, FP2) 'Stores how many data events in low
'resolution format
EndTable
BeginProg

'A second way of naming a station is to load the name into a string variable. The is
'place here so it is executed only once, which saves a small amount of program
"execution time.

SiteName = "CR1000SiteName"

Section 7. Installation

Scan(1,Sec,1,0)
'Measurements

'"Battery Voltage
Battery(Batt_Volt)

'"Wiring Panel Temperature
Pane1Temp (PTemp_C,250)

"Type T Thermocouple measurements:
TCDiff(AirTemp_C,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)
TCDiff(AirTemp_F,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1.8,32)

"Convert from degree C to degree F
AirTemp2_F = AirTemp_C * 1.8 + 32

"Count the number of times through the program. This demonstrates the use of a
"Long integer variable in counters.
Counter = Counter + 1

"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

"Control the flag based on the difference in temperature. If DeltaT >= 3 then
'set Flag 1 high, otherwise set it Tow
If DeltaT_C >= 3 Then
Flag(1l) = high
Else
Flag(l) = Tow
EndIf

"Turn LED connected to Port 1 on when Flag 1 is high
If Flag(l) = high Then

PortSet(1,1) 'alternate syntax: PortSet(1,high)
Else

PortSet(1,0) 'alternate syntax: PortSet(1, Tow)
EndIf

"Count how many times the DataEvent “DeltaT_C>=3" has occurred. The
'"TableName.EventCount syntax is used to return the number of data storage events
"that have occurred for an event driven table. This example looks in the data
"table “Event”, which is declared above, and reports the event count. The (1,1)
'after EventCount just needs to be included.

HowMany = Event.EventCount(l,1)

'"Call Data Tables
CallTable(OneMin)
CallTabTle(Event)

NextScan
EndProg

7.7.1.5 PulseCountReset Instruction

PulseCountReset is used in rare instances to force the reset or zeroing of CR1000
pulse accumulators. See Measurements — Overview (p. 65).

183

Section 7. Installation

184

PulseCountReset is needed in applications wherein two separate PulseCount()
instructions in separate scans measure the same pulse input terminal. While the
compiler does not allow multiple PulseCount() instructions in the same scan to
measure the same terminal, multiple scans using the same terminal are allowed.
PulseCount() information is not maintained globally, but for each individual
instruction occurrence. So, if a program needs to alternate between fast and slow
scan times, two separate scans can be used with logic to jump between them. Ifa
PulseCount() is used in both scans, then a PulseCountReset is used prior to
entering each scan.

7.7.1.6 Scaling Array

CRBasic example Scaling Array (. 184 how to create and use a scaling array.
Several multipliers and offsets are entered at the beginning of the program and
then used by several measurement instructions throughout the program.

CRBasic EXAMPLE 26: Scaling Array

'This program example demonstrates the use of a scaling array. An array of three
"temperatures are measured. The first is expressed as degrees Celsius, the second as
'Kelvin, and the third as degrees Fahrenheit.

'Declare viewable variables
Public PTemp_C

PubTic Temp_C(3)

PubTic Count

'Declare scaling arrays as non-viewable variables
Dim Mult(3)
Dim Offset(3)

'Declare Output Table

DataTable(Min_5,True,-1)
DataInterval(0,5,Min,0)
Average(l,PTemp_C,FP2,0)
Maximum(1l,PTemp_C,FP2,0,0)
Minimum(1l,PTemp_C,FP2,0,0)
Average(3,Temp_C(Q ,FP2,0)
Minimum(3,Temp_C(1),FP2,0,0)
Maximum(3,Temp_C(1),FP2,0,0)

EndTable

'Begin Program

BeginProg
'"Load scaling array
Mult(l) = 1.0 : Offset(l) =0 'Scales 1st thermocouple temperature to Celsius
MuTt(2) = 1.0 : Offset(2) = 273.15 'Scales 2nd thermocouple temperature to Kelvin
Mult(3) = 1.8 : Offset(3) = 32 'Scales 3rd thermocouple temperature to Fahrenheit

Section 7. Installation

Scan(5,Sec,1,0)

'Measure reference temperature
Pane1Temp (PTemp_C,250)

'"Measure three thermocouples and scale each. Scaling factors from the scaling array
'are applied to each measurement because the syntax uses an argument of 3 in the Reps
'parameter of the TCDiff() instruction and scaling variable arrays as arguments in the
'"Multiplier and Offset parameters.

TCDiff(Temp_C(, 3, mv2_5C,1,TypeT,PTemp_C,True,0,250,Mult(),0ffset())

CallTabTle(Min_5)

NextScan
EndProg

7.7.1.7 Signatures: Example Programs

A program signature is a unique integer calculated from all characters in a given
set of code. When a character changes, the signature changes. Adding
signatures to stored data allows system administrators to track program changes
and data quality. The following program signatures are available.

e text signature
e binary-runtime signature

e executable-code signatures

7.7.1.7.1 Text Signature

The text signature is the most-widely used. It is calculated from all text in a
program including blank lines and comments. It is found in ProgSignature field
of the Status table. See CRBasic example Program Signatures (p. 185).

7.7.1.7.2 Binary Runtime Signature

The binary runtime signature is calculated only from program code — not from
comments or blank lines. See CRBasic example Program Signatures (p. 185).

7.7.1.7.3 Executable Code Signatures

Executable code signatures allow signatures to be calculated on discrete sections
of code that resides between the BeginProg and EndProg instructions. See
CRBasic example Program Signatures (p. 185).

185

186

Section 7. Installation

CRBasic EXAMPLE 27: Program Signatures

'This program example demonstrates how to request the program text signature (ProgSig =
Status.ProgSignature), and the

'binary run-time signature (RunSig = Status.RunSignature). It also calculates two
'executable code segment signatures (ExeSig(1l), ExeSig(2))

'Define Public Variables
Public RunSig, ProgSig, ExeSig(2),x,y

'Define Data Table
DataTable(Signatures,1,1000)
DataInterval(0,1,Day,10)
Sample(1,ProgSig, FP2)

Sample(1,RunSig,FP2)
Sample(2,ExeSig(),FP2)

EndTable
'"Program
BeginProg
ExeSig() = Signature "initialize executable code signature
"function
Scan(1,Sec,0,0)
ProgSig = Status.ProgSignature 'Set variable to Status table entry
""ProgSignature"
RunSig = Status.RunSignature 'Set variable to Status table entry
""RunSignature"
x = 24
ExeSig(1l) = Signature 'signature includes code since initial
'Signature instruction
y = 43
ExeSig(2) = Signature 'Signature includes all code since

'"ExeSig(1) = Signature
CallTable Signatures
NextScan

7.7.1.8 Use of Multiple Scans

CRBasic example Use of Multiple Scans (. 186) shows how to use of multiple
scans. Some applications require measurements or processing to occur at an
interval different from that of the main program scan. Secondary, or slow
sequence, scans are prefaced with the SlowSequence instruction.

Section 7. Installation

CRBasic EXAMPLE 28: Use of Multiple Scans

'"This program example demonstrates the use of multiple scans. Some applications require
'measurements or processing to occur at an interval different from that of the main
'program scan. Secondary scans are preceded with the SlowSequence instruction.

'Declare Public Variables
Public PTemp
PubTic Counterl

'Declare Data Table 1
DataTable(DataTablel,1,-1) 'DataTablel is event driven.
'The event is the scan.
Sample(1,PTemp, FP2)
Sample(1l, Counterl, fp2)
EndTable

'"Main Program
BeginProg 'Begin executable section of program
Scan(1,Sec,0,0) 'Begin main scan
PanelTemp(PTemp,250)
Counterl = Counterl + 1

CallTable DataTablel 'Call DataTablel
NextScan '"End main scan
SlowSequence 'Begin slow sequence

'Declare Public Variables for Secondary Scan (can be declared at head of program)
Public Batt_Volt
Pub1lic Counter2

'Declare Data Table
DataTable(DataTable2,1,-1) 'DataTable2 is event driven.
'The event is the scan.
Sample(1,Batt_Volt,FP2)
Sample(1,Counter2,FP2)
EndTable

Scan(5,Sec,0,0) 'Begin 1st secondary scan
Counter2 = Counter2 + 1
Battery(Batt_Volt)

CallTable DataTable2 'Call DataTable2
NextScan '"End slow sequence scan
EndProg '"End executable section of program

7.7.2 Data Input: Loading Large Data Sets

Large data sets like look-up tables or tag numbers, can be loaded in the CR1000
for use by the CRBasic program. Do this by using the Data, DataLong, and
Read instructions, as demonstrated in CRBasic example Loading Large Data Sets
. 187).

187

Section 7. Installation

CRBasic EXAMPLE 29: Loading Large Data Sets

188

'This program example demonstrates how to load a set of data into variables. Twenty values
'are loaded into two arrays: one declared As Float, one declared As Long. Individual Data
"Tines can be many more values long than shown (Timited only by maximum statement Tlength),
'and many more lines can be written. Thousands of values can be loaded in this way.

'Declare Float and Long variables. Can also be declared as Dim.
Public DataSetFloat(10) As Float

Pub1lic DataSetLong(10) As Long

Dim x

'"Write data set to CR1000 memory
Data 1.1,2.2,3.3,4.4,5.5

Data -1.1,-2.2,-3.3,-4.4,-5.5
DatalLong 1,2,3,4,5

DatalLong -1,-2,-3,-4,-5

'Declare data table

DataTable (DataSet_,True,-1)
Sample (10,DataSetFloat(),Float)
Sample (10,DataSetLong(),Long)

EndTable

BeginProg

'Assign Float data to variable array declared As Float
For x =1 To 10

Read DataSetFloat(x)
Next x

'Assign Long data to variable array declared As Long
For x =1 To 10
Read DataSetLong(x)
Next x
Scan(1,sec,0,1)

'"Write all data to final-data memory
CallTable DataSet_

NextScan

EndProg

7.7.3 Data Input: Array-Assigned Expression

CRBasic provides for the following operations on one dimension of a
multi-dimensional array:

e Initialize
e Transpose

e Copy

Section 7. Installation

e Mathematical
e Logical
Examples include:
e Process a variable array without use of For/Next

e Create boolean arrays based on comparisons with another array or a
scalar variable

e Copy a dimension to a new location

e Perform logical operations for each element in a dimension using scalar
or similarly located elements in different arrays and dimensions

Note Array-assigned expression notation is an alternative to For/Next
instructions that can be used by advanced programmers. It will probably
not reduce processing time significantly over the use of For/Next. To
reduce processing time, consider using the Move() instruction, which
requires even more intensive programming.

Syntax rules:
e Definitions:

o Least-significant dimension — the last or right-most figure in an
array index. For example, in the array array(a,b), b is the
least-significant dimension index. In the array array(a,b,c), c is
least significant.

o Negate — place a negative or minus sign (-) before the array index.
For example, when negating the least-significant dimension in

array(a,b,c), the notion is array(a,b,-c)

e Anempty set of parentheses designates an array-assigned expression.
For example, reference array() or array(a,b,c)().

e Only one dimension of the array is operated on at a time.

e To select the dimension to be operated on, negate the dimension of index
of interest.

e Operations will not cross dimensions. An operation begins at the
specified starting point and continues to one of the following:

o End of the dimension
o Where the dimension is specified by a negative

o Where the dimension is the least significant (default)

189

Section 7. Installation

e Ifindices are not specified, or none have been preceded with a minus
sign, the least significant dimension of the array is assumed.

e The offset into the dimension being accessed is given by (a,b,c).

e Ifthe array is referenced as array(), the starting point is array(1,1,1) and
the least significant dimension is accessed. For example, if the array is
declared as test(a,b,c), and subsequently referenced as test(), then the
starting point is fest(1,1,1) and dimension c is accessed.

CRBasic EXAMPLE 30: Array Assigned Expression: Sum Columns and Rows

'This example sums three rows and two columns of a 3x2 array.

'Source array image:
'1.23,2.34
'3.45,4.56
'5.67,6.78

Public Array(3,2) = {1.23,2.34,3.45,4.56,5.67,6.78} 'Toad values into source array
PubTic RowSum(3)
Pub1lic ColumnSum(2)

BeginProg
Scan(1,Sec,0,0)
'"For each row, add up the two columns
RowSum() = Array(-1,1D0O + Array(-1,2)Q
'"For each column, add up the three rows
ColumnSum() = Array(1,-1DQOQ + Array(2,-1DQOQ + Array(3,-DO
NextScan
EndProg

CRBasic EXAMPLE 31: Array Assigned Expression: Transpose an Array

'This example transposes a 3x2 array to a 2x3 array
'Source array image:

'1,2

'3,4

'5,6

'Destination array image (transpose of source):
'1,3,5
'2,4,6

'Dimension and initialize source array
Public A(3,2) = {1,2,3,4,5,6}

'Dimension destination array
PubTlic At(2,3)

'Delcare For/Next counter
Dim 1

190

Section 7. Installation

BeginProg
Scan (1,Sec,0,0)
For i = 1 To 2
'"For each column of the source array A(), copy the column into a row of the
'destination array At()
At(L,-DO = AC-1,1)0
Next i
NextScan
EndProg

CRBasic EXAMPLE 32: Array Assigned Expression: Comparison / Boolean Evaluation

"Example: Comparison / Boolean Evaluation

"Element-wise comparisons is performed through scalar expansion or by comparing each
'element in one array to a similarly located element in another array to generate a
"resultant boolean array to be used for decision making and control, such as

'an array input to a SDM-CDI16AC.

PubTic TempC(3) = {15.1234,20.5678,25.9876}
Pub1ic TempC_Rounded(3)

Public TempDiff(3)

Public TempC_Alarm(3) As Boolean

Public TempF_Thresh(3) = {55,60,80}

Public TempF_Alarm(3) As Boolean

BeginProg
Scan(1,Sec,0,0)

'element-wise comparison of each temperature in the array to a scalar value
'set corresponding alarm boolean value true if temperature exceeds 20 degC
TempC_Alarm() = TempC() > 20

"some, not all or most, instructions will accept this array notation to auto-index
"through the array

"round each temperature to the nearest tenth of a degree
TempC_Rounded() = Round(TempC(),1)

"element-wise subtraction

"each element in TempC_Rounded is subtracted from the similarly Tocated element inTempC
"calculate the difference between each TempC value and the rounded counterpart
TempDiff() = TempC() - TempC_Rounded()

'element-wise operations can be mixed with scalar expansion operations

'set corresponding alarm boolean value true if temperature, after being
"converted to degF, exceeds it's corresponding alarm threshold value in degF
TempF_Alarm() = (TempC(Q) * 1.8 + 32) > TempF_Thresh()

NextScan
EndProg

191

Section 7. Installation

CRBasic EXAMPLE 33: Array Assigned Expression: Fill Array Dimension

"Example: Fill Array Dimension

PubTic A(3)

PubTlic B(3,2)

Public C(4,3,2)

Public Da(3,2) = {1,1,1,1,1,1}

PubTlic Db(3,2)

Public DMultiplier(3) = {10,100,1000}
PubTlic DOffset(3) = {1,2,3}

BeginProg
Scan(1,Sec,0,0)

A = 1 'set all elements of 1D array or first dimension to 1

B(1,1)() = 100 'set B(1,1) and B(1,2) to 100
B(-2,1)() = 200 'set B(2,1) and B(3,1) to 200
B(-2,2)() = 300 'set B(2,2) and B(3,2) to 300
C1,-1,D0 AQ 'copy A(1), A(2), and A(3) into C(1,1,1), C(1,2,1), and C(1,3,1),
"respectively
C,-1,1D0O = AQ * 1.8 + 32 'scale and then copy A(1), A(2), and A(3) into C(2,1,1),
'C(2,2,1), and C(2,3,1), respectively

'scale the first column of Da by corresponding multiplier and offset
'copy the result into the first column of Db

"then set second column of Db to NAN

Db(-1,1D(= Da(-1,1)(* DMultiplier() + DOffset()

Db(-1,2)() = NAN

NextScan
EndProg

7.7.4 Data Output: Calculating Running Average

The AvgRun() instruction calculates a running average of a measurement or
calculated value. A running average (Des¥) is the average of the last N values
where N is the number of values, as expressed in the running-average equation:

>x
Dest = —i\; !

where X is the most recent value of the source variable and X1 is the previous
value (X is the oldest value included in the average, i.c., N-1 values back from
the most recent). NANS are ignored in the processing of AvgRun() unless all
values in the population are NAN.

AvgRun() uses high-precision math, so a 32-bit extension of the mantissa is saved
and used internally resulting in 56 bits of precision.

192

Section 7. Installation

Note This instruction should not normally be inserted within a For/Next
construct with the Source and Destination parameters indexed and Reps
setto 1. Doing so will perform a single running average, using the values
of the different elements of the array, instead of performing an
independent running average on each element of the array. The results
will be a running average of a spatial average of the various source array
elements.

A running average is a digital low-pass filter; its output is attenuated as a function
of frequency, and its output is delayed in time. Degree of attenuation and phase
shift (time delay) depend on the frequency of the input signal and the time length
(which is related to the number of points) of the running average.

The figure Running-Average Frequency Response (p. 195) is a graph of signal
attenuation plotted against signal frequency normalized to 1/(running average
duration). The signal is attenuated by a synchronizing filter with an order of 1
(simple averaging): Sin(nX) / (n1X), where X is the ratio of the input signal
frequency to the running-average frequency (running-average frequency =1 /
time length of the running average).
Example:

Scan period = 1 ms,

N value = 4 (number of points to average),

Running-average duration =4 ms

Running-average frequency = 1 / (running-average duration = 250 Hz)

Input-signal frequency = 100 Hz

Input frequency to running average (normalized frequency) = 100 /250 = 0.4

Sin(0.4m) / (0.4m) = 0.757 (or read from figure Running-Average Frequency
Response (p. 1935), where the X axis is 0.4)

For a 100 Hz input signal with an amplitude of 10 V peak-to-peak, a running
average outputs a 100 Hz signal with an amplitude of 7.57 V peak-to-peak.
There is also a phase shift, or delay, in the AvgRun() output. The formula for

calculating the delay, in number of samples, is:

Delay in samples = (N-1)/2

Note N =number of points in running average

To calculate the delay in time, multiply the result from the above equation by the
period at which the running average is executed (usually the scan period):

Delay in time = (scan period) * (N-1) /2

193

194

Section 7. Installation

For the example above, the delay is:
Delay intime=(1 ms)*(4—1)/2=1.5ms
Example:

An accelerometer was tested while mounted on a beam. The test had the
following characteristics:

o Accelerometer resonant frequency = 36 Hz

o Measurement period =2 ms

o Running average duration = 20 ms (frequency of 50 Hz)
Normalized resonant frequency was calculated as follows:

36 Hz / 50 Hz = 0.72
SIN(C0.72m) / (0.72m) = 0.34.

So, the recorded amplitude was about 1/3 of the input-signal amplitude. A
CRBasic program was written with variables Accel2 and Accel2RA. The
raw measurement was stored in Accel2. Accel2RA held the result of
performing a running average on the Accel2. Both values were stored at a
rate of 500 Hz. Figure Running-Average Signal Attenuation (p. 195) shows the
two variables plotted to illustrate the attenuation. The running-average value
has the lower amplitude.

The resultant delay, Dy, is calculated as follows:

D. = (scan rate) - (N-1)/2 = 2 ms (10-1)/2
=9 ms

D: is about 1/3 of the input-signal period.

Section 7. Installation

FIGURE 40: Running-Average Frequency Response

FREQUENCY RESPONSE OF SIGNAL
PROCESSED THROUGH A RUNNING AVERAGE

1.0

08 \

\

: \
[2]
=z
S
o
é 06
o \ |_—1Sinc Filter Order 1
74 \ //

04 o

0.2 \ TN

TN PRy

\/

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
FREQUENCY
NORMALIZED TO (1/(RUNNING AVERAGE DURATION))

AT TN TN

FIGURE 41: Running-Average Signal Attenuation

|— Accel2 Accel2RA |

YY)
LAY

\ A AL D0 ADNBAAAAAA
19V AVAVA VAT VAV A ATV R AT A

1
—_
[
.
p——
—_—
= ——
—
— —
= —
——
—

15:45:40.000 15:45:41.000

7.7.5 Data Output: Two Intervals in One Data Table

CRBasic EXAMPLE 34: Two Data-Output Intervals in One Data Table

'"This program example demonstrates the use of two time intervals in a data table. One time
"interval in a data table is the norm, but some applications require two.

r

'Allocate memory to a data table with two time intervals as is done with a conditional table,
"that is, rather than auto-allocate, set a fixed number of records.

195

Section 7. Installation

'Declare Public Variables
Public PTemp, batt_volt, airtempC, deltaT
Public int_fast As Boolean
PubTic int_sTow As Boolean
Public counter(4) As Long

'Declare Data Table
'Table is output on one of two intervals, depending on condition.
'Note the parenthesis around the TriggerVariable AND statements.

DataTable(TwoInt, (int_fast AND TimeIntoInterval(0,5,Sec)) OR (int_sTow AND _
TimeIntoInterval(0,15,sec)),15000)
Minimum(1l,batt_volt,FP2,0,False)
Sample(1,PTemp,FP2)
Maximum(1l,counter(1l),Long,False,False)
Minimum(1l, counter(l),Long,False,False)
Maximum(1l,deltaT,FP2,False,False)
Minimum(1l,deltaT,FP2,False,False)
Average(l,deltaT,IEEE4,false)
EndTable

'Main Program
BeginProg
Scan(1,Sec,0,0)

PanelTemp (PTemp, 250)
Battery(Batt_volt)
counter(l) = counter(l) + 1

'Measure thermocouple

TCDi ff(AirTempC,1,mv2_5C,1,TypeT,PTemp,True,0,250,1.0,0)
'calculate the difference in air temperature and panel temperature
deltaT = airtempC - PTemp

'"When the difference in air temperatures is >=3 turn LED on and trigger the faster of
"the two data-table intervals.
If deltaT >= 3 Then
PortSet(4,true)
int_fast = true
int_slow = false
Else
PortSet(4,false)
int_fast = false
int_slow = true
EndIf

"Call output tables
CallTable TwoInt

NextScan
EndProg

196

Section 7. Installation

7.7.6 Data Output: Triggers and Omitting Samples

TrigVar is the third parameter in the DataTable() instruction. It controls whether
or not a data record is written to final memory. TrigVar control is subject to other
conditional instructions such as the DataIlnterval() and DataEvent() instructions.

DisableVar is the last parameter in most output processing instructions, such as
Average(), Maximum(), Minimum(), etc. It controls whether or not a particular
measurement or value is included in the affected output-processing function.

For individual measurements to affect summary data, output processing
instructions such as Average() must be executed whenever the data table is called
from the program — normally once each scan. For example, for an average to be
calculated for the hour, each measurement must be added to a total over the hour.
This accumulation of data is not affected by TrigVar. TrigVar controls only the
moment when the final calculation is performed and the processed data (the
average) are written to the data table. For this summary moment to occur,
TrigVar and all other conditions (such as Datalnterval() and DataEvent()) must
be true. Expressed another way, when TrigVar is false, output processing
instructions (for example, Average()) perform intermediate processing but not the
final process, and a new record will not be created.

Note In many applications, output records are solely interval based and
TrigVar is always set to TRUE (-1). In such applications, Datalnterval()
is the sole specifier of the output trigger condition.

Figure Data from TrigVar Program (p. 197) shows data produced by CRBasic
example Using TrigVar to Trigger Data Storage (p. 197), which uses TrigVar rather
than Datalnterval() to trigger data storage.

FIGURE 42: Data from TrigVar Program

C:\Campbellsci\PC200W\CR W4 _Test.dat [C=E
File View Help
BE TR Allarrays - By BEE RE @
TIMESTAMP RECORD counter counter Avg counter_Tot

"2009-09-29 10:18: 2 1.75 7 4
"2009-09-29 10:18 3 3 3
"2009-09-29 10:18:40°" 2 1.75 7
"2009-09-29 10:18: 3 3 3
"2009-09-29 10:18: 2 1.75 7
"2009-09-29 10:18: 3 3 3
"2009-09-29 10:18: 2 21.75 7
"2009-09-29 10:18: 3 3 3
"2009-09-29 10: 2 1.75 7
"2009-09-29 10: 3 3 3
"2009-09-29 10: 2 1.75 7
"2009-09-29 10: 3 3 3
"2009-09-29 10: 2 .95 7
"2009-09-29 10: 3 3 3
"2009-09-29 10: 2 1.75 &
"2009-09-29 10: 3 3 3
"2009-09-29 10: 2 1.75 7
"2009-09-29 10: 3 3 3™

o Gl

L

197

Section 7. Installation

CRBasic EXAMPLE 35: Using TrigVar to Trigger Data Storage

'"This program example demonstrates the use of the TrigVar parameter in the DataTable()
"instruction to trigger data storage. In this example, the variable Counter is
"incremented by 1 at each scan. The data table, which includes the Sample(), Average(), and
'"Totalize() instructions, is called every scan. Data are stored when TrigVar is true, and
'"TrigVar is True when Counter = 2 or Counter = 3. Data stored are the sample, average,
'and total of the variable Counter, which is equal to 0, 1, 2, 3, or 4 when the data table
"is called.

PubTic Counter

DataTable(Test,Counter=2 or Counter=3,100)
Sample(1,Counter,FP2)
Average(1l,Counter,FP2,False)
Totalize(1l,Counter,FP2,False)

EndTable

BeginProg
Scan(1,Sec,0,0)
Counter = Counter + 1
If Counter = 5 Then
Counter = 0
EndIf
CallTable Test
NextScan
EndProg

7.7.7 Data Output: Using Data Type Bool8

Variables used exclusively to store either True or False are usually declared As
BOOLEAN. When recorded in final-data memory, the state of Boolean
variables is typically stored in BOOLEAN data type. BOOLEAN data type uses
a four-byte integer format. To conserve final-data memory or comms band, you
can use the BOOLS data type. A BOOLS is a one-byte value that holds eight bits
of information (eight states with one bit per state). To store the same information
using a 32 bit BOOLEAN data type, 256 bits are required (8 states * 32 bits per
state).

When programming with BOOLS data type, repetitions in the output processing
DataTable() instruction must be divisible by two, since an odd number of bytes
cannot be stored. Also note that when the CR1000 converts a LONG or FLOAT
data type to BOOLS, only the least significant eight bits of the binary equivalent
are used, i.e., only the binary representation of the decimal integer modulo divide
(. 5320256 is used.

Example:

Given: LONG integer 5435
Find: BOOL8 representation of 5435
Solution:
5435 / 256 = 21.2304687
0.2304687 * 256 = 59
Binary representation of 59 = 00111011 (CR1000 stores these
bits in reverse order)

198

Section 7. Installation

When datalogger support software (p. 89) retrieves the BOOLS value, it splits it
apart into eight fields of -1 or 0 when storing to an ASCII file. Consequently,
more memory is required for the ASCII file, but CR1000 memory is conserved.
The compact BOOLS data type also uses less comms band width when
transmitted.

CRBasic example Bool8 and Bit Shift Operators (p. 200 programs the CR1000 to
monitor the state of 32 "alarms" as a tutorial exercise. The alarms are toggled by
manually entering zero or non-zero (e.g., 0 or 1) in each public variable
representing an alarm as shown in figure Alarms Toggled in Bit Shift Example .
199. Samples of the four public variables FlagsBool8(1), FlagsBool8(2),
FlagsBool8(3), and FlagsBool8(4) are stored in data table Bool8Data as four
one-byte values. However, as shown in figure Bool8 Data from Bit Shift
Example (Numeric Monitor) p. 200, when viewing the data table in a numeric
monitor (p. 533), data are conveniently translated into 32 values of True or False.

In addition, as shown in figure Bool8 Data from Bit Shift Example (PC Data File)
(- 200, when datalogger support software (p. 89) stores the data in an ASCII file, it is
stored as 32 columns of either -1 or 0, each column representing the state of an
alarm. You can use variable aliasing (p. 143 in the CRBasic program to make the
data more understandable.

FIGURE 43: Alarms Toggled in Bit Shift Example

[CR1000 Numeric Display TuReal e Monorng o]
Alarm(1) 0/Alarm(19) 0 |
Add... Alarm(2) 1/Alarm(20) 0: |
Alarm(3) 0 Alarm(21) 1
Alarm(4) 0/Alarm(22) 0
Alarm(5) 0/Alarm(23) 1|
Alarm(6) 0/Alarm(24) 1
Alarm(7) 0 Alarm(25) ol
Alarm(8) 0/Alarm(26) 0|
1/Alarm(27) 0
Alarm(10) 0/Alarm(28) 1
Alarm(11) 1/Alarm(29) 1
Alarm(12) 1/Alarm(30) 0
Alarm(13) 0/Alarm(31) 0
Alarm(14) 0/Alarm(32) 1
Alarm(15) 0
Alarm(16) 1
Alarm(17) 1
| Alarm(18) 1
|
h Update Interval 00 m 01 s 000 ms -
;L' = = e = ——— = —

199

200

Section 7.

Installation

FIGURE 44: Bool8 Data from Bit Shift Example (Numeric Monitor)

IS CR¥ Numeric Display T. Real T.mme Menitonng (Con (E=AaE ™%
FlagsBool8(1) false|FlagsBool8~2(5 false|
Add._. FlagsBool8(2) false|FlagsBool8~2(6 false|
FlagsBool8(3) false FlagsBool8~2(7, true D
FlagsBool8(4) false|FlagsBool8~2(8 false|
FlagsBool8(5) false FlagsBool8~2(9 true |
FlagsBool8(6) false FlagsBool8~2(1 true|
FlagsBool8(7) false FlagsBool8~2(1 false |
FlagsBool8(8) false|FlagsBool8~2(1 false|
FlagsBool8(9) true|FlagsBool8~2(1 false|
FlagsBool8(10) false|FlagsBool8~2(1 true|
FlagsBool8(11) true|FlagsBool8~2(1 true |
FlagsBool8(12) true|FlagsBool8~2(1 false
FlagsBool8(13) false FlagsBool8~2(1 false|
Stop FlagsBool8(14) false FlagsBool8~2(1 true|
FlagsBool8(15) false
FlagsBool8(16) true
FlagsBool8~2(3, true
| FlagsBool8~2(4 true
Update Interval [00m 015 000 ms s
| = —)|

FIGURE 45: Bool8 Data from Bit Shift Example (PC Data File)

Fi
BECRH [A | @ @y BEE BE 5
RE FlagsBool8(1) FlagsBool8(2) FlagsBool8(3) FlagsBool8(4) FlagsBool€(S) FlagsBool8(6) Fla
2009-12-08 11:46:32 0 =] 0 o =3 ﬁ
2009-12-08 11:46:33 0 0 -1 0 -1 -1
"2009-12-08 11 0 0 b | 0 by -1
"2009-12-08 11:46:35 0 0 e 0 o =5
2009-12-08 11:46:36' 0 0 e | 0 b L ¢
2009-12-08 11 0 1] -1 0 -1 -1
2009-12-08 11 0 0 -1 0 -1 -1
2009-12-08 11 0 0 o 0 =& v
"2009-12-08 11 0 0 | 0 e 7 L *
"2009-12-08 11 0 0] 0 o ! -3
2009-12-08 11 0 0 b | 0 . g
2009-12-08 11 0 0 R 0 =1 s !
2009-12-08 11 0 0 -1 0 -1 -1
2009-12-08 11 0 0 -1 0 -1 -1
"2009-12-08 11:46: 0 1] -1 0 -1 -1
"2009-12-08 11:46: 0 0 % 0 =% e
"2009-12-08 11 0 0 3 0 =3 2
"2009-12-08 11 0 0 -3 0 w} -3
"2009-12-08 11 0 0 =3 0 =k i3
"2009-12-08 11 0 0 -1 0 -1 -1
2009-12-08 11 0 0 -1 0 b -1
2009-12-08 11 0 0 =3 0 “i . |
2009-12-08 11 0 0 =2 0 e -1
"2009-12-08 11 0 0 L | 0 wk by ¢
"2009-12-08 11 0 0 oy 0 o |
2009-12-08 11:46:5 0 0 5 0 3 =%
2009-12-08 11:46:5: 0 0 -1 0 -1 -1
2009-12-08 11 0 0 -1 0 -1 -1
2009-12-08 11 0 0 . | 0 o | “
"2009-12-08 11 0 0 o] 0 oy] -3
"2009-12-08 11:47:02 0 0 | 0 3 =X
"2009-12-08 11:47:03 0 0 5 0 =2 -
"2009-12-08 11:47:04 0 0 - 0 o | .
"2009-12-08 11:47:05 0 1] -1 0 -1 -1
-
4 3

Section 7. Installation

CRBasic EXAMPLE 36: Bool8 and a Bit Shift Operator

'"This program example demonstrates the use of the Bool8 data type and the ">>" bit-shift
"operator.

PubTic Alarm(32)
Public Flags As Long
Public FlagsBoo18(4) As Long

DataTable(Bool18Data,True,-1)
DataInterval(0,1,Sec,10)
'store bits 1 through 16 in columns 1 through 16 of data file
Sample(2,FlagsBoo18(1),Boo18)
'store bits 17 through 32 in columns 17 through 32 of data file
Sample(2,FlagsBoo18(3),Boo18)

EndTable

BeginProg
Scan(1,Sec,3,0)

'Reset all bits each pass before setting bits selectively
Flags = &h0

'Set bits selectively. Hex is used to save space.

"Logical OR bitwise comparison

'"If bit 1in OR bit 1in The result
'"Flags Is Bin/Hex Is Is

! 0 0 0

! 0 1 1

! 1 0 1

! 1 1 1

'Binary equivalent of Hex:

If Alarm(l) Then Flags = Flags OR &hl ! &bl
If Alarm(2) Then Flags = Flags OR &h2 ! &b10
If Alarm(3) Then Flags = Flags OR &h4 ! &b100
If Alarm(4) Then Flags = Flags OR &h8 ! &b1000
If Alarm(5) Then Flags = Flags OR &h1l0 ! &b10000
If Alarm(6) Then Flags = Flags OR &h20 ! &b100000
If Alarm(7) Then Flags = Flags OR &h40 ! &b1000000
If Alarm(8) Then Flags = Flags OR &h80 ! &b10000000
If Alarm(9) Then Flags = Flags OR &h1l00 ! &b100000000
If Alarm(10) Then Flags = Flags OR &h200 ! &b1000000000
If Alarm(11l) Then Flags = Flags OR &h400 ! &b10000000000
If Alarm(12) Then Flags = Flags OR &h800 ! &b100000000000
If Alarm(13) Then Flags = Flags OR &h1000 ! &b1000000000000
If Alarm(14) Then Flags = Flags OR &h2000 ! &b10000000000000
If Alarm(15) Then Flags = Flags OR &h4000 ! &b100000000000000
If Alarm(16) Then Flags = Flags OR &h8000 ! &b1000000000000000
If Alarm(17) Then Flags = Flags OR &h10000 ! &b10000000000000000
If Alarm(18) Then Flags = Flags OR &h20000 ! &b100000000000000000
If Alarm(19) Then Flags = Flags OR &h40000 ! &b1000000000000000000
If Alarm(20) Then Flags = Flags OR &h80000 ! &b10000000000000000000
If Alarm(21) Then Flags = Flags OR &h100000 ! &b100000000000000000000
If Alarm(22) Then Flags = Flags OR &h200000 ! &b1000000000000000000000
If Alarm(23) Then Flags = Flags OR &h400000 ! &b10000000000000000000000
If Alarm(24) Then Flags = Flags OR &h800000 ! &b100000000000000000000000
If Alarm(25) Then Flags = Flags OR &h1000000 ' &b1000000000000000000000000

201

Section 7. Installation

If Alarm(26)
If Alarm(27)
If Alarm(28)
If Alarm(29)
If Alarm(30)
If Alarm(31)
If Alarm(32)

'Note &HFF =
'data type),

"to Bool8.

"Logical AND

Then Flags = Flags OR &h2000000 ! &b10000000000000000000000000
Then Flags = Flags OR &h4000000 ! &b100000000000000000000000000
Then Flags = Flags OR &h8000000 ! &b1000000000000000000000000000
Then Flags = Flags OR &10000000 ' &b10000000000000000000000000000

Then Flags = Flags OR &20000000 ' &b100000000000000000000000000000
Then Flags = Flags OR &h40000000 ' &b1000000000000000000000000000000
Then Flags = Flags OR &h80000000 '&b10000000000000000000000000000000

&B11111111. By shifting at 8 bit increments along 32-bit 'Flags' (Long
the first 8 bits in the four Longs FlagsBool8(4) are Tloaded with alarm

'states. Only the first 8 bits of each Long 'FlagsBool8' are stored when converted

bitwise comparison

'"If bit in OR bit 1in The result
'Flags Is Bin/Hex Is Is
! 0 0 0
! 0 1 0
! 1 0 0
! 1 1 1
FlagsBoo18(1) = Flags AND &HFF 'AND 1st 8 bits of "Flags" & 11111111
FlagsBoo18(2) = (Flags >> 8) AND &HFF '"AND 2nd 8 bits of "Flags" & 11111111
FlagsBoo18(3) = (Flags >> 16) AND &HFF '"AND 3rd 8 bits of "Flags" & 11111111
FlagsBoo18(4) = (Flags >> 24) AND &HFF '"AND 4th 8 bits of "Flags" & 11111111
CallTable(Bool8Data)
NextScan
EndProg

7.7.8 Data Output: Using Data Type NSEC

Data of NSEC type reside only in final-data memory. A datum of NSEC consists
of eight bytes — four bytes of seconds since 1990 and four bytes of nanoseconds
into the second. Nsec is declared in the Data Type parameter in final storage
output processing instructions. It is used in the following applications:

e Placing a time stamp in a second position in a record.

e Accessing a time stamp from a data table and subsequently storing it as
part of a larger data table. Maximum(), Minimum(), and FileTime()
instructions produce a time stamp that may be accessed from the
program after being written to a data table. The time of other events,
such as alarms, can be stored using the RealTime() instruction.

e Accessing and storing a time stamp from another datalogger in a PakBus
network.

7.7.8.1 NSEC Options

202

NSEC is used in a CRBasic program one of the following ways. In all cases, the
time variable is only sampled with a Sample() instruction, Reps = 1.

Section 7. Installation

1.

Time variable is declared As Long. Sample() instruction assumes the time
variable holds seconds since 1990 and microseconds into the second is 0.

The value stored in final-data memory is a standard time stamp. See CRBasic
example NSEC — One Element Time Array (p. 203).

Time-variable array dimensioned to (2) and As Long — Sample() instruction
assumes the first time variable array element holds seconds since 1990 and the
second element holds microseconds into the second. See CRBasic example
NSEC — Two Element Time Array (p. 203).

Time-variable array dimensioned to (7) or (9) and As Long or As Float —
Sample() instruction assumes data are stored in the variable array in the
sequence year, month, day of year, hour, minutes, seconds, and milliseconds.
See CRBasic example NSEC — Seven and Nine Element Time Arrays (p. 204).

CRBasic example NSEC — Convert Time Stamp to Universal Time (p. 203) shows
one of several practical uses of the NSEC data type.

CRBasic EXAMPLE 37: NSEC — One Element Time Array

'"This program example demonstrates the use of NSEC data type to determine seconds since
'00:00:00 1 January 1990. A time stamp is retrieved into variable TimeVar(1l) as seconds
'since 00:00:00 1 January 1990. Because the variable is dimensioned to 1, NSEC assumes

"the value = seconds since 00:00:00 1 January 1990.

'Declarations
Public PTemp
PubTlic TimeVar(1l) As Long

DataTable(FirstTable,True,-1)
DataInterval(0,1,Sec,10)
Sample(1,PTemp,FP2)

EndTable

DataTable(SecondTable,True,-1)
DataInterval(0,5,Sec,10)
Sample(1,TimeVar,Nsec)

EndTable

"Program
BeginProg
Scan(1,Sec,0,0)
TimeVar = FirstTable.TimeStamp
CallTable FirstTable
CallTable SecondTable
NextScan
EndProg

203

Section 7. Installation

CRBasic EXAMPLE 38: NSEC — Two Element Time Array

'"This program example demonstrates how to determine seconds since 00:00:00 1 January 1990,
'and microseconds into the last second. This is done by retrieving variable TimeStamp into
'variables TimeOfMaxVar (1) and TimeOfMaxVar(2). Because the variable TimeOfMaxVar() 1is
'"dimensioned to 2, NSEC assumes the following:

" 1) TimeOfMaxVar(1l) = seconds since 00:00:00 1 January 1990, and

" 2) TimeOfMaxVar(2) = microseconds into a second.

'Declarations
PubTic PTempC
PubTic MaxVar
Public TimeOfMaxVar(2) As Long

DataTable(FirstTable,True,-1)
DataInterval(0,1,Min,10)
Maximum(1l,PTempC,FP2,False,True)
EndTable

DataTable(SecondTable,True,-1)
DataInterval(0,5,Min,10)
Sample(1,MaxVar,FP2)
Sample(1,TimeOfMaxVar,Nsec)
EndTable

'"Program
BeginProg
Scan(1,Sec,0,0)

Panel1Temp(PTempC,250)

MaxVar = FirstTable.PTempC_Max
TimeOfMaxVar = FirstTable.PTempC_TMx
CallTable FirstTable

CallTable SecondTable

NextScan
EndProg

CRBasic EXAMPLE 39: NSEC — Seven and Nine Element Time Arrays

'This program example demonstrates the use of NSEC data type to sample a time stamp into
"final-data memory using an array dimensioned to 7 or 9.

'A time stamp is retrieved into variable rTime(1) through rTime(9) as year, month, day,
"hour, minutes, seconds, and microseconds using the RealTime() instruction. The first
'seven time values are copied to variable rTime2(1) through rTime2(7). Because the
'variables are dimensioned to 7 or greater, NSEC assumes the first seven time factors
"in the arrays are year, month, day, hour, minutes, seconds, and microseconds.

'Declarations

Public rTime(9) As Long "(or Float)
PubTic rTime2(7) As Long "(or Float)
Dim x

DataTable(SecondTable,True,-1)
DataInterval(0,5,Sec,10)
Sample (1, rTime,NSEC)
Sample(1,rTime2,NSEC)

EndTable

204

Section 7. Installation

"Program
BeginProg
Scan(1,Sec,0,0)

RealTime(rTime)

For x =1 To 7
rTime2(x) = rTime(x)

Next

CallTable SecondTable

NextScan
EndProg

CRBasic EXAMPLE 40: NSEC —Convert Timestamp to Universal Time

'"This program example demonstrates the use of NSEC data type to convert a data time stamp
"to universal time.

"Application: the CR1000 needs to display Universal Time (UT) in human readable
'string forms. The CR1000 can calculate UT by adding the appropriate offset to a
'standard time stamp. Adding offsets requires the time stamp be converted to numeric
"form, the offset applied, then the new time be converted back to string forms.

'"These are accomplished by:

" 1) reading Public.TimeStamp into a LONG numeric variable.

" 2) store it into a type NSEC datum in final-data memory.

" 3) sample it back into string form using the TableName.FieldName notation.

'Declarations
Public UTTime(3) As String * 30

Dim TimeLong As Long
Const UTC_Offset = -7 * 3600 '-7 hours offset (as seconds)

DataTable(TimeTable, true,1)
Sample(1,TimelLong,Nsec)
EndTable

"Program
BeginProg
Scan(1,Sec,0,0)

'1) Read Public.TimeStamp into a LONG numeric variable. Note that TimeStamp is a
! system variable, so it is not declared.
TimeLong = Public.TimeStamp(1,1) + UTC_Offset

'2) Store it into a type NSEC datum in final-data memory.
CallTable(TimeTable)

'3) sample time to three string forms using the TableName.FieldName notation.
"Form 1: "mm/dd/yyyy hr:mm:ss

UTTime(1l) = TimeTable.TimelLong(1,1)

"Form 2: "dd/mm/yyyy hr:mm:ss

UTTime(2) = TimeTable.TimeLong(3,1)

"Form 3: "ccyy-mm-dd hr:mm:ss (ISO 8601 Int'l Date)

UTTime(3) = TimeTable.TimelLong(4,1)

NextScan
EndProg

205

Section 7. Installation

206

7.7.9 Data Output: Wind Vector

The WindVector() instruction processes wind-speed and direction measurements
to calculate mean speed, mean vector magnitude, and mean vector direction over a
data-storage interval. Measurements from polar (wind speed and direction) or
orthogonal (fixed East and North propellers) sensors are supported. Vector
direction and standard deviation of vector direction can be calculated weighted or
unweighted for wind speed.

7.7.9.1 OutputOpt Parameters

In the CR1000 WindVector() instruction, the QueputOpt parameter defines the
processed data that are stored. All output options result in an array of values, the
elements of which have _WVe¢(n) as a suffix, where n is the element number. The
array uses the name of the Speed/East variable as its base. See table
WindVector() OutputOpt Options (p. 206).

TABLE 22: WindVector() OutputOpt Options

Option Description (WVc() is the Output Array)

WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (©1)

0 WVc(3): Standard deviation of wind direction o(®1). Standard
deviation is calculated using the Yamartino algorithm. This
option complies with EPA guidelines for use with straight-line
Gaussian dispersion models to model plume transport.

WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (®1)

WVc(1): Mean horizontal wind speed (S)

WVc(2): Resultant mean horizontal wind speed (U)

WVc(3): Resultant mean wind direction (®u)

WVc(4): Standard deviation of wind direction o(®u). This
standard deviation is calculated using Campbell Scientific's wind
speed weighted algorithm. Use of the resultant mean horizontal
wind direction is not recommended for straight-line Gaussian
dispersion models, but may be used to model transport direction
in a variable-trajectory model.

3 WVe(1): Unit vector mean wind direction (®1)

WVc(1): Unit vector mean wind direction (®1)

WVc(2): Standard deviation of wind direction o(®u). This
standard deviation is calculated using Campbell Scientific's wind
4 speed weighted algorithm. Use of the resultant mean horizontal
wind direction is not recommended for straight-line Gaussian
dispersion models, but may be used to model transport direction
in a variable-trajectory model.

Section 7. Installation

7.7.9.2 Wind Vector Processing

WindVector() uses a zero-wind-speed measurement when processing scalar wind
speed only. Because vectors require magnitude and direction, measurements at
zero wind speed are not used in vector speed or direction calculations. This
means, for example, that manually-computed hourly vector directions from 15
minute vector directions will not agree with CR1000-computed hourly vector
directions. Correct manual calculation of hourly vector direction from 15 minute
vector directions requires proper weighting of the 15 minute vector directions by
the number of valid (non-zero wind speed) wind direction samples.

Note Cup anemometers typically have a mechanical offset which is
added to each measurement. A numeric offset is usually encoded in the
CRBasic program to compensate for the mechanical offset. When this is
done, a measurement will equal the offset only when wind speed is zero;
consequently, additional code is often included to zero the measurement
when it equals the offset so that WindVector() can reject measurements
when wind speed is zero.

Standard deviation can be processed one of two ways: 1) using every sample
taken during the data storage interval (enter 0 for the Subinterval parameter), or
2) by averaging standard deviations processed from shorter sub-intervals of the
data-storage interval. Averaging sub-interval standard deviations minimizes the
effects of meander under light wind conditions, and it provides more complete
information for periods of transition (see EPA publication "On-site
Meteorological Program Guidance for Regulatory Modeling Applications").

Standard deviation of horizontal wind fluctuations from sub-intervals is calculated
as follows:

c(®) = [((6©))’ + (6@, ... + (6O’ / M]"”

c(®)

CO, ... cOy are sub-interval standard deviations. A sub-interval is
specified as a number of scans. The number of scans for a sub-interval is given
by:

where: is the standard deviation over the data-storage interval, and

Desired sub-interval (secs) / scan rate (secs)

For example, if the scan rate is 1 second and the data-output interval is 60
minutes, the standard deviation is calculated from all 3600 scans when the
sub-interval is 0. With a sub-interval of 900 scans (15 minutes) the standard
deviation is the root-mean-square average of the four sub-interval standard
deviations. The last sub-interval is weighted if it does not contain the specified
number of scans.

The EPA recommends hourly standard deviation of horizontal wind direction
(sigma theta) be computed from four fifteen-minute sub-intervals.

7.7.9.2.1 Measured Raw Data

e S horizontal wind speed

207

208

Section 7.

Installation

e O;: horizontal wind direction
e Ue;: east-west component of wind
e Un;: north-south component of wind

e N: number of samples

7.7.9.2.2 Calculations

Input Sample Vectors

FIGURE 46: Input Sample Vectors

North

AV

S1 S3

Sz East
\/

In figure Input Sample Vectors (p. 208), the short, head-to-tail vectors are the input
sample vectors described by s; and ®;, the sample speed and direction, or by Ue;
and Un;, the east and north components of the sample vector. At the end of data
storage interval T, the sum of the sample vectors is described by a vector of
magnitude U and direction ®u. If the input sample interval is t, the number of
samples in data storage interval T'is N = T'/t. The mean vector magnitude is U =
U/N.

Scalar mean horizontal wind speed, S:
S=Cs)/N

where in the case of orthogonal sensors:
S, = (Ue:i2 + Uniz)”2

Unit vector mean wind direction,

®, = arctan (Ux / Uy)

Section 7.

Installation

Mean Wind Vector

where
Ux =(Q.sin ®) /N
Uy =C.cos ®) /N
or, in the case of orthogonal sensors
Ux = (3 (Ue, / U) /N
Uy = C(Un, / U) /N
where
U, = (Ue’ + UnH)"
Standard deviation of wind direction (Yamartino algorithm)
c(®,) = arcsin(e)[1 + 0.1547¢%]
where,
e =[1-((Ux)"+ Uy)]"”

and Ux and Uy are as defined above.

Resultant mean horizontal wind speed, U:

1/2

U= (Ue2 + Unz)

FIGURE 47: Mean Wind-Vector Graph

U, u

209

Section 7. Installation

where for polar sensors:
Ue=Q_si sin®) /N
Un=Qsicos ®)/N

or, in the case of orthogonal sensors:
Ue=Ue)/N
Un=QUn)/N

Resultant mean wind direction, ®u:

®u = arctan (Ue / Un)

Standard deviation of wind direction, ¢ (®u), using Campbell Scientific
algorithm:

c(®u) = 81(1 - U / 8)"*

The algorithm for ¢ (®u) is developed by noting, as shown in the figure Standard
Deviation of Direction (p. 219, that

cos (®)=U,;/s;
where
®'=0,-0Bu

FIGURE 48: Standard Deviation of Direction

FIGURE 49: Standard Deviation of
Direction

The Taylor Series for the Cosine function, truncated after 2 terms is:
cos (@) =1-(®))/2

For deviations less than 40 degrees, the error in this approximation is less than
1%. At deviations of 60 degrees, the error is 10%.

210

Section 7. Installation

The speed sample can be expressed as the deviation about the mean speed,
si=s'+ S

Equating the two expressions for Cos (") and using the previous equation for s;;
1- (@;')2/2 =U,/(s'+8S)

Solving for (©;')%, one obtains;
(@)Y =2-2U,/S-(®/)s'/S+2s'/S

Summing (®;')* over N samples and dividing by N yields the variance of Ou.

Note The sum of the last term equals 0.

(©@W) = (@) /N)=2(1-T/S)- 2(@) s) /NS
The term,

2(©) s') /NS
is 0 if the deviations in speed are not correlated with the deviation in direction.
This assumption has been verified in tests on wind data by Campbell Scientific;

the Air Resources Laboratory, NOAA, Idaho Falls, ID; and MERDI, Butte, MT.
In these tests, the maximum differences in

c(Ou) = (O /N)”
and

c(Ou) =2 (1 -U/S)"”
have never been greater than a few degrees.

The final form is arrived at by converting from radians to degrees (57.296
degrees/radian).

c@OW=R2((-T/S"”=81(1-T/S)"

7.7.10 Data Output: Writing High-Frequency Data to Memory
Cards

Related Topics:

* Memory Card (CRD: Drive) — Overview (p. 78)

* Memory Card (CRD: Drive) — Details (p. 433)

* Memory Cards and Record Numbers (p. 439

» Data Output: Writing High-Frequency Data to Memory Cards (p. 211)
» File System Errors (p. 451)

211

212

Section 7.

Installation

» Data Storage Devices — List (p. 599)
» Data File Format Examples (p. 437)
» Data Storage Drives Table (p. 430)

The usual method for writing high-frequency time series data to memory cards,
especially in high-speed measurement applications, is to use the TableFile()
instruction with Option 64. 1t supports 16 GB or smaller memory cards and
permits smaller and variable file sizes.

7.7.10.1 TableFile() with Option 64

Option 64 has been added as a format option for the CRBasic instruction
TableFile(). It combines the speed and efficiency of the CardOut() instruction
with the flexibility of the TableFile() instruction. Memory cards' up to 16 GB
are supported. TableFile() is a CRBasic instruction that creates a file from a data
table in datalogger CPU memory. Option 64 directs that the file be written in
TOB3 format exclusively to the CRD: drive?.

Syntax for the TableFile() instruction is as follows:

TabTleFile(FileName, Option, MaxFiles, NumRecs/
TimeIntoInterval, Interval, Units, OutStat, LastFileName)

where Option is given the argument of 64. Refer to CRBasic Editor Help® for a
detailed description of each parameter.

Note The CRD: drive (the drive designation for the optional memory
card) is the only drive that is allowed for use with Option 64.

Note Memory cards add a measure of security in guarding against data
loss. However, no system is infallible. Finding a functioning memory
card in the mud after a moose has trampled your weather station or a
tractor has run an offset disk over your soil-moisture station may be
difficult. The best rule is to collect data from the CR1000 only as often as
you can afford to lose the data. In other words, if you can afford to lose a
months worth of data, you can afford to collect the data only once a
month.

! Memory cards for the CR1000 are the compact flash (CF) type.

2 The CRD: drive is a memory drive created when a memory card is connected into the CR1000
through the appropriate peripheral device. The CR1000 is adapted for CF use by addition of the
NL115 or CFM100 modules. NL115 and CFM100 modules are available at additional cost from
Campbell Scientific.

3 CRBasic Editor is included in Campbell Scientific datalogger support sofiware (p. 89) suites
LoggerNet, PC400, and RTDAQ.

7.7.10.2 TableFile() with Option 64 Replaces CardOut()

TableFile() with Option 64 has several advantages over CardOut() when used in
most applications. These include:

Section 7. Installation

e Allowing multiple small files to be written from the same data table so
that storage for a single table can exceed 2 GB. TableFile() controls the
size of its output files through the NumRecs, TimelntoInterval, and
Interval parameters.

e Faster compile times when small file sizes are specified.

e Eagy retrieval of closed files with File Control (. 525) utility, FTP, or
e-mail.

7.7.10.3 TableFile() with Option 64 Programming

As shown in the following CRBasic code snip, the TableFile() instruction must
be placed inside a DataTable() / EndTable declaration. The TableFile()
instruction writes data to the memory card based on user-specified parameters that
determine the file size based on number of records to store, or an interval over
which to store data. The resulting file is saved with a suffix of X.dat, where X is
a number that is incremented each time a new file is written.

DataTable(TableName,TriggerVariable,Size)
TableFile(FileName...LastFileName)
'"Output processing instructions go here
EndTable

For example, in micrometeorological applications, TableFile() with Option 64 is
used to create a new high-frequency data file once per day. The size of the file
created is a function of the datalogger scan frequency and the number of variables
saved to the data table. For a typical eddy-covariance station, this daily file is
about 50 MB large (10 Hz scan frequency and 15 IEEE4 data points). CRBasic
example Using TableFile() with Option 64 with Memory Card (. 213) is an
example of a micromet application.

CRBasic EXAMPLE 41: Using TableFile() with Option 64 with Memory Card

'"This program example demonstrates the use of TableFile() with Option 64 in micrometeorology
"eddy-covariance programs. The file naming scheme used in instruction TableFile() is
"customized using variables, constants, and text.

PubTic Sensor(10)

DataTable(Ts_data, TRUE,-1)
'"TableFile("filename",Option,MaxFiles,NumRec/TimeIntoInterval,Interval,Units,
" QutStat,LastFileName)
TableFile("CRD:"&Status.SerialNumber(1,1)&".ts_data_",64,-1,0,1,Day,0,0)
Sample(10,sensor(1),IEEE4)

EndTable

BeginProg
Scan(100,mSec,100,0)
'"Measurement instructions go here.
'"Processing instructions go here.
CallTable ts_data
NextScan
EndProg

213

214

Section 7.

Installation

7.7.10.4 Converting TOB3 Files with CardConvert

The TOB3 format that is used to write data to memory cards saves disk space.
However, the resulting binary files must be converted to another format to be read
or used by other programs. The CardConvert software, included in Campbell
Scientific datalogger support software (. 89), will convert data files from one
format to another. CardConvert Help has more details.

7.7.10.5 TableFile() with Option 64 Q & A

Q: How does Option 64 differ from other TableFile() options?

A: Pre-allocation of memory combines with TOB3 data format to give Option 64
two principal advantages over other TableFile() options. These are:

e increased runtime write performance
e short card-eject times

Option 64 is unique among table file options in that it pre-allocates enough
memory on the memory card to store an interval amount of data'. Pre-allocation
allows data to be continuously and more quickly written to the card in ~1 KB
blocks. TOB3 binary format copies data directly from CPU memory to the
memory card without format conversion, lending additional speed and efficiency
to the data storage process.

Note Pre-allocation of memory card files significantly increases run time
write performance. It also reduces the risk of file corruption that can occur
as a result of power loss or incorrect card removal.

Note To avoid data corruption and loss, memory card removal must
always be initiated by pressing the Initiate Removal button on the face of
the NL115 or CFM100 modules. The card must be ejected only after the
Status light shows a solid green.

Q: Why are individual files limited to 2 GB?

A: In common with many other systems, the datalogger natively supports signed
four-byte integers. This data type can represent a number as large as 231, or in
terms of bytes, roughly 2 GB. This is the maximum file length that can be
represented in the datalogger directory table.

Q: Why does a large card cause long program compile times?

A: Program compile times increase with card and file sizes. As the datalogger
boots up, the card must be searched to determine space available for data storage.
In addition, for tables that are created by TableFile() with Option 64, an empty
file that is large enough to hold all of the specified records must be created (i.e.,
memory is pre-allocated). When using TableFile() with Option 64, program
compile times can be lessened by reducing the number of records or data-output

Section 7. Installation

interval that will be included in each file. For example, if the maximum file size
specified is 2 GB, the datalogger must scan through and pre-allocate 2 GB of card
memory. However, if smaller files are specified, then compile times are reduced
because the datalogger is only required to scan through enough memory to
pre-allocate memory for the smaller file.

Q: Why does a freshly formatted card cause long compile times?

A: Program compile times take longer with freshly formatted cards because the
cards use a FAT32 system (File Allocation Table with 32 table element bits) to be
compatible with PCs. Because of the way the FAT32 card format works, you can
avoid long CR1000 compile times with a freshly formatted card by first
formatting the new card on a PC, then copy a small file to the card from the PC,
and then delete the file with the PC. When the small file is copied to the card, the
PC updates a sector on the card that which allows the CR1000 program to
compile faster. This only needs to be done once when the card is formatted. If you
have the CR1000 update the card sector, the first CR1000 program compile with
the card can take as long as 30 minutes. After that, compile times will be normal.

Q: Which memory card should I use?
A: Campbell Scientific recommends and supports only the use of FMJ brand CF
cards. These cards are industrial-grade and have passed Campbell Scientific
hardware testing. Following are listed advantages these cards have over less
expensive commercial-grade cards:

e less susceptible to failure and data loss

e match the datalogger operating temperature range

e faster read/write times

e Detter vibration and shock resistance

e longer life spans (more read/write cycles)

Note More CF card recommendations are presented in the application
note, CF Card Information, which is available at www.campbellsci.com.

Q: Can closed files be retrieved remotely?

A: Yes. Closed files can be retrieved using the Retrieve function in the datalogger
support software File Control (. 525) utility, FTP, HTTP, or e-mail. Although open
files will appear in the CRD: drive directory, do not attempt to retrieve open files.
Doing so may corrupt the file and result in data loss. Smaller files typically
transmit more quickly and more reliably than large files.

215

Section 7. Installation

Q: Can data be accessed?

A: Yes. Data in the open or most recent file can be collected using the Collect or
Custom Collect utilities in LoggerNet, PC400, or RTDAQ. Data can also be
viewed using datalogger support software or accessed through the datalogger
using data table access syntax such as TableName.FieldName (see CRBasic
Editor Help). Once a file is closed, data can be accessed only by first retrieving
the file, as discussed previously, and processing the file using CardConvert
software.

Q: What happens when a card is inserted?

A: When a card is inserted, whether it is a new card or the previously used card, a
new file is always created.

Q: What does a power cycle or program restart do?

A: Each time the program starts, whether by user control, power cycle, or a
watchdog, TableFile() with Option 64 will create a new file.

Q: What happens when a card is filled?

A: If the memory card fills, new data are written over oldest data. A card must be
exchanged before it fills, or the oldest data will be overwritten by incoming new
records and lost. During the card exchange, once the old card is removed, the new
card must be inserted before the data table in datalogger CPU memory rings?, or
data will be overwritten and lost. For example, consider an application wherein
the data table in datalogger CPU memory has a capacity for about 45 minutes of
data’. The exchange must take place anytime before the 45 minutes expire. If the
exchange is delayed by an additional 5 minutes, 5 minutes of data at the beginning
of the last 45 minute interval (since it is the oldest data) will be overwritten in
CPU memory before transfer to the new card and lost.

! Other options of TableFile() do not pre-allocate memory, so they should be avoided when collecting
high-frequency time-series data. More information is available in CRBasic Editor Help.

2 "rings": the datalogger has a ring memory. In other words, once filled, rather than stopping when

full, oldest data are overwritten by new data. In this context, "rings" designates when new data begins
to overwrite the oldest data.

3 CPU data table fill times can be confirmed in the datalogger DataTablelnfo table.

7.7.11 Displaying Data: Custom Menus — Details

Related Topics:

» Custom Menus — Overview (p. 83)

» Data Displays: Custom Menus — Details (p. 216)
* Keyboard/Display — Overview (p. 82)

» CRBasic Editor Help for DisplayMenu()

Menus for the CR1000KD Keyboard/Display can be customized to simplify
routine operations. Viewing data, toggling control functions, or entering notes are

216

Section 7. Installation

common applications. Individual menu screens support up to eight lines of text
with up to seven variables.

Use the following CRBasic instructions. Refer to CRBasic Editor Help for
complete information.

DisplayMenu()

Marks the beginning and end of a custom menu. Only one allowed per
program.

Note Label must be at least six characters long to mask default display
clock.

EndMenu
Marks the end of a custom menu. Only one allowed per program.
DisplayValue()

Defines a label and displays a value (variable or data table value) not to be
edited, such as a measurement.

Menultem()

Defines a label and displays a variable to be edited by typing or from a pick
list defined by MenuPick ().

MenuPick()

Creates a pick list from which to edit a Menultem() variable. Follows
immediately after Menultem(). If variable is declared As Boolean,
MenuPick() allows only True or False or declared equivalents. Otherwise,
many items are allowed in the pick list. Order of items in list is determined by
order of instruction; however, item displayed initially in Menultem() is
determined by the value of the item.

SubMenu() / EndSubMenu

Defines the beginning and end of a second-level menu.

Note SubMenu() label must be at least six characters long to mask
default display clock.

CRBasic example Custom Menus . 2200 demonstrates how to program a custom
menu to facilitates viewing data, entering notes, and controlling a device.
Following is a list of figures that show the organization of the custom menu.

Custom Menu Example — Home Screen (p. 218)

Custom Menu Example — View Data Window (p. 218)
Custom Menu Example — Make Notes Sub Menu (p. 218)
Custom Menu Example — Predefined Notes Pick List (p. 219)
Custom Menu Example — Free Entry Notes Window (p. 219

217

Section 7. Installation

Custom Menu Example — Accept / Clear Notes Window (p. 219
Custom Menu Example — Control Sub Menu (p. 220)

Custom Menu Example — Control LED Pick List (p. 2209)

Custom Menu Example — Control LED Boolean Pick List (p. 220)

FIGURE 50: Custom Menu Example —
Home Screen

s

** CUSTOM MENU DEMO * *

View Data
Make Notes
Control

V V V V

FIGURE 51: Custom Menu Example —
View Data Window

View Data

Ref Temp C | 25.7643
TC1Temp C | 24.3663
TC2Temp C | 24.2643

FIGURE 52: Custom Menu Example —
Make Notes Sub Menu

Make Notes :
Predefined |
Free Entry |

218

Section 7.

Installation

FIGURE 53: Custom Menu Example —
Predefined Notes Pick List

Predefined
Cal_Done
Offset_Changed

FIGURE 54: Custom Menu Example —
Free Entry Notes Window

Modify Value
Free Entry
Current Value:

New Value:

FIGURE 55: Custom Menu Example —
Accept / Clear Notes Window

Accept / Clear
Accept
Clear

219

Section 7. Installation

FIGURE 56: Custom Menu Example —
Control Sub Menu

Control :
Count to LED | 0
Manual LED | Off

FIGURE 57: Custom Menu Example —
Control LED Pick List

s

Count to LED
15
30
45
60

FIGURE 58: Custom Menu Example —
Control LED Boolean Pick List

s

Manual LED
On
Off

Note See figures Custom Menu Example — Home Screen (p. 218 through
Custom Menu Example — Control LED Boolean Pick List (p. 220) in
reference to the following CRBasic example.

CRBasic EXAMPLE 42: Custom Menus

220

Section 7. Installation

'"This program example demonstrates the building of a custom CR1I000KD Keyboard/Display menu.

'Declarations supporting View Data menu 1item

Pub1lic RefTemp
Public TCTemp(2)

'Delarations supporting blank Tine menu 1item

Const Escape = "Hit Esc"

'Declarations supporting Enter Notes menu 1item

Public SelectNote As String * 20
Const Cal_Done = "Cal Done"

Const Offst_Chgd = "Offset Changed"
Const Blank = ""

Public EnterNote As String * 30
Public CycleNotes As String * 20
Const Accept = "Accept"

Const Clear = "Clear"

'Declarations supporting Control menu 1item
Const On = true

Const Off = false

Public StartFlag As Boolean

PubTic CountDown As Long

Public ToggleLED As Boolean

'Define Note DataTable
DataTable(Notes,1,-1)
Sample(1,SelectNote,String)
Sample(1l,EnterNote,String)
EndTable

'Reference Temp Variable
'"Thermocouple Temp Array

'"Word indicates action to exit dead end

'Hold predefined pick 1ist note

'"Word stored when Cal_Don selected
'"Word stored when Offst_Chgd selected
'"Word stored when blank selected
"Variable to hold free entry note
"Variable to hold notes control word
'"Notes control word

'"Notes control word

'Assign "On" as Boolean True
'Assign "Off" as Boolean False
'"LED Control Process Variable
'"LED Count Down Variable

"LED Control Variable

'Set up Notes data table, written
"to when a note is accepted
'Sample Pick List Note

'Sample Free Entry Note

'Define temperature DataTable
DataTable(TempC,1,-1)
DataInterval(0,60,Sec,10)
Sample(1,RefTemp, FP2)
Sample(1,TCTemp(1),FP2)
Sample(1,TCTemp(2),FP2)
EndTable

"Custom Menu Declarations
DisplayMenu("**CUSTOM MENU DEMO**",-3)

SubMenu("")
DisplayValue("",Escape)
EndSubMenu

SubMenu("View Data ")
DisplayValue("Ref Temp C",RefTemp)
DisplayValue("TC 1 Temp C",TCTemp(1))
DisplayValue("TC 2 Temp C",TCTemp(2))
EndSubMenu

'Set up temperature data table.
'"Written to every 60 seconds with:

'Sample of reference temperature
'Sample of thermocouple 1
'Sample of thermocouple 2

'Create Menu; Upon power up, the custom menu
'is displayed. The system menu is hidden
"from the user.

"Dummy Sub menu to write a blank Tine
'a blank Tine
'"End of dummy submenu

'Create Submenu named PanelTemps
'"Item for Submenu from Public
'"Ttem for Submenu - TCTemps (1)
'"Ttem for Submenu - TCTemps(2)
'"End of Submenu

221

Section 7. Installation

SubMenu("Make Notes ")
MenuItem("Predefined",SelectNote)

"Create Submenu named PanelTemps
"Choose predefined notes Menu Item

MenuPick(Cal_Done,Offset_Changed)
MenuItem("Free Entry",EnterNote)
MenuItem("Accept/Clear",CycleNotes)
MenuPick(Accept,Clear)

EndSubMenu

"Create pick list of predefined notes
'"User entered notes Menu Item

SubMenu("Control ")
MenuItem("Count to LED",CountDown)
MenuPick(15,30,45,60)
MenuItem("Manual LED",togglelLED)
MenuPick(On,0ff)
EndSubMenu
EndMenu '"End custom menu creation

"Create Submenu named PanelTemps
"Create menu item CountDown
"Create a pick list for CountDown
'"Manual LED control Menu Item

'Main Program
BeginProg

'"Initialize Notes Sub Menu,
'write ????? as a null
Scan(1,Sec,3,0)

'Measurements
PanelTemp(RefTemp,250) '"Measure Reference Temperature
'Measure Two Thermocouples
TCDiff(TCTemp(),2,mV2_5C,1,TypeT,RefTemp,True,0,_60Hz,1.0,0)

CallTable TempC 'Call data table

'Menu Item "Make Notes" Support Code
If CycleNotes = "Accept" Then

CallTable Notes '"Write data to Notes data table
CycleNotes = "Accepted" '"Write "Accepted" after written
Delay(1,500,mSec) '"Pause so user can read "Accepted"
SelectNote = "" "Clear pick 1ist note
EnterNote = "" "Clear free entry note
CycleNotes = "??77272?" '"Write ????? as a null prompt
EndIf
If CycleNotes = "Clear" Then "Clear notes when requested
SelectNote = "" "Clear pick 1ist note
EnterNote = "" "Clear free entry note
CycleNotes = "??77272?" '"Write ????? as a null prompt
EndIf

'Menu Item "Control" Menu Support Code
CountDown = CountDown - 1
If CountDown <= 0
CountDown = 0
EndIf
If CountDown > 0 Then
StartFlag = True
EndIf
If StartFlag = True AND CountDown = O Then'Interprocess count down
"and manual LED

"Count down by 1
'Stop count down from passing 0

'"Indicate countdown started

ToggleLED = True
StartFlag = False

EndIf

If StartFlag = True AND CountDown <> 0 Then'Interprocess count down and manual LED
ToggleLED = False

EndIf

222

Section 7. Installation

PortSet(4,TogglelLED) 'Set control port according
'to result of processing
NextScan
EndProg

7.7.12 Field Calibration — Details

Related Topics:
» Field Calibration — Overview (p. 77)
» Field Calibration — Details (p. 223)

Calibration increases accuracy of a sensor by adjusting or correcting its output to
match independently verified quantities. Adjusting a sensor output signal is
preferred, but not always possible or practical. By using the FieldCal() or
FieldCalStrain() instruction, a linear sensor output can be corrected in the
CR1000 after the measurement by adjusting the multiplier and offset.

When included in the CRBasic program, FieldCal() and FieldCalStrain() can be
used through a datalogger support software calibration wizard (. 517. Help for
using the wizard is available in the software.

A more arcane procedure that does not require a PC can be executed though the
CR1000KD Keyboard / Display. If you do not have a keyboard, the same
procedure can be done in a numeric monitor (p. 533. Numeric monitor screen
captures are used in the following procedures. Running through these procedures
will give you a foundation for how field calibration works, but use of the
calibration wizard for routine work is recommended.

More detail is available in CRBasic Editor Help.

7.7.12.1Field Calibration CAL Files

Calibration data are stored automatically, usually on the CR1000 CPU: drive, in
CAL (.cal) files. These data become the source for calibration factors when
requested by the LoadFieldCal() instruction. A file is created automatically on
the same CR1000 memory drive and given the same name as the program that
creates and uses it. For example, the CRBasic program file CPU:MyProg.crl
generates the CAL file CPU:MyProg.cal.

CAL files are created if a program using FieldCal() or FieldCalStrain() does not
find an existing, compatible CAL file. Files are updated with each successful
calibration with new calibration factors factors. A calibration history is recorded
only if the CRBasic program creates a data table (p. 521) with the
SampleFieldCal() instruction.

Note CAL files created by FieldCal() and FieldCalStrain() differ from
files created by the CalFile() instruction See File Management in CR1000
Memory (p. 442).

223

224

Section 7. Installation

7.7.12.2 Field Calibration Programming

Field-calibration functionality is included in a CRBasic program through either of
the following instructions:

e FieldCal() — the principal instruction used for non-strain gage type
sensors. For introductory purposes, use one FieldCal() instruction and a
unique set of FieldCal() variables for each sensor. For more advanced
applications, use variable arrays.

¢ FieldCalStrain() — the principal instruction used for strain gages
measuring microstrain. Use one FieldCalStrain() instruction and a
unique set of FieldCalStrain() variables for each sensor. For more
advanced applications, use variable arrays.

FieldCal() and FieldCalStrain() use the following instructions:

¢ LoadFieldCal() — an optional instruction that evaluates the validity of,
and loads values from a CAL file.

e SampleFieldCal — an optional data-storage output instruction that
writes the latest calibration values to a data table (not to the CAL file).

Section 7. Installation

FieldCal() and FieldCalStrain() use the following reserved Boolean variable:

e NewFieldCal — a reserved Boolean variable under CR1000 control
used to optionally trigger a data storage output table one time after a
calibration has succeeded.

See CRBasic Editor Help for operational details on CRBasic instructions.

7.7.12.3Field Calibration Wizard Overview

The LoggerNet and RTDAQ field calibration wizards step you through the
procedure by performing the mode-variable changes and measurements
automatically. You set the sensor to known values and input those values into
the wizard.

When a program with FieldCal() or FieldCalStrain() is running, select
LoggerNet or RTDAQ | Datalogger | Calibration Wizard to start the wizard. A
list of measurements used is shown.

For more information on using the calibration wizard, consult LoggerNet or
RTDAQ Help.

7.7.12.4Field Calibration Numeric Monitor Procedures

Manual field calibration through the numeric monitor (in lieu of a CR1000KD
Keyboard / Display is presented here to introduce the use and function of the
FieldCal() and FieldCalStrain() instructions. This section is not a
comprehensive treatment of field-calibration topics. The most comprehensive
resource to date covering use of FieldCal() and FieldCalStrain() is RTDAQ
software documentation available at www.campbellsci.com. Be aware of the
following precautions:

e The CR1000 does not check for out-of-bounds values in mode variables.
e Valid mode variable entries are 1 or 4.

Before, during, and after calibration, one of the following codes will be stored in
the CalMode variable:

225

226

Section 7. Installation

TABLE 23: FieldCal() Codes

Value Returned State

-1 Error in the calibration setup

-2 Multiplier set to 0 or NAN; measurement = NAN

-3 Reps is set to a value other than 7 or the size of
MeasureVar

0 No calibration

1 Ready to calculate (KnownVar holds the first of a
two point calibration)

2 Working

3 First point done (only applicable for two point
calibrations)

4 Ready to calculate (KnownVar holds the second of a
two-point calibration)

5 Working (only applicable for two point calibrations)

6 Calibration complete

7.7.12.4.1 One-Point Calibrations (Zero or Offset)

Zero operation applies an offset of equal magnitude but opposite sign. For
example, when performing a zeroing operation on a measurement of 15.3, the
value —15.3 will be added to subsequent measurements.

Offset operation applies an offset of equal magnitude and same sign. For
example, when performing an offset operation on a measurement of 15.3, the
value 15.3 will be added to subsequent measurements.

See FieldCal() Zero or Tare (Opt 0) Example (p. 228) and FieldCal() Offset (Opt 1)
Example . 230 for demonstration programs:

1. Use a separate FieldCal() instruction and variables for each sensor to be
calibrated. In the CRBasic program , put the FieldCal() instruction
immediately below the associated measurement instruction.

2. Set mode variable = 0 or 6 before starting.

3. Place the sensor into zeroing or offset condition.

4. Set KnownVar variable to the offset or zero value.

5. Set mode variable = 1 to start calibration.

Section 7. Installation

7.7.12.4.2 Two-Point Calibrations (gain and offset)

Use this two-point calibration procedure to adjust multipliers (slopes) and offsets
(y intercepts). See FieldCal() Slope and Offset (Opt 2) Example (p. 232) and
FieldCal() Slope (Opt 3) Example (p. 235) for demonstration programs:

1. Use a separate FieldCal() instruction and separate variables for each sensor to
be calibrated.

2. Ensure mode variable = 0 or 6 before starting.
a. If Mode > 0 and # 6, calibration is in progress.
b. If Mode < 0, calibration encountered an error.
3. Place sensor into first known point condition.
4. Set KnownVar variable to first known point.
5. Set Mode variable = 1 to start first part of calibration.
a. Mode =2 (automatic) during the first point calibration.
b. Mode = 3 (automatic) when the first point is completed.
6. Place sensor into second known point condition.
7. Set KnownVar variable to second known point.
8. Set Mode = 4 to start second part of calibration.
a. Mode =5 (automatic) during second point calibration.

b. Mode = 6 (automatic) when calibration is complete.

7.7.12.4.3 Zero Basis Point Calibration
Zero-basis calibration (FieldCal() instruction Option 4) is designed for use with
static vibrating wire measurements. It loads values into zero-point variables

to track conditions at the time of the zero calibration. See FieldCal() Zero
Basis (Opt 4) Example (p. 237) for a demonstration program.

7.7.12.5Field Calibration Examples
FieldCal() has the following calibration options:
e Zero
o Offset

e Two-point slope and offset

227

Section 7. Installation

e Two-point slope only
e Zero basis (designed for use with static vibrating wire measurements)

These demonstration programs are provided as an aid in becoming familiar with
the FieldCal() features at a test bench without actual sensors. For the purpose of
the demonstration, sensor signals are simulated by CR1000 terminals configured
for excitation. To reset tests, use the support software File Control (p. 525) menu
commands to delete .cal files, and then send the demonstration program again to
the CR1000. Term equivalents are as follows:

"offset" = "y- intercept" = "zero"
"multiplier" = "slope" = "gain"

7.7.12.5.1 FieldCal() Zero or Tare (Opt 0) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 0 adjusts the offset argument such that the output of the sensor
being calibrated is set to the value of the FieldCal() KnownVar parameter, which
is set to 0. Subsequent measurements have the same offset subtracted. Option 0
does not affect the multiplier argument.

Example Case: A sensor measures the relative humidity (RH) of air. Multiplier
is known to be stable, but sensor offset drifts and requires regular zeroing in a
desiccated chamber. The following procedure zeros the RH sensor to obtain the
calibration report shown. To step through the example, use the CR1000KD
Keyboard/Display or software numeric monitor (. 533) to change variable values as
directed.

TABLE 24: Calibration Report for Relative Humidity Sensor

228

CRBasic Variable At Deployment At 30-Day Service
SimulatedRHSignal 100 mV 105 mV
output
KnownRH (desiccated 0% 0%
chamber)

RHMultiplier 0.05 % / mV 0.05 % / mV
RHOffset S% -5.25 %
RH 0% 0 %

1. Send CRBasic example FieldCal() Zero (p. 229 to the CR1000. A terminal
configured for excitation has been programmed to simulate a sensor output.

2. To place the simulated RH sensor in a simulated-calibration condition (in the
field it would be placed in a desiccated chamber), place a jumper wire between
terminals VX1 and SE1. The following variables are preset by the program:
SimulatedRHSignal = 100, KnownRH = 0.

Section 7. Installation

3. To start the 'calibration', set variable CalMode = 1. When CalMode
increments to 6, zero calibration is complete. Calibrated RHOffset will equal
-5% at this stage of this example.

4. To continue this example and simulate a zero-drift condition, set variable
SimulatedRHSignal = 105.

5. To simulate conditions for a 30-day-service calibration, again with desiccated
chamber conditions, keep variable KnownRH = 0.0. Set variable CalMode =
1 to start calibration. When CalMode increments to 6, simulated
30-day-service zero calibration is complete. Calibrated RHOffset will equal

-5.2 %.

CRBasic EXAMPLE 43: FieldCal() Zero

'"This program example demonstrates the use of FieldCal() in calculating and applying a zero
"calibration. A zero calibration measures the signal magnitude of a sensor in a known zero
"condition and calculates the negative magnitude to use as an offset in subsequent
'measurements. It does not affect the multiplier.

'"This program demonstrates the zero calibration with the following procedure:
" -- Simulate a signal from a relative-humidity sensor.

" -- Measure the 'sensor' signal.

" -- Calculate and apply a zero calibration.

"You can set up the simulation by loading this program into the CR1000 and interconnecting
"the following terminals with a jumper wire to simulate the relative-humidity sensor signal

'as follows:
" Vx1 --- SEI

"For the simulation, the initial 'sensor' signal is set automatically. Start the zero routine
'"by setting variable CalMode = 1. When CalMode = 6 (will occur automatically after 10
'measurements), the routine is complete. Note the new value in variable RHOffset. Now

'enter the following millivolt value as the simulated sensor signal and note how the new

'offset is added to the measurement:
" SimulatedRHSignal = 1000

'"NOTE: This program places a .cal file on the CPU: drive of the CR1000. The .cal file must
'be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MILLIVOLT SIGNAL MAGNITUDE
PubTic SimulatedRHSignal = 100

"DECLARE CALIBRATION STANDARD VARIABLE AND SET PERCENT RH MAGNITUDE
PubTic KnownRH = 0

'DECLARE MEASUREMENT RESULT VARIABLE.
Public RH

"DECLARE OFFSET RESULT VARIABLE
PubTic RHOffset

229

Section 7. Installation

"DECLARE VARIABLE FOR FieldCal() CONTROL
PubTic CalMode

"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'Effective after the zero calibration procedure (when variable CalMode = 6)

LoadFieldCal(true)
Scan(100,mSec,0,0)

'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT

'Zero calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedRHSignal,0)
Vo1tSE(RH,1,mv2500,1,1,0,250,0.05,RHOffset)

"PERFORM A ZERO CALIBRATION.
'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)

FieldCal(0,RH,1,0,RHOffset,CalMode,KnownRH,1,30)

'"If there was a calibration, store calibration values into data table CalHist
CallTable(CalHist)

NextScan
EndProg

230

7.7.12.5.2 FieldCal() Offset (Opt 1) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 1 adjusts the offset argument such that the output of the sensor
being calibrated is set to the magnitude of the FieldCal() KnownVar parameter.
Subsequent measurements have the same offset added. Option 0 does not affect
the multiplier argument. Option 0 does not affect the multiplier argument.

Example Case: A sensor measures the salinity of water. Multiplier is known to be
stable, but sensor offset drifts and requires regular offset correction using a
standard solution. The following procedure offsets the measurement to obtain the
calibration report shown.

Section 7. Installation

TABLE 25: Calibration Report for Salinity Sensor

CRBasic Variable At Deployment At Seven-Day Service
SimulatedSalinitySignal 1350 mV 1345 mV
output
Knm.vnSalmtty (standard 30 m/l 30 mg/l
solution)
SalinityMultiplier 0.05 mg/l/mV 0.05 mg/l/mV
SalinityOffset -37.50 mg/1 -37.23 mg/1
Salinity reading 30 mg/1 30 mg/1

1. Send CRBasic example FieldCal() Offset (p. 231 to the CR1000. A terminal
configured for excitation has been programmed to simulate a sensor output.

2. To simulate the salinity sensor in a simulated-calibration condition, (in the
field it would be placed in a 30 mg/1 standard solution), place a jumper wire
between terminals VX1 and SE1. The following variables are preset by the
program: SimulatedSalinitySignal = 1350, KnownSalinity = 30.

3. To start a simulated calibration, set variable CalMode = 1. When CalMode
increments to 6, offset calibration is complete. The calibrated offset will equal
-37.48 mg/l.

4. To continue this example and simulate an offset-drift condition, set variable
SimulatedSalinitySignal = 1345.

5. To simulate seven-day-service calibration conditions (30 mg/l standard
solution), the variable KnownSalinity remains at 30.0. Change the value in
variable CalMode to 1 to start the calibration. When CalMode increments to 6,
the seven-day-service offset calibration is complete. Calibrated offset will
equal -37.23 mg/1.

CRBasic EXAMPLE 44: FieldCal() Offset

'"This program example demonstrates the use of FieldCal() in calculating and applying an
'offset calibration. An offset calibration compares the signal magnitude of a sensor to a
"known standard and calculates an offset to adjust the sensor output to the known value.
'"The offset is then used to adjust subsequent measurements.

'"This program demonstrates the offset calibration with the following procedure:
" -- Simulate a signal from a salinity sensor.

-- Measure the 'sensor' signal.

-- Calculate and apply an offset.

[
r

r

"You can set up the simulation by loading this program into the CR1000 and interconnecting the
"following terminals with a jumper wire to simulate the salinity sensor signal as follows:
" Vx1 --- SEI

"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the calibration routine by setting variable CalMode = 1. When
"CalMode = 6 (will occur automatically after 10 measurements), the routine is complete.

'Note the new value in variable SalinityOffset. Now enter the following millivolt value as

231

Section 7. Installation

"the simulated sensor signal and note how the new offset is added to the measurement:
" SimulatedSalinitySignal = 1345

'"NOTE: This program places a .cal file on the CPU: drive of the CR1000. The .cal file must
'be erased to reset the demonstration.

"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedSalinitySignal = 1350 'mg/1

"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Pub1lic KnownSalinity = 30 'mg/1

"DECLARE MEASUREMENT RESULT VARIABLE.
PubTic Salinity

"DECLARE OFFSET RESULT VARIABLE
Public SalinityOffset

"DECLARE VARIABLE FOR FieldCal() CONTROL
PubTic CalMode

'"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)

LoadFieldCal(true)
Scan(100,mSec,0,0)

"SIMULATE SIGNAL THEN MAKE THE MEASUREMENT

'Zero calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedSalinitySignal,0)
VoltSE(Salinity,1,mv2500,1,1,0,250,0.05,Salinity0ffset)

"PERFORM AN OFFSET CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
FieldCal(1,Salinity,1,0,SalinityOffset,CalMode,KnownSalinity,1,30)

'"If there was a calibration, store calibration values into data table CalHist
CallTable(CalHist)

NextScan
EndProg

7.7.12.5.3 FieldCal() Slope and Offset (Opt 2) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 2 adjusts the multiplier and offset arguments such that the
output of the sensor being calibrated is set to a value consistent with the linear
relationship that intersects two known points sequentially entered in the
FieldCal() KnownVar parameter. Subsequent measurements are scaled with the
same multiplier and offset.

232

Section 7. Installation

Example Case: A meter measures the volume of water flowing through a pipe.
Multiplier and offset are known to drift, so a two-point calibration is required
periodically at known flow rates. The following procedure adjusts multiplier and
offset to correct for meter drift as shown in the calibration report below. Note that
the flow meter outputs millivolts inversely proportional to flow.

TABLE 26: Calibration Report for Flow Meter

CRBasic Variable At Deployment At Seven-Day Service
SimulatedFlowSignal 300 mV 285 mV
KnownFlow 30L/s 30L/s
SimulatedFlowSignal 550 mV 522 mV
KnownFlow 10L/s 10L/s
FlowMultiplier -0.0799 L/s/mV -0.0841 L/s/mV
FlowOffset 53.90 L 53.92L

. Send CRBasic example FieldCal() Two-Point Slope and Offset p. 234) to the
CR1000.

. To place the simulated flow sensor in a simulated calibration condition (in the
field a real sensor would be placed in a condition of know flow), place a
jumper wire between terminals VX1 and SE1.

. Perform the simulated deployment calibration as follows:

a. For the first point, set variable Simulated FlowSignal = 300. Set variable
KnownFlow = 30.0.

b. Start the calibration by setting variable CalMode = 1.

c. When CalMode increments to 3, for the second point, set variable
SimulatedFlowSignal = 550. Set variable KnownFlow = 10.

d. Resume the deployment calibration by setting variable CalMode = 4

. When variable CalMode increments to 6, the deployment calibration is
complete. Calibrated multiplier is -0.08; calibrated offset is 53.9.

. To continue this example, suppose the simulated sensor multiplier and offset
drift. Simulate a seven-day service calibration to correct the drift as follows:

a. Set variable SimulatedFlowSignal = 285. Set variable KnownFlow =
30.0.

b. Start the seven-day service calibration by setting variable CalMode = 1.

c. When CalMode increments to 3, set variable Simulated FlowSignal =
522. Set variable KnownFlow = 10.

233

Section 7. Installation

234

d. Resume the calibration by setting variable CalMode = 4

6. When variable CalMode increments to 6, the calibration is complete. The
corrected multiplier is -0.08; offset is 53.9.

CRBasic EXAMPLE 45: FieldCal() Two-Point Slope and Offset

'This program example demonstrates the use of FieldCal() in calculating and applying a

'multiplier and offset calibration. A multiplier and offset calibration compares signal

'magnitudes of a sensor to known standards. The calculated multiplier and offset scale the 'reported
magnitude of the sensor to a value consistent with the linear relationship that

"intersects known points sequentially entered in to the FieldCal() KnownVar parameter.

'Subsequent measurements are scaled by the new multiplier and offset.

'This program demonstrates the multiplier and offset calibration with the following procedure:
" -- Simulate a signal from a flow sensor.

" -- Measure the 'sensor' signal.

" -- Calculate and apply a multiplier and offset.

"You can set up the simulation by loading this program into the CR1000 and interconnecting
"the following terminals with a jumper wire to simulate a flow sensor signal as follows:
" Vx1 --- SEI1

'"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier-and-offset routine by setting variable
'"CalMode = 1. The value in CalMode will increment automatically. When CalMode = 3, set
'variables SimulatedFlowSignal = 550 and KnownFlow = 10, then set CalMode = 4. CalMode

'will again increment automatically. When CalMode = 6 (occurs automatically after 10
'measurements), the routine is complete. Note the new values in variables FlowMultiplier and
'"FlowOffest. Now enter a new value in the simulated sensor signal as follows and note

'how the new multiplier and offset scale the measurement:

" SimulatedFlowSignal = 1000

'NOTE: This program places a .cal file on the CPU: drive of the CR1000. The .cal file must
'be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedFlowSignal = 300 '"Excitation mV, second setting is 550

"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
PubTic KnownFlow = 30 '"Known flow, second setting is 10

'"DECLARE MEASUREMENT RESULT VARIABLE.
PubTic Flow

"DECLARE MULTIPLIER AND OFFSET RESULT VARIABLES AND SET INITIAL MAGNITUDES
Public FlowMultiplier = 1
Public FlowOffset = 0

'"DECLARE VARIABLE FOR FieldCal() CONTROL
PubTic CalMode

Section 7. Installation

'"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)
LoadFieldCal (true)

Scan(100,mSec,0,0)
"SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'"Multiplier calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedFlowSignal,0)
VoltSE(Flow,1,mv2500,1,1,0,250,FTowMultiplier,FlowOffset)

"PERFORM A MULTIPLIER CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'"FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
FieldCal(2,Flow,1,FlowMultiplier,FlowOffset,CalMode,KnownFlow,1,30)

'"If there was a calibration, store it into a data table
CallTabTle(CalHist)

NextScan
EndProg

7.7.12.5.4 FieldCal() Slope (Opt 3) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 3 adjusts the multiplier argument such that the output of the
sensor being calibrated is set to a value consistent with the linear relationship that
intersects two known points sequentially entered in the FieldCal() KnownVar
parameter. Subsequent measurements are scaled with the same multiplier.
FieldCal() Option 3 does not affect offset.

Some measurement applications do not require determination of offset.
Frequency analysis, for example, may only require relative data to characterize
change.

Example Case: A soil-water sensor is to be used to detect a pulse of water moving
through soil. A pulse of soil water can be detected with an offset, but sensitivity
to the pulse is important, so an accurate multiplier is essential. To adjust the
sensitivity of the sensor, two soil samples, with volumetric water contents of 10%
and 35%, will provide two known points.

235

Section 7. Installation

TABLE 27: Calibration Report for Water Content Sensor

CRBasic Variable At Deployment
SimulatedWaterContentSignal 175 mV
KnownWC 10%
SimulatedWaterContentSignal 700 mV
KnownWC 35%
WCMultiplier 0.0476 %/mV

The following procedure sets the sensitivity of a simulated soil water-content
Sensor.

1. Send CRBasic example FieldCal() Multiplier . 236) to the CR1000.

2. To simulate the soil-water sensor signal, place a jumper wire between
terminals VX1 and SE1.

3. Simulate deployment-calibration conditions in two stages as follows:

a. Set variable SimulatedWaterContentSignal to 175. Set variable
KnownWCto 10.0.

b. Start the calibration by setting variable CalMode = 1.

¢. When CalMode increments to 3, set variable
SimulatedWaterContentSignal to 700. Set variable KnownW(C to 35.

d. Resume the calibration by setting variable CalMode = 4

4. When variable CalMode increments to 6, the calibration is complete.
Calibrated multiplier is 0.0476.

CRBasic EXAMPLE 46: FieldCal() Multiplier

'This program example demonstrates the use of FieldCal() in calculating and applying a
'multiplier only calibration. A multiplier calibration compares the signal magnitude of a
'sensor to known standards. The calculated multiplier scales the reported magnitude of the
'sensor to a value consistent with the linear relationship that intersects known points
'sequentially entered in to the FieldCal() KnownVar parameter. Subsequent measurements are
'scaled by the multiplier.

'"This program demonstrates the multiplier calibration with the following procedure:
" -- Simulate a signal from a water content sensor.

-- Measure the 'sensor' signal.

-- Calculate and apply an offset.

[
[

"You can set up the simulation by loading this program into the CR1000 and interconnecting

"the following terminals with a jumper wire to simulate a water content sensor signal as
'follows:

236

Section 7. Installation

" Vx1 --- SEI

"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier routine by setting variable CalMode = 1. When
"CalMode = 6 (occurs automatically after 10 measurements), the routine is complete. Note the
'new value in variable WCMultiplier. Now enter a new value in the simulated sensor signal
'as follows and note how the new multiplier scales the measurement:

" SimulatedWaterContentSignal = 350

'"NOTE: This program places a .cal file on the CPU: drive of the CR1000. The .cal file must
'"be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedWaterContentSignal = 175 'mV, second setting is 700 mV

"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
PubTic KnownWC = 10 '% by Volume, second setting is 35%

'"DECLARE MEASUREMENT RESULT VARIABLE.
Public WC

"DECLARE MULTIPLIER RESULT VARIABLE AND SET INITIAL MAGNITUDE
PubTic WCMuTtiplier = 1

"DECLARE VARIABLE FOR FieldCal() CONTROL
PubTic CalMode

"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)

LoadFieldCal(true)

Scan(100,mSec,0,0)
"SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'"Multiplier calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedWaterContentSignal,0)
VoltSE(WC,1,mv2500,1,1,0,250,WCMultiplier,0)

"PERFORM A MULTIPLIER CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'"FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
FieldCal(3,WC,1,WCMultiplier,0,CalMode,KnownWC,1,30)

'"If there was a calibration, store it into data table CalHist
CallTabTle(CalHist)

NextScan
EndProg

7.7.12.5.5 FieldCal() Zero Basis (Opt 4) Example

Zero-basis calibration (FieldCal() instruction Option 4) is designed for use in
static vibrating wire measurements. For more information, refer to these
manuals available at www.campbellsci.com:

237

Section 7. Installation

AVW200-Series Two-Channel VSPECT Vibrating Wire Measurement Device
CR6 Measurement and Control Datalogger Operators Manual

7.7.12.6 Field Calibration Strain Examples

Related Topics:

» Strain Measurements — Overview (p. 71)
» Strain Measurements — Details (p. 364)

* FieldCalStrain() Examples (p. 238)

Strain-gage systems consist of one or more strain gages, a resistive bridge in
which the gage resides, and a measurement device such as the CR1000
datalogger. The FieldCalStrain() instruction facilitates shunt calibration of
strain-gage systems and is designed exclusively for strain applications wherein
microstrain is the unit of measure. The FieldCal() instruction (see Field
Calibration Examples (p. 227)) is typically used in non-microstrain applications.

Shunt calibration of strain-gage systems is common practice. However, the
technique provides many opportunities for misapplication and misinterpretation.
This section is not intended to be a primer on shunt-calibration theory, but only to
introduce use of the technique with the CR1000 datalogger. Campbell Scientific
strongly urges users to study shunt-calibration theory from other sources. A
thorough treatment of strain gages and shunt-calibration theory is available from
Vishay using search terms such as 'micro-measurements', 'stress analysis', 'strain
gages', 'calculator list', at:

http://www.vishaypg.com

7.7.12.6.1 FieldCalStrain() Shunt Calibration Concepts
1. Shunt calibration does not calibrate the strain gage itself.

2. Shunt calibration does compensate for long leads and non-linearity in the
resistive bridge. Long leads reduce sensitivity because of voltage drop.
FieldCalStrain() uses the known value of the shunt resistor to adjust the gain
(multiplier / span) to compensate. The gain adjustment (S) is incorporated by
FieldCalStrain() with the manufacturer's gage factor (GF), becoming the
adjusted gage factor (GFaqj), which is then used as the gage factor in
StrainCalc(). GF is stored in the CAL file and continues to be used in
subsequent calibrations. Non-linearity of the bridge is compensated for by
selecting a shunt resistor with a value that best simulates a measurement near
the range of measurements to be made. Strain-gage manufacturers typically
specify and supply a range of resistors available for shunt calibration.

3. Shunt calibration verifies the function of the CR1000.

4. The zero function of FieldCalStrain() allows a particular strain to be set as an
arbitrary zero, if desired. Zeroing is normally done after the shunt calibration.

Zero and shunt options can be combined ina single CRBasic program.

238

Section 7. Installation

CRBasic example FieldCalStrain() Calibration (. 239) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain Gage with RC Resistor Shunt p. 239 is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Q
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control . 525 menu to delete .cal files, and then send the
demonstration program again to the CR1000.

Example Case: A 1000 Q strain gage is placed into a resistive bridge at position
R1. The resulting circuit is a quarter-bridge strain gage with alternate
shunt-resistor (Rc) positions shown. Gage specifications indicate that the gage
factor is 2.0 and that with a 249 kQ shunt, measurement should be about 2000
microstrain.

Send CRBasic example FieldCalStrain() Calibration (. 239 as a program to a
CR1000 datalogger.

7.7.12.6.2 FieldCalStrain() Shunt Calibration Example

CRBasic example FieldCalStrain() Calibration (p. 239) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain Gage with RC Resistor Shunt . 239 is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Q
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control p. 525) menu to delete .cal files, and then send the
demonstration program again to the CR1000.

Case: A 1000 Q strain gage is placed into a resistive bridge at position R1. The
resulting circuit is a quarter-bridge strain gage with alternate shunt-resistor (Rc)
positions shown. Gage specifications indicate that the gage factor is 2.0 and that
with a 249 kQ shunt, measurement should be about 2000 microstrain.

Send CRBasic example FieldCalStrain() Calibration (p. 239) as a program to a
CR1000 datalogger.

FIGURE 59: Quarter-Bridge Strain
Gage with RC Resistor Shunt

differential high

differential low

239

Section 7. Installation

CRBasic EXAMPLE 47: FieldCalStrain() Calibration

'This program example demonstrates the use of the FieldCalStrain() instruction by measuring
'quarter-bridge strain-gage measurements.

PubTic Raw_mVperV
Public MicroStrain

"Variables that are arguments in the Zero Function
PubTlic Zero_Mode
PubTlic Zero_mVperV

'"Variables that are arguments in the Shunt Function
PubTic Shunt_Mode

PubTic KnownRes

Public GF_Adj

PubTlic GF_Raw

e s Tables ---—--m-mmmmmmm e
DataTable(CalHist,NewFieldCal,50)

SampleFieldCal
EndTable

IS S PROGRAM S S S
BeginProg

'Set Gage Factors
GF_Raw = 2.1
GF_Adj = GF_Raw 'The adj Gage factors are used in the calculation of uStrain

'"If a calibration has been done, the following will Tload the zero or
'Adjusted GF from the Calibration file
LoadFieldCal(True)

Scan(100,mSec,100,0)
'Measure Bridge Resistance
BrFull(Raw_mVperVv,1,mv25,1,vx1,1,2500,True ,True ,0,250,1.0,0)

"Calculate Strain for 1/4 Bridge (1 Active Element)
StrainCalc(microStrain,1,Raw_mVperV,Zero_mVperV,1,GF_Adj,0)

'Steps (1) & (3): Zero Calibration

'Balance bridge and set Zero_Mode = 1 in numeric monitor. Repeat after

'shunt calibration.
FieldCalStrain(10,Raw_mVperV,1,0,Zero_mVperV,Zero_Mode,0,1,10,0 ,microStrain)

'Step (2) Shunt Calibration

'After zero calibration, and with bridge balanced (zeroed), set

'KnownRes = to gage resistance (resistance of gage at rest), then set
'Shunt_Mode = 1. When Shunt_Mode increments to 3, position shunt resistor
'and set KnownRes = shunt resistance, then set Shunt_Mode = 4.
FieldCalStrain(13,MicroStrain,1,GF_Adj,0,Shunt_Mode,KnownRes,1,10,GF_Raw,0)

CallTable CalHist
NextScan
EndProg

240

Section 7. Installation

7.7.12.6.3 FieldCalStrain() Quarter-Bridge Shunt Example

With CRBasic example FieldCalStrain() Calibration . 239) sent to the CR1000,
and the strain gage stable, use the CR1000KD Keyboard/Display or software
numeric monitor to change the value in variable KnownRes to the nominal
resistance of the gage, 1000 Q, as shown in figure Strain Gage Shunt Calibration
Start p. 241. Set Shunt_Mode to 1 to start the two-point shunt calibration. When
Shunt_Mode increments to 3, the first step is complete.

To complete the calibration, shunt R1 with the 249 kQ resistor. Set variable
KnownRes to 249000. As shown in figure Strain Gage Shunt Calibration Finish
(- 241), set Shunt_Mode to 4. When Shunt_Mode = 6, shunt calibration is
complete.

FIGURE 60: Strain Gage Shunt
Calibration Start

Faw mpety -1.109
MicroStrain 2117
fero Mode 0
fero mypery 0.0000
KnownFes 1,000
GF Adj 2.100
GF Raw 2.100

FIGURE 61: Strain Gage Shunt
Calibration Finish

Faw mpety -1.109
MicroStrain 225
fero Mode 0
fero mypery 0.0000
Shunt Mode B
KnownFes 249 000
GF Adj -2.008
GF Raw 2.000

7.7.12.6.4 FieldCalStrain() Quarter-Bridge Zero

Continuing from FieldCalStrain() Quarter-Bridge Shunt Example . 241), keep the
249 kQ resistor in place to simulate a strain. Using the CR1000KD
Keyboard/Display or software numeric monitor, change the value in variable
Zero_Mode to 1 to start the zero calibration as shown in figure Zero Procedure

241

242

Section 7. Installation

Start p. 242. When Zero_Mode increments to 6, zero calibration is complete as
shown in figure Zero Procedure Finish p. 242).

FIGURE 62: Zero Procedure Start

Faw mpery -1.110
MicroStrain -2.214
fero Mode

fero mypery 0.0000
Shunt Mode B
KnownFes 249 000
GF Adj -2.010
GF Raw 2.000

FIGURE 63: Zero Procedure Finish

Faw mypery’ -1.110
MicroStrain]
fero Mode B
Jero mypery -1.1096
Shunt Mode 5]
KnownFes 249 000
GF Adj -2.010
GF Raw 2.000

7.7.13 Measurement: Fast Analog Voltage

Measurement speed requirements vary widely. The following are examples:

An agricultural weather station measures weather and soil sensors once
every 10 seconds.

A station that warns of rising water in a stream bed measures at 10 Hz.
A station measuring mechanical stress measures at 1000 Hz.

A station measuring the temperature of a grass fire measures at 93750
Hz.

TABLE: Maximum Measurement Speeds Using VoltSE() (p. 243 lists maximum
speeds at which single-ended voltage inputs can be measured using the VoltSE()
instruction. Differential measurements are slower. That fact that you can program
the CR1000 to measure at these speeds, however, does not mean necessarily that
you should. The integrity of measurements begins to come into question when
JIN1, which is the reciprocal of signal integration time, is larger than 15000, and

Section 7. Installation

when Settling Time is less than 500 pus. While programming the CR1000 for fast
measurements, you must balance the need for data integrity with the need for

speed.

TABLE 28: Maximum Measurement Speeds Using VoltSE()

VoItSE() Measurement Type

Maximum Speed on n Channels

Fast Scan() 100 Hz,n= 16
1000 Hz, n =1
1.2 >
Cluster Burst 500 Hz, n =3

Dwell Burst'>

<1735 samples @ 2000 Hz, n =1

! Bursts are programmed episodes of rapid analog measurements that cannot
be maintained continuously. Input channels can be single-ended SE terminals
or differential H/L terminal pairs. Bursts require pipeline mode and may
require additional Scan() buffers. Test specific applications thoroughly before
deployment.
2 Cluster bursts loop through a series of channels, one measurement per
channel, until the programmed loop count is complete.

3 Dwell bursts sit on one channel until the programmed measurement count is

complete.

You can make fast measurements with the following instructions:

e Single-Ended Instrucitons:

o

o

o Differential Instructions:

TCSe()
BrHalf()
BrHalf3W()
BrHalf4W()
Therm107()
Therm108()

Therm109()

VoltDiff()
TCDiff()
BrFull()

BrFulléW()

243

Section 7. Installation

To do this, use the same programming techniques demonstrated in the following
example programs. Actual measurements speeds will vary.

CRBasic EXAMPLE 48: Fast Analog Voltage Measurement: Fast Scan()

'This program makes 100 Hz measurements of one single-ended channel. The
"following programming features are key to making this application work:

'--PipelineMode enabled
'--Measurement speed set with Scan() Interval=10 and Units=mSec

'--Scan() BufferOption increased to 5

PipeLineMode
PubTic FastContinuousSE(1)

DataTable(FastContinuousSEData,1,-1)
Sample(1,FastContinuousSE(Q),FP2)
EndTable

BeginProg

'Scan(Interval,Units,BufferOption,Count)
Scan(10,mSec,5,0)

"VoltSe(Dest,Reps,Range, SEChan,MeasOff,SettlingTime,Integ,Mult,Offset)
VoltSe(FastContinuousSE(),1,mv2_5,1,False,100,100,1.0,0)

CallTable FastContinuousSEData
NextScan

244

EndProg

Section 7.

Installation

CRBasic EXAMPLE 49: Analog Voltage Measurement: Cluster Burst

'This program makes 500 measurements of two single-ended channels at 500 Hz.
'Sample pattern is 1,2,1,2. Measurement cycle is repeated every 1 Sec. The following
'programming features are key to making this application work:

'--PipelingMode enabled.

'--Measurement speed set as follows:

' Scan() Interval=1l, Units=Sec.

' SubScan() SubInterval=2, Units=mSec, and Count= 500.

'--Scan() BufferOption increased to 5.

'--At this measurement speed, CR1000 processing is not fast enough to keep up with the
' sample rate. The result is a periodic skipped scan, which allows processing

' to catch up. To program for measurements without skipped scans, modify the

' measurement speed. For example.set Scan() Interval=3, Units=Sec, SubScan()

' SubInterval=3, Units=mSec, and Count=666.

PipelLineMode

Pub1lic ClusterBurstSE(2)

DataTable(ClusterBurstSEData,1,-1)
Sample(2,ClusterBurstSE(),FP2)

EndTable

BeginProg

'Scan(Interval,Units,BufferOption,Count)
Scan(1,Sec,5,0)

'SubScan(SubInterval, Units,Count)
SubScan(2,mSec,500)

'VoltSE(Dest,Reps,Range,SEChan,MeasOff,SettlingTime,Integ,Mult,0ffset)
Vol1tSe(ClusterBurstSE(),2,mvV2_5,1,False,100,100,1.0,0)

CallTable ClusterBurstSEData

NextSubScan
NextScan

EndProg

245

Section 7. Installation

246

CRBasic EXAMPLE 50: Dwell Burst Measurement

'This program makes 1735 measurements of two single-ended channels at

'2000 Hz. Sample pattern is 1,1,1..., pause, 2,2,2..., pause.

'"Measurement cycle is repeated every 2 Sec. The following programming features are
'key to making this application work:

'--PipelineMode.enabled.

'--Dash (-) placed before channel number.

'--Measurement count per channel set with VoltSE() Count=1735.
'--Measurement speed set with VoltSE() SampleInterval (us)=500.
'--Scan() BufferOption increased to 5.

"NOTES :

'--Sampling occurs at the beginning of the Scan() interval.

'--Al11 measurements for one channel are placed in a single large variable array.
'--The large array is stored in a single long record in the data table.

'--The exact sampling interval is calculated as follows:

" SampleTime = 1.085069 * INT((SampleInterval / 1.085069) + 0.5)

'--At scan interval=2 s, CR1000 processing is not fast enough to keep up with the

' 93750 Hz measurements. The result is that the CR1000 skips every other scan to

' catch up. If no skipped scans is wanted more than maximum speed, make adjustments
' to the program. For example, set Scan() Interval=3.

PipeLineMode

Pub1lic Dwel1BurstSE1(1735)
Pub1lic Dwel1BurstSE2(1735)

DataTable(Dwell1BurstSEData,1,-1)
Sample(1735,Dwel1BurstSE1(),FP2)
Sample(1735,Dwel1BurstSE2(),FP2)

EndTable

BeginProg

'Scan(Interval,Units,BufferOption,Count)
Scan(2,Sec,5,0)

"VoltSE(Dest, Count,Range, -SEChan,MeasOff,SampleInterval (us),Integ,Mult,Offset)
Vol1tSe(Dwel1BurstSE1(),1735,mvV2_5,-1,False,500,100,1.0,0)
Vol1tSe(Dwel1BurstSE2(),1735,mvV2_5,-2,False,500,100,1.0,0)

CallTable Dwell1BurstSEData
NextScan
EndProg

Section 7. Installation

TABLE 29: Voltage Measurement Instruction Parameters for Dwell Burst

Parameters Description

A variable array dimensioned to store all measurements from one input. For
example, the declaration,
Dim FastTemp(500)

Destinati . . C .
estnation dimensions array FastTemp() to store 500 measurements, which is one second of
data at 500 Hz or one-half second of data at 1000 Hz.
The dimension can be any integer from 1 to 65535.
The number of measurements to make on one channel. This number usually
Count (was Repetitions) equals the number of elements dimensioned in the Destination array.

Valid arguments range from 1 to 65535.

The analog-input voltage range to be used during measurements. No change from
Voltage Range standard measurement mode. Use any valid voltage range. However, ranges
appended with C cause measurements to be slower.

The single-ended analog-input terminal number preceded by a dash (-). Valid

Single-Ended Channel arguments range from -7 to -16.

IR O The differential analog input terminal number preceded by a dash (-). Valid
arguments range from -7 to -8.

Measure Offset No change from standard measurement mode. For fastest rate, set to False.

Measurements per Excitation | Must equal the value entered in Repetitions.

Reverse Ex No change from standard measurement mode. For fastest rate, set to False.

Rev Diff No change from standard measurement mode. For fastest rate, set to False.

Sample interval in ps. This argument determines the measurement rate.
* 500 ps interval = 2000 Hz rate
* 750 ps interval = 1333.33 Hz rate

Samplelnterval (was
SettlingTime)

Ignored if set to an integer. Arguments _50H7z and _60H7 are valid for ac rejection

Integ but are probably not very useful in burst applications.

No change from standard measurement mode. Enter the proper multiplier. This is
Multiplier the slope of the linear equation that equates output voltage to the measured
phenomena. Any number greater or less than 0 is valid.

No change from standard measurement mode. Enter the proper offset. This is the
Offset Y intercept of the linear equation that equates output voltage to the measured
phenomena.

7.7.13.1 Tips — Fast Analog Voltage

e In the preceding examples, the CR1000 disables the auto self-calibration
to reach the stated measurement speeds. Disabling auto self-calibration
increases the risk of measurement errors, especially when the CR1000 is
exposed to temperature swings.

247

Section 7. Installation

248

When testing and troubleshooting fast measurements, the following
Status table registers may provide useful information:

o SkippedScan . 576
o MeasureTime . 571
o ProcessTime (. 579
o MaxProcTime . 570

o BuffDepth (. 563

o MaxBuffDepth (. 570

When the number of Scan()/NextScan BufferOptions is exceeded, a
skipped scan occurs, which means a measurement was missed.

Bursts have a duty cycle less than 100%. Assuming no other
measurement instructions are present in the program, each burst occurs at
the beginning of the Scan() Interval. During the rest of the scan, the
CR1000 catches up on overhead tasks and processes data stored in
buffers.

If you wish to account for the time needed in the Scan()/NextScan
Interval, consider the following two points:

o Status table MeasureTime (. 571) field reports the measurement time
that occupies the Scan()/NextScan Interval. MeasureTime includes
time needed to make measurements inside and outside
SubScan()/NextSubScan.

o NextScan needs 100 ps to run

One Scan()/NextScan buffer holds the raw measurements made in one
main scan, inside and outside the sub-scan.

For example, one execution of the following code sequence stores 30000
measurements in one buffer:

'Scan(Interval, Units, BufferOption, Count)
Scan(40,Sec,3,0)
SubScan(2,mSec,10000)
VoltSe(Measurement(),3,mv5000,[U6]1,False,150,250,1.0,0)
NextSubScan
NextScan

You can dwell burst more than one channel with the same program by
adding a voltage measurement instruction for each channel to be
measured. Channels will be measured in series.

The following points apply to cluster burst measurements:
o Measure smaller clusters for faster speeds.

o SubScan()/NextSubScan introduces potential problems. These are
discussed in SubScan() / Next Sub . 160).

Section 7.

Installation

o SubScan()/NextSubScan Counts cannot be larger than 65535.

o For SubScan()/NextSubScan to work, set Scan()/NextScan
Interval large enough for Counts to finish before the next

Scan()/NextScan Interval.

7.7.14 Measurement: Excite, Delay, Measure

This example demonstrates how to make voltage measurements that require

excitation of controllable length prior to measurement.

Overcoming the delay

caused by a very long cable length on a sensor is a common application for this

technique.

CRBasic EXAMPLE 51: Measurement with Excitation and Delay

'sensor connections:

! Vx1 ------ SE1
! VX2 —----- DIFF 2 H
! DIFF 2 L ------ Ground Symbol

[

'Declare variables.
PubTic VoltageSE As Float
Public VoltageDIFF As Float

'Declare data table

DataTable (Voltage,True,-1)
Sample (1,VoltageSE,Float)
Sample (1,VoltageDIFF,Float)

EndTable

BeginProg
Scan(5,sec,0,0)
ExciteV (Vx1,2500,0) '<<<<Note: Delay = 0

Delay (0,1000,mSec)
VoltSe (VoltageSE,1,mv5000,1,1,0,250,1.0,0)

ExciteV (Vx2,2500,0) '<<<<Note: Delay = 0
Delay (0,1000,mSec)
VoltDiff (VoltageDIFF,1,mvV5000,2,True,0,250,1.0,0)

'"Write data to final-data memory
CallTable Voltage

NextScan

EndProg

'"Excite - delay 1 second - single-ended measurement:

"Excite - delay 1 second - differential measurement:

'"This program example demonstrates how to perform an excite/delay/measure operation.
'"In this example, the system requires 1 s of excitation to stabilize before the sensors

'are measured. A single-ended measurement is made, and a separate differential measurement
'is made. To see this program in action, connect the following terminal pairs to simulate

'"With these connections made, variables VoltageSE and VoltageDiff will equal 2500 mV.

249

Section 7. Installation

7.7.15 Serial 1/0: SDI-12 Sensor Support — Details

Related Topics:

» SDI-12 Sensor Support — Overview (p. 75)

» SDI-12 Sensor Support — Details (p. 407)

» Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 250)

See the table CR1000 Terminal Definitions (p. 58 for C terminal assignments for
SDI-12 input. Multiple SDI-12 sensors can be connected to each configured
terminal. If multiple sensors are wired to a single terminal, each sensor must have
a unique address. SDI-12 standard v 1.3 sensors accept addresses 0 through 9, a
through z, and A through Z. For a CRBasic programming example demonstrating
the changing of an SDI-12 address on the fly, see Campbell Scientific publication
PS200/CH200 12 V Charging Regulators, which is available at
www.campbellsci.com.

The CR1000 supports SDI-12 communication through two modes — transparent
mode and programmed mode.

e Transparent mode facilitates sensor setup and troubleshooting. It allows
commands to be manually issued and the full sensor response viewed.
Transparent mode does not record data.

e Programmed mode automates much of the SDI-12 protocol and provides
for data recording.

7.7.15.1 SDI-12 Transparent Mode

System operators can manually interrogate and enter settings in probes using
transparent mode. Transparent mode is useful in troubleshooting SDI-12 systems
because it allows direct communication with probes.

Transparent mode may need to wait for commands issued by the programmed
mode to finish before sending responses. While in transparent mode, CR1000
programs may not execute. CR1000 security may need to be unlocked before
transparent mode can be activated.

Transparent mode is entered while the PC is in comms with the CR1000 through a
terminal emulator program. It is easily accessed through a terminal emulator.
Campbell Scientific DevConfig program has a terminal utility, as to other
datalogger support software (p. 89. Keyboard displays cannot be used.

To enter the SDI-12 transparent mode, enter the datalogger support software
terminal emulator as shown in the figure Entering SDI-12 Transparent Mode (p.
251.. Press Enter until the CR1000 responds with the prompt CR1000>. Type
SDI12 at the prompt and press Enter. In response, the query Enter Cx Port is
presented with a list of available ports. Enter the port number assigned to the
terminal to which the SDI-12 sensor is connected. For example, port 1 is entered
for terminal C1. An Entering SDI12 Terminal response indicates that SDI-12
transparent mode is active and ready to transmit SDI-12 commands and display
responses.

250

Section 7. Installation

FIGURE 64: Entering SDI-12 Transparent Mode

Deployment [Logger Control \ Data Momtor] File Control [Send 0S [Settings Editor | Terminal

CR >

CR >SDI12

Enter Cx Port

1

Entering SDI12 Terminal

Exit SDI12 Terminal

v | All Caps Echo Input Pause | Start Export Send File

7.7.15.1.1 SDI-12 Transparent Mode Commands

Commands have three components:

e Sensor address (a) — a single character, and is the first character of the
command. Sensors are usually assigned a default address of zero by the
manufacturer. Wildcard address (?) is used in the Address Query
command. Some manufacturers may allow it to be used in other
commands.

e Command body (for example, M1) — an upper case letter (the
“command”) followed by alphanumeric qualifiers.

e Command termination (!) — an exclamation mark.

An active sensor responds to each command. Responses have several standard
forms and terminate with <CR><LF> (carriage return—line feed).

SDI-12 commands and responses are defined by the SDI-12 Support Group
(www.sdi-12.org) and are summarized in the table Standard SDI-12 Command &
Response Set . 251. Sensor manufacturers determine which commands to
support. The most common commands are detailed in the table SDI-12
Commands for Transparent Mode (p. 251).

251

Section 7. Installation

TABLE 30: SDI-12 Commands for Transparent Mode

Response?
Command Name Command Syntax’ P
Notes
Continuous
Break spacing for at least | None
12 milliseconds
Address Query 7 a<CR><LF>
Acknowledge Active a! a<CR><LF>

b<CR><LF> (support for this command is required only

1

Change Address aAb! if the sensor supports software changeable addresses)

Start Concurrent Measurement aC! atttnn<CR><LF>

Additional Concurrent aCl1! ... aC9! atttnn<CR><LF>

Measurements

Additional Concurrent

Measurements and Request aCCl1! ... aCC9! atttnn<CR><LF>

CRC

Send Data aDO0! ... aD9! a<values><CR><LF> or a<values><CRC><CR><LF>
allcccccccemmmmmmyvyxxx...xx<CR><LF>. For
example, 013CampbellCS1234003STD.03.01 means
address = 0, SDI-12 protocol version number = 1.3,

Send Identification al! manufacturer is Campbell Scientific, CS1234 is the
sensor model number (fictitious in this example), 003 is
the sensor version number, STD.03.01 indicates the
sensor revision number is .01.

Start Measurement’ aM! atttn<CR><LF>

tart M t R t

Sta; ! easurement and Reques aMC! atttn<CR><LF>

CRC

Additional Measurements’ aM1! ... aM9! atttn<CR><LF>

Additional Measurements and aMC1! . aMCO! atttn<CR><LF>

Request CRC3

Continuous Measurements aR0! ... aR9! a<values><CR><LF> (formatted like the D commands)

Continuous Measurements and a<values><CRC><CR><LF> (formatted like the D
aRCO0! ... aRC9!

Request CRC commands)

Start Verification® aVv! atttn<CR><LF>

UIf the terminator '!' is not present, the command will not be issued. The CRBasic SDI12Recorder() instruction,
however, will still pick up data resulting from a previously issued C! command.

2 Complete response string can be obtained when using the SDI12Recorder() instruction by declaring the

Destination variable as String.

3 This command may result in a service request.

Section 7. Installation

SDI-12 Address Commands

Address and identification commands request metadata about the sensor.
Connect only a single probe when using these commands.

2
Requests the sensor address. Response is address, a.
Syntax:
?1
aAb!

Changes the sensor address. a is the current address and b is the new address.
Response is the new address.

Syntax:
aAb!

al!

Requests the sensor identification. Response is defined by the sensor
manufacturer, but usually includes the sensor address, SDI-12 version,
manufacturer's name, and sensor model information. Serial number or other
sensor specific information may also be included.

Syntax:
aT!
An example of a response from the al! command is:
013NRSYSINC1000001.2101 <CR><LF>
where:

0 is the SDI-12 address.

13 is the SDI-12 version (1.3).
NRSYSINC indicates the manufacturer.
100000 indicates the sensor model.

1.2 is the sensor version.

101 is the sensor serial number.

SDI-12 Start Measurement Commands

Measurement commands elicite responses in the form:

atttnn

253

Section 7. Installation

where:

a is the sensor address

ttt is the time (s) until measurement data are available

nn is the number of values to be returned when one or more subsequent D!
commands are issued.

aMv!
Starts a standard measurement. Qualifier v is a variable between 1 and 9. If
supported by the sensor manufacturer, v requests variant data. Variants may
include alternate units (e.g., °C or °F), additional values (e.g., level and
temperature), or a diagnostic of the sensor internal battery.

Syntax:

aMv!

As an example, the response from the command SM! is:

500410
where:

5 reports the sensor SDI-12 address.

004 indicates the data will be available in 4 seconds.

10 indicates that 10 values will be available.

The command 5M7! elicites a similar response, but the appendage 7 instructs the
sensor to return the voltage of the internal battery.

aC!

Start concurrent measurement. The CR1000 requests a measurement, continues
program execution, and picks up the requested data on the next pass through the
program. A measurement request is then sent again so data are ready on the next
scan. The datalogger scan rate should be set such that the resulting skew between
time of measurement and time of data collection does not compromise data
integrity. This command is new with v. 1.2 of the SDI-12 specification.

Syntax:

aC!

Aborting an SDI-12 Measurement Command

A measurement command (M! or C!) is aborted when any other valid command is
sent to the sensor.

254

Section 7. Installation

SDI-12 Send Data Command

Send data commands are normally issued automatically by the CR1000 after the
aMv! or aCv! measurement commands. In transparent mode through CR1000
terminal commands, you need to issue these commands in series. When in
automatic mode, if the expected number of data values are not returned in
response to a aD0! command, the datalogger issues aD1!, aD2!, etc., until all data
are received. In transparent mode, you must do likewise. The limiting
constraint is that the total number of characters that can be returned to a aDv!
command is 35 (75 for aCv!). If the number of characters exceed the limit, the
remainder of the response are obtained with subsequent aDv! commands wherein
v increments with each iteration.

aDv!
Request data from the sensor.

Example Syntax:

abo!

SDI-12 Continuous Measurement Command (aR0! to aR9!)

Sensors that are continuously monitoring, such as a shaft encoder, do not require
an M command. They can be read directly with the Continuous Measurement
Command (RO! to R9!). For example, if the sensor is operating in a continuous
measurement mode, then aR0! will return the current reading of the sensor.
Responses to R commands are formatted like responses to send data (aDv!)
commands. The main difference is that R commands do not require a preceding
M command. The maximum number of characters returned in the <values> part
of the response is 75.

Each R command is an independent measurement. For example, aR5! need not
be preceded by aR0! through aR4!. If a sensor is unable to take a continuous
measurement, then it must return its address followed by <CR><LF> (carriage
return and line feed) in response to an R command. If a CRC was requested,
then the <CR><LF> must be preceded by the CRC.

aRv!

Request continuous data from the sensor.

Example Syntax:

aR5!

7.7.15.2 SDI-12 Recorder Mode

The CR1000 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

255

Section 7. Installation

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 250), issue CRLF (<Enter> key) until CR1000> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer to
Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12Recorder() instruction automates the issuance of commands and
interpretation of sensor responses. Commands entered into the SDIRecorder()
instruction differ slightly in function from similar commands entered in
transparent mode. In transparent mode, for example, the operator manually
enters aM! and aD0! to initiate a measurement and get data, with the operator
providing the proper time delay between the request for measurement and the
request for data. In programmed mode, the CR1000 provides command and
timing services within a single line of code. For example, when the
SDI12Recorder() instruction is programmed with the M! command (note that the
SDI-12 address is a separate instruction parameter), the CR1000 issues the aM!
and aD0! commands with proper elapsed time between the two. The CR1000
automatically issues retries and performs other services that make the SDI-12
measurement work as trouble free as possible. Table SDI-12Recorder()
Commands (p. 256) summarizes CR1000 actions triggered by some
SDI12Recorder() commands.

If the SDI12Recorder() instruction is not successful, NAN will be loaded into the
first variable. See NAN and £INF (p. 492) for more information.

TABLE 31: SDI-12 Commands for Programmed (SDIRecorder()) Mode

SDIRecorder() SDI-12 Command Sent
SDICommand Sensor Response’
Command Name Argument CR1000 Response Notes
CR1000: issues a?! command. Only one sensor can be
Address Quer o attached to the C terminal configured for SDI-12 for this
Y n command to elicit a response. Sensor must support this
command.
Change Address Ab! CR1000: issues aAb! command
Concurrent Measurement Cv!, CCv! CR1000: issues aCv! command

256

Sensor: responds with atttnn

CR1000: if 7t = 0, issues aDv! command(s). If nnn =0
then NAN put in the first element of the array.

Sensor: responds with data

CR1000: else, if ttt > 0 then moves to next CRBasic
program instruction

CR1000: at next time SDIRecorder() is executed, if
elapsed time < ttt, moves to next CRBasic instruction

Section 7. Installation

TABLE 31: SDI-12 Commands for Programmed (SDIRecorder()) Mode

SDIRecorder()
SDICommand

Command Name Argument

SDI-12 Command Sent

Sensor Response’
CR1000 Response Notes

CR1000: else, issues aDv! command(s)
Sensor: responds with data

CR1000: issues aCv! command (to request data for next
scan)

Cv
(note —no !
termination)?

Alternate Concurrent
Measurement

CR1000: tests to see if ttt expired. If ttt not expired, loads 1e9 into first variable
and then moves to next CRBasic instruction. If ttt expired, issues aDv!
command(s). See section Alternate Start Concurrent Measurement Command
(Cv) (p. 257)

Sensor: responds to aDv! command(s) with data, if any.
If no data, loads NAN into variable.

CR1000: moves to next CRBasic instruction (does not
re-issue aCv! command)

Send Identification 1!

CR1000: issues al! command

Start Measurement M!, Mv!, MCv!

CR1000: issues aMv! command
Sensor: responds with atttnn

CR1000: If nnn = 0 then NAN put in the first element of
the array.

CR1000: waits until ttt> seconds (unless a service
request is received). Issues aDv! command(s). If a
service request is received, issues aDv! immediately.

Sensor: responds with data

Continuous Measurements Rv!, RCvV!

CR1000: issues aRv! command

Start Verification V!

CR1000: issues aV! command

ISee table SDI-12 Commands for Transparent Mode (. 251 for complete sensor responses.

2Use variable replacement in program to use same instance of SDI12Recorder() as issued aCV! (see the CRBasic
example Using Alternate Concurrent Command (aC) (p. 261)).

3Note that ttt is local only to the SDIRecorder() instruction. If a second SDIRecorder() instruction is used, it will

have its own ttt.

7.7.15.2.1

Alternate Start Concurrent Measurement Command

Note aCv and aCv! are different commands — aCv does not end with !.

The SDIRecorder() aCv command facilitates using the SDI-12 standard Start
Concurrent command (aCv!) without the back-to-back measurement sequence
normal to the CR1000 implementation of aCv!.

257

Section 7. Installation

Consider an application wherein four SDI-12 temperature sensors need to be
near-simultaneously measured at a five minute interval within a program that
scans every five seconds. The sensors requires 95 seconds to respond with data
after a measurement request. Complicating the application is the need for
minimum power usage, so the sensors must power down after each measurement.

This application provides a focal point for considering several measurement
strategies. The simplest measurement is to issue a M! measurement command to
each sensor as shown in the following CRBasic example:

PubTlic BatteryVolt
Public Templ, Temp2, Temp3, Temp4

BeginProg
Scan(5,Sec,0,0)

"Non-SDI-12 measurements here

SDI12Recorder(Templ,1,0,"M!",1.0,0)
SDI12Recorder(Temp2,1,1,"M!",1.0,0)
SDI12Recorder(Temp3,1,2,"M!",1.0,0)
SDI12Recorder(Temp4,1,3,"M!",1.0,0)

NextScan
EndProg

However, the code sequence has three problems:

1. It does not allow measurement of non-SDI-12 sensors at the required
frequency because the SDI12Recorder() instruction takes too much time.

2. It does not achieve required five-minute sample rate because each
SDI12Recorder() instruction will take about 95 seconds to complete before
the next SDI12Recorder() instruction begins, resulting is a real scan rate of
about 6.5 minutes.

3. There is a 95 s time skew between each sensor measurement.

Problem 1 can be remedied by putting the SDI-12 measurements in a
SlowSequence scan. Doing so allows the SDI-12 routine to run its course
without affecting measurement of other sensors, as follows:

PubTic BatteryVolt
Public Temp(4)

BeginProg

Scan(5,Sec,0,0)
"Non-SDI-12 measurements here
NextScan

SlowSequence
Scan(5,Min,0,0)
SDI12Recorder(Temp(1),1,0,"M!",1.0,0
SDI12Recorder(Temp(2),1,1,"M!",1.0,0
SDI12Recorder(Temp(3),1,2,"M!",1.0,0
SDI12Recorder(Temp(4),1,3,"M!",1.0,0
NextScan

)
)
’)
)

258

Section 7. Installation

EndSequence

EndProg

However, problems 2 and 3 still are not resolved. These can be resolved by using
the concurrent measurement command, C!. All measurements will be made at
about the same time and execution time will be about 95 seconds, well within the
5 minute scan rate requirement, as follows:

PubTlic BatteryVolt
Public Temp(4)

BeginProg

Scan(5,Sec,0,0)
"Non-SDI-12 measurements here
NextScan

STowSequence
Scan(5,Min,0,0)
SDI12Recorder(Temp(1),1,0,"C!",1.0,0)
SDI12Recorder(Temp(2),1,1,"C!",1.0,0)
SDI12Recorder(Temp(3),1,2,"C!",1.0,0)
SDI12Recorder(Temp(4),1,3,"C!",1.0,0)
NextScan

EndProg

A new problem introduced by the C! command, however, is that it causes high
power usage by the CR1000. This application has a very tight power budget.
Since the C! command reissues a measurement request immediately after
receiving data, the sensors will be in a high power state continuously. To remedy
this problem, measurements need to be started with C! command, but stopped
short of receiving the next measurement command (hard-coded part of the C!
routine) after their data are polled. The SDI12Recorder() instruction C
command (not C!) provides this functionality as shown in CRBasic example
Using Alternate Concurrent Command (aC) . 261). A modification of this
program can also be used to allow near-simultaneous measurement of SDI-12
sensors without requesting additional measurements, such as may be needed in an
event-driven measurement.

Note When only one SDI-12 sensor is attached, that is, multiple sensor
measurements do not need to start concurrently, another reliable method
for making SDI-12 measurements without affecting the main scan is to use
the CRBasic SlowSequence instruction and the SDI-12 M! command.
The main scan will continue to run during the ttt time returned by the
SDI-12 sensor. The ftrick is to synchronize the returned SDI-12 values
with the main scan.

aCv
Start alternate concurrent measurement.

Syntax:

aCv

259

260

Section 7. Installation

CRBasic EXAMPLE 52: Using SDI12Sensor() to Test Cv Command

'This program example demonstrates how to use CRBasic to simulate four SDI-12 sensors. This program
can be used to

'produce measurements to test the CRBasic example Using Alternate Concurrent Command (aC) (p. 261).
Public Temp(4)

DataTable(Temp,True,0)
DataInterval(0,5,Min,10)
Sample(4,Temp(),FP2)

EndTable

BeginProg
Scan(5,Sec,0,0)

PanelTemp(Temp(1),250) 'Measure CR1000 wiring panel temperature to use as base for
'simulated temperatures Temp(2), Temp(3), and Temp(4).

Temp(2) = Temp(1l) + 5
Temp(3) = Temp(1l) + 10
Temp(4) = Temp(1l) + 15

CallTable Temp
NextScan

SlowSequence
Do
'Note SDI12SensorSetup / SDI12SensorResponse must be renewed
'after each successful SDI12Recorder() poll.
SDI12SensorSetup(1,1,0,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp (1))
Loop
EndSequence

SlowSequence
Do
SDI12SensorSetup(1,3,1,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(2))
Loop
EndSequence

SlowSequence
Do
SDI12SensorSetup(1,5,2,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(3))
Loop
EndSequence

Section 7. Installation

SlowSequence
Do
SDI12SensorSetup(1,7,3,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(4))
Loop
EndSequence

EndProg

CRBasic EXAMPLE 53: Using Alternate Concurrent Command (aC)

'"This program example demonstrates the use of the special SDI-12 concurrent measurement
"command (aC) when back-to-back measurements are not desired, as can occur in an application
"that has a tight power budget. To make full use of the aC command, measurement control
"logic is used.

'Declare variables
Dim X

PubTic RunSDI12
Pub1lic Cmd(4)
Public Temp_Tmp(4)
Public Retry(4)
PubTic IndDone(4)
Public Temp_Meas(4)
Pub1lic GroupDone

'Main Program
BeginProg

'"Preset first measurement command to C!
For X =1 To 4
cnd(X) = "CI"
Next X

'Set five-second scan rate
Scan(5,Sec,0,0)

'Other measurements here

'Set five-minute SDI-12 measurement rate
If TimeIntoInterval(0,5,Min) Then RunSDI12 = True

'"Begin measurement sequence
If RunSDI12 = True Then

For X =1 To 4
Temp_Tmp(X) = 2e9 'when 2e9 changes, indicates a change
Next X

261

Section 7. Installation

'Measure SDI-12 sensors

SDI12Recorder(Temp_Tmp(1),1,0,cmd(1),1.0,0)
SDI12Recorder(Temp_Tmp(2),1,1,cmd(2),1.0,0)
SDI12Recorder(Temp_Tmp(3),1,2,cmd(3),1.0,0)
SDI12Recorder(Temp_Tmp(4),1,3,cmd(4),1.0,0)

'"Control Measurement Event

For X =1 To 4
If cmd(X) = "C!" Then Retry(X) = Retry(X) + 1
If Retry(X) > 2 Then IndDone(X) = -1

'"Test to see if ttt expired. If ttt not expired, Toad "1e9" into first variable
"then move to next instruction. If ttt expired, issue aDv! command(s).
If ((Temp_Tmp(X) = 2e9) OR (Temp_Tmp(X) = 1e9)) Then

cmd(X) = "C" 'Start sending "C" command.
ElseIf(Temp_Tmp(X) = NAN) Then "Comms failed or sensor not attached
cmd(X) = "CI" 'Start measurement over

Else 'C!/C command sequence complete
Move (Temp_Meas(X) ,1,Temp_Tmp(X),1) 'Copy measurements to SDI_Val(10)
cnd(X) = "CI" 'Start next measurement with "C!"
IndDone(X) = -1
EndIf
Next X

'Summarize Measurement Event Success
For X =1 To 4

GroupDone = GroupDone + IndDone(X)
Next X

'Stop current measurement event, reset controls
If GroupDone = -4 Then

RunSDI12 = False

GroupDone = 0

For X =1 To 4
IndDone(X) = 0
Retry(X) = 0
Next X
Else
GroupDone = 0
EndIf
EndIf '"End of measurement sequence
NextScan
EndProg

7.7.15.2.2 SDI-12 Extended Command Support

SDI12Recorder() sends any string enclosed in quotation marks in the Command
parameter. If the command string is a non-standard SDI-12 command, any
response is captured into the variable assigned to the Destination parameter, so
long as that variable is declared As String. CRBasic example Use of an SDI-12
Extended Command (p. 263 shows appropriate code for sending an extended
SDI-12 command and receiving the response. The extended command feature
has no built-in provision for responding with follow-up commands. However,

262

Section 7. Installation

the program can be coded to parse the response and issue subsequent SDI-12
commands based on a customized evaluation of the response. See Serial I/O
Input Programming Basics (p. 296).

CRBasic EXAMPLE 54: Using an SDI-12 Extended Command

'"This program example demonstrates the use of SDI-12 extended commands. In this example,
'a temperature measurement, tt.tt, is sent to a CH200 Charging Regulator using the command
'XTtt.tt!'. The response from the CH200 should be 'O0OK', if 0 is the SDI-12 address.
'Declare Variables

Public PTemp As Float

PubTic SDI12command As String

Public SDI12result As String

'"Main Program

Scan(20,Sec,3,0)
PanelTemp(PTemp,250)
SDI12command = "XT" & FormatFloat(PTemp,"%4.2f") & "!"
SDI12Recorder(SDI12result,1,0,SDI12command,1.0,0)

7.7.15.3SDI-12 Sensor Mode

The CR1000 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 250), issue CRLF (<Enter> key) until CR1000> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer to
Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12SensorSetup() / SDI12SensorResponse() instruction pair programs
the CR1000 to behave as an SDI-12 sensor. A common use of this feature is the
transfer of data from the CR1000 to other Campbell Scientific dataloggers over a
single-wire interface (terminal configured for SDI-12 to terminal configured for
SDI-12), or to transfer data to a third-party SDI-12 recorder.

Details of using the SDI12SensorSetup() / SDI12SensorResponse() instruction
pair can be found in the CRBasic Editor Help. Other helpful tips include:

Concerning the Reps parameter in the SDI12SensorSetup(), valid Reps when
expecting an aMx! command range from 0 to 9. Valid Reps when expecting an
aCx! command are 0 to 20. The Reps parameter is not range-checked for valid
entries at compile time. When the SDI-12 recorder receives the sensor response
of atttn to a aMx! command, or atttnn to a aCx! command, only the first digit n,
or the first two digits nn, are used. For example, if Reps is mis-programmed as

263

Section 7. Installation

264

123, the SDI-12 recorder will accept only a response of n = 1 when issuing an
aMx! command, or a response of nn = 12 when issuing an aCx! command.

When programmed as an SDI-12 sensor, the CR1000 will respond to SDI-12

commands M, MC, C, CC, R, RC, V, ?, and I. See table SDI-12 Commands for

Transparent Mode (p. 251) for full command syntax. The following rules apply:

1. A CR1000 can be assigned only one SDI-12 address per SDI-12 port. For

example, a CR1000 will not respond to both 0M! AND 1M! on SDI-12 port

C1. However, different SDI-12 ports can have unique SDI-12 addresses.
Use a separate SlowSequence for each SDI-12 port configured as a sensor.

2. The CR1000 will handle additional measurement (aMx!) commands.

an SDI-12 recorder issues aMx! commands as shown in CRBasic example

SDI-12 Sensor Setup (p. 264), measurement results are returned as listed in table

SDI-12 Sensor Setup — Results (p. 265).

CRBasic EXAMPLE 55: SDI-12 Sensor Setup

PubTic PanelTemp
Public Batt_volt
Pub1lic SDI_Source(10)

BeginProg
Scan(5,Sec,0,0)

PanelTemp(PanelTemp,250)
Battery(batt_volt)

SDI_Source(1l) = PanelTemp
SDI_Source(2) = batt_volt
SDI_Source(3) = PanelTemp * 1.8 + 32
SDI_Source(4) = batt_volt
SDI_Source(5) = PanelTemp
SDI_Source(6) = batt_volt * 1000
SDI_Source(7) = PanelTemp * 1.8 + 32
SDI_Source(8) = batt_volt * 1000
SDI_Source(9) = Status.SerialNumber
SDI_Source(10) = Status.LithiumBattery

NextScan
STowSequence

Do
SDI12SensorSetup(10,1,0,1)
Delay(1,500,mSec)
SDI12SensorResponse(SDI_Source)
Loop

EndSequence
EndProg

'This program example demonstrates the use of the SDI12SensorSetup()/SDI12SensorResponse()
"instruction pair to program the CR1000 to emulate an SDI-12 sensor. A common use of this
"feature is the transfer of data from the CR1000 to SDI-12 compatible instruments, including
'other Campbell Scientific dataloggers, over a single-wire interface (SDI-12 port to

'SDI-12 port). The recording datalogger simply requests the data using the aDO! command.

"temperature, degrees C
'primary power, volts dc
"temperature, degrees F
'"primary power, volts dc
"temperature, degrees C
'"primary power, millivolts dc
"temperature in degrees F
'primary power, millivolts dc
'serial number

"data backup battery, V

When

Section 7. Installation

TABLE 32: SDI-12 Sensor Configuration CRBasic Example — Results

Measurement
Command from
SDI-12 Recorder

Source Variables
Accessed from the
CR1000 acting as a

SDI-12 Sensor

Contents of
Source Variables

oM!

Source(l), Source(2)

Temperature °C, battery
voltage

0Mo!

Same as OM!

oM1!

Source(3), Source(4)

Temperature °F, battery
voltage

oM2!

Source(5), Source(6)

Temperature °C, battery
mV

oM3!

Source(7), Source(8)

Temperature °F, battery
mV

oM4!

Source(9), Source(10)

Serial number, lithium
battery voltage

7.7.15.4 SDI-12 Power Considerations

When a command is sent by the CR1000 to an SDI-12 probe, all probes on the
same SDI-12 port will wake up. However, only the probe addressed by the
datalogger will respond. All other probes will remain active until the timeout

period expires.
Example:
Probe: Water Content

Power Usage:

e Quiescent: 0.25 mA

e Measurement: 120 mA

e Measurement time: 15 s

e Active: 66 mA

e Timeout: 15s

Probes 1, 2, 3, and 4 are connected to SDI-12 / control port C1.

The time line in table Example Power Usage Profile for a Network of SDI-12
Probes (p. 266) shows a 35 second power-usage profile example.

For most applications, total power usage of 318 mA for 15 seconds is not
excessive, but if 16 probes were wired to the same SDI-12 port, the resulting

265

Section 7.

Installation

power draw would be excessive. Spreading sensors over several SDI-12 terminals
will help reduce power consumption.

TABLE 33: Example Power Usage Profile for a Network of SDI-12 Probes

Time into All Time
Measuremen Probes Out Probe 1 Probe 2 Probe 3 Probe 4 Total
t Process (s) | Command Awake Expires (mA") (mA") (mA") (mA") mA
Sleep 0.25 0.25 0.25 0.25 1
1 iMm! Yes 120 66 66 66 318
2-14 120 66 66 66 318
15 Yes 120 66 66 66 318
16 1D0! Yes 66 66 66 66 264
17-29 66 66 66 66 264
30 Yes 66 66 66 66 264
Sleep 0.25 0.25 0.25 0.25 1
! Current use:
0.25 mA = sleep
66 mA = awake

120 mA = measuring

266

7.7.16 Compiling: Conditional Code

This feature circumvents system filters that look at file extensions for specific
loggers; it makes possible the writing of a single file of code to run on multiple
models of CRBasic dataloggers.

When a CRBasic user program is sent to the CR1000, an exact copy of the
program is saved as a file on the CPU: drive (p. 428. A binary version of the
program, the "operating program", is created by the CR1000 compiler and written
to Operating Memory (. 429, http://www.). This is the program version that runs
the CR1000.

CRBasic allows definition of conditional code, preceded by a hash character (#),
in the CRBasic program that is compiled into the operating program depending on
the conditional settings. In addition, all Campbell Scientific dataloggers (except
the CR200X) accept program files, or Include() instruction files, with .DLD
extensions.

Note Do not confuse CRBasic files with .DLD extensions with files of
.DLD type used by legacy Campbell Scientific dataloggers.

As an example, pseudo code using this feature might be written as:

Const Destination = LoggerType
#If Destination = 3000 Then
<code specific to the CR3000>

http://www./

Section 7. Installation

#E1seIf Destination = 1000 Then
<code specific to the CR1000>
#ETselIf Destination = 800 Then
<code specific to the CR800>
#El1seIf Destination = 6 Then
<code specific to the CR6>
#ETse
<code to include otherwise>
#EndIf

For example, this logic allows a simple change of a constant to direct, which
measurement instructions to include.

CRBasic Editor features a pre-compile option that enables the creation of a
CRBasic text file with only the desired conditional statements from a larger
master program. This option can also be used at the pre-compiler command line
by using -p <outfile name>. This feature allows the smallest size program file
possible to be sent to the CR1000, which may help keep costs down over very
expensive comms links.

CRBasic example Conditional Code (. 267) shows a sample program that
demonstrates use of conditional compilation features in CRBasic. Within the
program are examples showing the use of the predefined LoggerType constant
and associated predefined datalogger constants (6, 800, 1000, and 3000).

CRBasic EXAMPLE 56: Conditional Code

'"This program example demonstrates program compilation than is conditional on datalogger
'model and program speed. Key instructions include #If, #ElseIf, #Else and #EndIf.

'Set program options based on:

]

r

Const ProgramSpeed = 2

#If ProgramSpeed = 1
Const ScanRate 1
Const Speed = "1 Second"
#E1seIf ProgramSpeed = 2
Const ScanRate = 10
Const Speed = "10 Second"

#E1seIf ProgramSpeed = 3
Const ScanRate = 30
Const Speed = "30 Second"
#E1se
Const ScanRate = 5
Const Speed = "5 Second"
#EndIf
"Public Variables

LoggerType, which is a constant predefined in the CR1000 operating system
ProgramSpeed, which is defined in the following statement:

'l second

'10 seconds

'30 seconds

'5 seconds

PubTic ValueRead, SelectedSpeed As String * 50

'"Main Program
BeginProg

'Return the selected speed and logger type for display.

#If LoggerType = 3000

SelectedSpeed = "CR3000 running at " & Speed & " intervals."

#E1seIf LoggerType = 1000

SelectedSpeed = "CR1000 running at " & Speed & " intervals.”

267

268

Section 7. Installation

#El1seIf LoggerType = 800

SelectedSpeed = "CR800 running at " & Speed & " intervals."
#ElseIf LoggerType = 6

SelectedSpeed = "CR6 running at " & Speed & " intervals."
#E1se

SelectedSpeed = "Unknown Logger " & Speed & " intervals."
#EndIf

'"Open the serial port
SerialOpen(Com(C1,9600,10,0,10000)

'Main Scan
Scan(ScanRate, Sec,0,0)
'Measure using different parameters and a different SE channel depending
'on the datalogger type the program is running 1in.
#If LoggerType = 3000
'This instruction is used if the datalogger is a CR3000
VoltSe(ValueRead,1,mv1000,22,0,0,_50Hz,0.1,-30)
#El1seIf LoggerType = 1000
'This instruction is used if the datalogger is a CR1000
VoltSe(ValueRead,1,mvV2500,12,0,0,_50Hz,0.1,-30)
#ElseIf LoggerType = 800
'This instruction is used if the datalogger is a CR800 Series
VoltSe(ValueRead,1,mvV2500,3,0,0,_50Hz,0.1,-30)
#E1seIf LoggerType = 6
'This instruction is used if the datalogger is a CR6 Series
VoltSe(vValueRead,1,mv1000,U3,0,0,50,0.1,-30)
#ET1se
ValueRead = NAN
#EndIf
NextScan

EndProg

7.7.17 Measurement: RTD, PRT, PT100, PT1000

Related Topics:
» CRBasic Editor Help for PRTCalc()
* Resistance Measurements — Details (p. 353)

This manual includes this discussion of PRTs because of the following:
e Many applications need the accuracy of a PRT.
e PRT procedures confuse many users.

e PRTs are not usually manufactured ready to use for most CR1000 PRT
setups.

This section gives procedures and diagrams for many circuit setups. It also has
relatively simplified examples of each circuit type and associated CRBasic
programming.

Section 7. Installation

7.7.17.1 Measurement Theory (PRT)

RTDs (resistance temperature detectors) are resistive devices made of platinum,
nickel, copper, or other material. Platinum RTDs, known as PRTs (platinum
resistance thermometers) are very accurate temperature measurement sensors.
This discussion focuses on the 100 Q PRT. Apply the following principles to
other RTDs.

e A PRT element is a specialized resistor with two connection points.
Most PRTs are either 100 Q or 1000 Q. This number is the resistance
the PRT has at 0 °C.

e The resistance of a PRT increases as it is warmed. Industrial standards
define how PRTs respond to temperature; see PRT Callendar-Van Dusen
Coefficients (p. 285).

e There are many ways to measure a PRT with a CR1000 datalogger.
When using Vx terminals , the most direct route is to measure a
four-wire PRT in a three-wire half bridge. Other ways to measure a
PRT are listed in TABLE: PRT Measurement Circuit Overview (p. 269).

e Better excitation accuracy results if the highest possible excitation is
used. Better measurement resolution results if the voltage output range
from the PRT spans the analog-input voltage range of the CR1000.
Better measurement accuracy occurs when the output signal can be kept
as large as possible. Procedures in the following example balance these
best practices.

e A feature of PRT measurements is the ratio RS/RSo, where RS is the
PRT resistance now and RSy is the PRT resistance at 0 °C. RS/RSy
makes it easy to apply the results of an ice-bath calibration to a
temperature measurement. For jobs that do not need veryhigh accuracy,

skip the calibration and assume that PRT resistance at 0 °C is either 100
Q or 1000 Q.

269

270

Section 7. Installation

TABLE 34: PRT Measurement Circuit Overview

Four-wire half-bridge (p. 272)

Configuration Features Note
e High accuracy over long leads
® Voltage Excitation e More input terminals: four per sensor

Best configuration
e Slower: four differential sub

measurements per measurement

Three-wire half-bridge (p. 276)

e Good accuracy over long leads.

e Fewer input terminals: two per sensor Costs less to build

e Faster: two single-ended sub
measurements per measurement

Four-wire full-bridge (p. 280)

e High resolution response to change

e More complicated to build 0 EesoveEhuins,

e Best resolution since the

bridge balances at the
o Two differential sub measurements temperature-range mldponlt

per measurement

e Two input terminals per sensor

7.7.17.2 General Procedure (PRT)

Procedure Data

Following is a general procedure for using a PRT:

Build circuit.

Wire circuit to the CR1000.

Calculate excitation voltage.

Calibrate PRT.

Measure PRT and convert output to temperature.

Dk w =

Several procedures follow that step you through use of common resistive-bridge
configurations to measure a 100 Q PRT (a.k.a, PT100). Use the following data to
help you understand the examples:

e Units used in examples: mV (millivolts), mA (milliamperes), and mQ
(milliohms)

e RTD type for examples: 100 Q PRT (a.k.a, PT100), o = 0.00385
e Temperature measurement range for examples: —40 to 60 °C

e General forms of Callander-Van Dusen equations using CRBasic
notation:

o T=g*KM+h*KN+i*K"2+j*K (temperatures < 0°C)

o T=(SQRT(d * (RS/RS0) +¢)-a)/f (temperature > 0°C)

Section 7. Installation

TABLE 35: PT100 Temperature and ideal resistances (RS); o = 0.00385'

RS_40 RSo RS10 RSé6o
°C —40 0 60
mQ 84270 100000 103900 123240

! Commonly available tables provide these resistance values.

TABLE 36: Callandar-Van Dusen Coefficients for PT100, o. = 0.00385

Constants Coefficient
a 3.9083000E-03
d -2.3100000E-06
e 1.7584810E-05
f -1.1550000E-06
g 1.7909000E+00
h -2.9236300E+00
i 9.1455000E+00
j 2.5581900E+02

TABLE 37: Input Ranges (mV)

CR6 CR800/CR1000 CR3000
+5000 +5000 +5000
+1000 +2500 +1000

+200 250 200

125 50
7.5 +20
2.5

TABLE 38: Input Limits (mV)

CR6 CR800/CR1000 CR3000
+5000 +5000 +5000

271

Section 7. Installation

TABLE 39: Excitation Ranges
CR6 CR800/CR1000 CR3000
+2500 mV +2500 mV +5000 mV
+2.000 mA n/a 1+2.500 mA

7.7.17.3 Example: 100 Q PRT in Four-Wire Half Bridge with Voltage
Excitation (PT100 / BrHalf4W())

FIGURE 65: PT100 BrHalf4W() Four-Wire Half-Bridge Schematic

Bridge- Terminal PT100-Wire
Equation Labels Descriptions 10kQ, 1%,
Variables lTermiuals l 10 ppm/°C
‘v R1
VX X10 voltage-excitation output Wv\

r 2H © differential-high input

100 Q PRT
Vi (%) RS Element

2L O

differential-low input

(o,
r IH differential-high input %

100 Q, 1%
Rf 10 ppm/°C

oO——

differential-low input

ik =

signal ground

Procedure Data

TABLE 40: BrHalf4W() Four-Wire Half-Bridge Equations
X=RS/Rf

RS =Rf+*X

VX =(VS+(Rf +RS+RI1)/RS)

TABLE 41: Bridge Resistor Values (m€)
R1 Rf
10000000 100000

Procedure
1. Build circuit':

a. Use FIGURE: PT100 BrHalf4W() Four-Wire Half-Bridge Schematic (p. 272)
as a template.

272

Section 7. Installation

b. Rf should approximately equal the resistance of the PT100 at 0 °C. Use a
1%, 10 ppm/°C resistor.

2. Wire circuit to datalogger:

Use FIGURE: PT100 BrHalf4W() Four-Wire Half-Bridge Schematic (p. 272) as
the wiring diagram.

3. Calculate excitation voltage’:
Use the following equation to calculate the best excitation voltage (VX) for
the measurement range —40 to 60 °C. The equation reduces the absolute
result by 1% to allow for resistor inaccuracy:
VXmax = (VSmax * (Rf + RSmax + R1) / RSiax) © 0.99
where,
VSmax =25 mV (maximum voltage in the £25 mV input range)
Rf=100000 mQ (100)
R1=10000000 me (10 k)
RSpmax = 123240 mQ (PT100 at 60 °C)*
S0,
VXmax = 2053 mV

4. Calibrate the PT100:

If the PRT accuracy specification is good enough, and you trust it, assume
RSo = 100000 mQ. Otherwise, do the following procedure:

a. Enter CRBasic EXAMPLE: PT100 BrHalf4W() Four-Wire Half-Bridge
Calibration (p. 275) into the CR1000. It is already programmed with the
excitation voltage from step 3.

b. Place the PRT in an ice bath (0 °C).

c. Measure the PRT. If you are doing a dry run, assume the result of
BrHalf4W() = Xo = 0.01000.

d. Calculate RSp
RSo=Xp * Rf=100000 mQ

Wow! We are lucky to have a perfect PRT! In the real world, PRT
resistance at 0 °C will probably land on either side of 100 Q.

273

Section 7. Installation

5. Measure the sensor:
If you are doing a dry run, assume the temperature is 10 °C.
a. Enter CRBasic EXAMPLE: PT100 BrHalf4W() Four-Wire Half-Bridge
Measurement (p. 275) into the CR1000. 1t is already programmed with the
excitation voltage from step 3 and RSy from step 4.

b. Place PT100 in medium to measure.

c. Measure with BrHalf4W(). If you are doing a dry run, assume the result
of Resistance() = Xjo = 1.039.

d. Calculate RSio:
RS0 =Xi0 * Rf =103900
6. Calculate RS10/RSo, K, and temperature:
a. RS10/RSp =1.039
b. K = (RS10/RSp)-1 =0.039
c.T=g*KM+h*K"3+i*K2+j*K=9.99°C
d. T=(SQRT(d * (RS10/RSp) +e)-a) / £=9.99 °C
! A Campbell Scientific terminal-input module (TIM) can be used to complete the resistive bridge

circuit. Refer to the appendix Passive-Signal Conditioners — List (p. 591).

% The magnitude of the excitation voltage does not matter in mathematical terms because the result of
the measurement is a ratio rather than an absolute magnitude, but it does matter in terms of reducing
the effect of electromagnetic noise and of losing of resolution. A maximum excitation helps drown
out noise. A minimum input-voltage range helps preserve resolution.

3 Get this value from a PRT resistance-to-temperature table

274

Section 7. Installation

CRBasic Programs and Notes

CRBasic EXAMPLE 57: PT100 BrHalf4W() Four-Wire Half-Bridge Calibration

'This program example demonstrates the calibration of a 100-ohm PRT (PT100) in a four-wire
'half bridge with voltage excitation. See adjacent procedure and schematic.

'Declare constants and variables:

Const Rf = 100000 'Value of bridge resistor
Public X 'Raw output from the bridge

Public RSO 'Calculated PT100 resistance at 0 °C

BeginProg
Scan(1,Sec,0,0)

. 'Measure X:
'BrHalf4W(Dest,Reps,Rangel,Range2,DiffChan,ExChan,MeasPEx, ExmV,RevEx,RevDiff,
' SettlingTime,Integ,Mult,0ffset)
BrHalf4w(X,1,mv25,mv25,1,vx1,1,2053,True,True,0,250,1,0)

"Calculate RSO:
RSO = X * Rf

NextScan
EndProg

CRBasic EXAMPLE 58: PT100 BrHalf4W() Four-Wire Half-Bridge Measurement

'This program example demonstrates the measurement of a 100-ohm PRT in a four-wire
'half bridge using current excitation. See previous procedure and schematic.

'Declare constants and variables:

Const Rf = 100000 'Value of bridge resistor

Const RSO = 100000 'Resistance of PT100 at O °C from calibration program
Public X 'Raw output from the bridge

Public RS 'Calculated PT100 resistance

PubTic RS_RSO 'Calculated ratio of RS/RSO

Public DegC 'Calculated temperature

BeginProg
Scan(1,Sec,0,0)

.... 'Measure X:
'BrHalf4W(Dest,Reps,Rangel,Range2,DiffChan,ExChan,MeasPEx,ExmV,RevEx,RevDiff,
' SettlingTime,Integ,Mult,0ffset)
BrHalf4w(X,1,mv25,mv25,1,vx1,1,2053,True,True,0,250,1,0)

"Calculate RS and RS/RSO:
RS = X * Rf
RS_RSO = RS/RSO

. 'Calculate temperature from RS_RSO:
"PRTCalc(Dest,Reps,Source, PRTType,Mult,0ffset)
PRTCalc(DegC,1,RS_RS0,1,1.0,0)

NextScan
EndProg

275

Section 7. Installation

Notes
e Why use four-wire half-bridge?

Use a four-wire half-bridge when lead resistance is more than a few
thousandths of an ohm, such as occurs with long lead lengths.

e Why use 10 kQ series resistor?

Referring to figure PT100 BrHalf4W() Four-Wire Half-Bridge Schematic (p.
272), the 10 kQ series resistor allows the use of a higher-excitation voltage and
a low analog voltage input range.

e Why use high excitation and low range?
High excitation and low range minimize the effects of signal noise.
e Why use a bridge resistor near value of PT100?

By using a bridge resistor (Rf) that is close in value to that of the PT100
(RS), the differential measurement of V2 (voltage drop across PRT) can be
made on the same range as the differential measurement of V1 (voltage drop
across Rf). Using the same range eliminates range translation errors that can
arise from variances in the 0.01% range translation resistors internal to the
CR1000.

7.7.17.4 Example: 100 Q PRT in Three-Wire Half Bridge with Voltage
Excitation (PT100 / BrHalf3W())

FIGURE 66: PT100 BrHalf3W() Three-Wire Half-Bridge Schematic

Bridge- Terminal PT100-Wire
Equation Labels Descriptions
Variables lTenniuals l
‘v
VX VX1 voltage-excitation output
10 kQ, 1%,
Rf 10 ppm/°C
SE1 0O

single-ended input wire a

|' SE2 O

single-ended input wire b
100 Q PRT
Viv2 @RS Element
L[«
= O

signal ground

276

Section 7. Installation

Procedure Information

TABLE 42: BrHalf3W() Three-Wire Half-Bridge Equations
X =RS/Rf

RS=RfX

VX = VS/(RS/(Rf + RS))

TABLE 43: Bridge Resistor Values (m£2)
Rf
100000

Procedure
1. Build circuit':

a. Use FIGURE: PT100 BrHalf3W() Three-Wire Half-Bridge Schematic (.
276) as a template.

b. For Rf, choose a 1%, 10 ppm/°C, 10000000 mQ (10 kQ resistor).
2. Wire circuit to datalogger:

Use FIGURE: PT100 BrHalf3W() Three-Wire Half-Bridge Schematic (p. 276)
as the wiring diagram.

3. Calculate excitation voltage:
Use the following equation to calculate the best excitation voltage (VX) for
the measurement range of —40 to 60 °C. The equation reduces the absolute
result by 1% to allow for resistor inaccuracy:
VXmax = VSmax / (RSmax / (Rf + RSmax)) ¢ 0.99
where,
VSmax =25 mV (maximum voltage in the £25 input range)
Rf=10000000 mQ
RSpmax = 123240 mQ (PT00 at 60 °C)?

S0,

VXmax = 1626420334066 mV

277

Section 7.

Installation

278

4. Calibrate the PT100:

If the PRT accuracy specification is good enough, and you trust it, assume
RSp = 100000 mQ. Otherwise, do the following procedure:

a. Enter CRBasic EXAMPLE: PT100 BrHalf3W() Three-Wire Half-Bridge
Calibration (p. 279 into the CR1000. It is already programmed with the
excitation voltage from step 3.

b. Place the PRT in an ice bath (0 °C).

c. Measure the PRT. If you are doing a dry run, assume the result of
BrHalf3W() = Xo. = 0.01000

d. Calculate RSp
RSo=Xo * Rf = 100000 mQ

Wow! We are lucky to have a perfect PRT! In the real world, PRT
resistance at 0 °C will probably land on either side of 100 Q.

5. Measure the sensor:

If you are doing a dry run, assume the temperature is 10 °C.

a. Enter CRBasic EXAMPLE: PT100 BrHalf3W() Three-Wire Half-Bridge
Measurement (p. 279) into the CR1000. 1t is already programmed with the
excitation voltage from step 3 and RSy from step 4.

b. Place PT100 in medium to measure.

c. Measure with BrHalf3W(). If you are doing a dry run, assume the result
of BrHalf3W() = X, =0.01039.

d. Calculate RSi0:

RS10=Xi0* Rf=103900

6. Calculate RS10/RSo, K, and temperature:

a. RS10/RSp =1.039
b. K= (RS10/RSp)-1 =0.039
c.T=g*KM+h*KMN+i*K2+j*K=9.99°C

d. T = (SQRT(d * (RS10/RS¢) + ¢) - a) / f= 9.99 °C

'A Campbell Scientific terminal-input module (TIM) can be used to complete the resistive bridge
circuit. Refer to the appendix Passive-Signal Conditioners — List (p. 591).

4 Get this value from a PRT-resistance-to-temperature table

Section 7. Installation

CRBasic Programs and Notes

CRBasic EXAMPLE 59: PT100 BrHalf3W() Three-Wire Half-Bridge Calibration

'"This program example demonstrates the calibration of a 100-ohm PRT (PT100) in a three-wire
'half bridge with voltage excitation. See previous procedure and schematic.

'Declare constants and variables:

Const Rf = 10000000 'Value of bridge resistor
Public X 'Raw output from the bridge

Public RSO 'Calculated PT100 resistance at 0 °C

BeginProg
Scan(1,Sec,0,0)

. 'Measure X:
"BrHalf3W(Dest,Reps,Range, SEChan, ExChan,MeasPEx, ExmV,RevEx,SettlingTime,
! Integ,Mult,Offset)
BrHalf3w(X,1,mv25,1,vx1,1,2033,True,0,250,1,0)

"Calculate RSO:
RSO = Rf * X

NextScan
EndProg

CRBasic EXAMPLE 60: PT100 BrHalf3W() Three-Wire Half-Bridge Measurement

'"This program example demonstrates the measurement of a 100-ohm PRT (PT100) in a three-wire
"half bridge with voltage excitation. See adjacent procedure and schematic.

'Declare constants and variables:

Const Rf = 10000000 'Value of bridge resistor

Const RSO = 100000 'Resistance of PT100 at O °C from calibration program
Public X 'Raw output from the bridge

Public RS 'Calculated PT100 resistance

PubTic RS_RSO 'Calculated ratio RS/RSO

Public DegC 'Calculated temperature

BeginProg
Scan(1,Sec,0,0)

.... 'Measure X:
'"BrHalf3W(Dest,Reps,Range, SEChan, ExChan,MeasPEx,ExmV,RevEx,SettlingTime,
! Integ,Mult,Offset)
BrHalf3w(X,1,mv25,1,vx1,1,2033,True,0,250,1,0)

"Calculate RS and RS_RSO:
RS = X * Rf
RS_RSO = RS/RSO

. 'Calculate temperature from RS_RSO:
"PRTCalc(Dest,Reps,Source, PRTType,Mult,0ffset)
PRTCalc(DegC,1,RS_RS0,1,1.0,0)

NextScan
EndProg

279

Section 7. Installation

Notes

e The three-wire half-bridge compensates for lead-wire resistance by
assuming that the resistance of wire a is the same as the resistance of
wire b (see FIGURE: PT100 BrHalf3W() Three-Wire Half-Bridge
Schematic . 276)). The maximum difference expected in wire resistance
is 2%, but is more likely to be on the order of 1%.

e The average resistance of 22 AWG wire is 16.5 Q per 1000 feet, which
would give 500 ft lead wires (for example) a nominal resistance of 8.3 Q.
Two percent of 8.3 Qis 0.17 Q. Assuming that the greater resistance is
in wire b, the resistance measured for the PRT in the ice bath (RS0) is
100.17 Q, and the resistance at 40 °C (RS) is 115.71 Q.

e At 40 °C, because of the error from wire b, the measured ratio RS/RS0 is
1.1551 while the ratio without the error would be 115.54/100 = 1.1554.
As a result, the temperature computed by PRTCale() from the ratio with
the error is about 0.43 °C higher than the temperature measured without
the error from wire . This source of error does not exist in a four-wire
half-bridge configuration.

7.7.17.5 Example: 100 Q PRT in Four-Wire Full Bridge with Voltage
Excitation (PT100 / BrFuli())

FIGURE 67: PT100 BrFull() Four-Wire Full-Bridge Schematic

Bridge- Terminal PT100-Wire
Equation Labels Descriptions
Variables lTelmiuals l
'
VX VX10 voltage-excitation output
10 kQ, 1%, 5kQ, 1%,
10 ppm/°C R4 Rl 10 ppm/°C
I 1H O differential-high input
VS 100 Q PRT
100 Q, 1%
L 1L Element RS R2 10 ppm/°C

differential-low input

=4
signal ground \I

Procedure
1. Build circuit':

a. Use FIGURE: PT100 BrFull() Four-Wire Full-Bridge Schematic (p. 280) as a
template.

b. Choose a 1%, 10 ppm/°C, 5000000 Q (5 kQ) resistors for R1 and R4
c. Balance the bridge.

1. Find the midpoint of the temperature range. The range of —40 to 60
°C is selected for this procedure, so the midpoint is 10 °C.

280

Section 7. Installation

ii. Select a 1% resistor for R2 with a resistance that is approximately
equal to the resistance of the PRT at 10 °C. See Procedure Information
(PT100 BrFull() Full Bridge). Since a 103.9 Q resistor is hard to find,
use a 100 Q resistor. It is close enough. Use 5 ppm/°C resistors.
Frequently, all the resistors in a full bridge are submerged in the medium
to be measured, so they may see large temperature changes. 5 ppm
resistors are more thermally stable than 10 ppm resistors.

2. Wire circuit to datalogger:

Use FIGURE: PT100 BrFull() Four-Wire Full Bridge Schematic (p. 280) as the
wiring diagram.

3. Calculate excitation voltage:
Use the following equation to calculate the best excitation voltage (VX) for
the measurement range —40 to 60 °C. The equation reduces the absolute
result by 1% to allow for resistor inaccuracy:
VXmax = (VSmax / (RSmax / (RSmax + R4)) — (R2 /R1 + R2))) » 0.99
where,
VSmax =25 mV (maximum voltage in the £25 input range)
R1=15000000 mQ (5 k)
R2 =100000 mQ (100)
R4 =5000000 mQ (5 kQ)
RSmax = 123240 mQ (PT100 at 60 °C)*
s,
VXmax =44972562111243 mV

4. Calibrate the PT100:

If the PRT accuracy specification is good enough, and you trust it, assume
RSp = 100000 mQ. Otherwise, do the following procedure:

281

Section 7. Installation

CRBasic EXAMPLE 61: PT100 BrFull() Four-Wire Full-Bridge Calibration

'This program example demonstrates the calibration of a 100-ohm PRT (PT100) in a four-wire
"full bridge with voltage excitation. See previous procedure and schematic.

'Declare constants and variables:

Const R1 = 5000000 'Value of R1 bridge resistor
Const R2 = 120000 'Value of R2 bridge resistor
Const R4 = 5000000 'Value of R4 bridge resistor
Public X1 'Raw output from the bridge

PubTlic X2 'Calculated intermediate value

PubTic RSO 'Calculated PT100 resistance at 0 °C

BeginProg
Scan(1,Sec,0,0)

'Measure X1

'BrFull(Dest,Reps,Range,DiffChan, ExChan,MeasPEx,ExmV,RevEx,RevDiff,SettlingTime,
! Integ,Mult,Offset)

BrFull(X1,1,mv25,1,vx1,1,2500,True,True,0,250,1,0)

"Calculate X2:
X2 = (X1/1000) + (R2/(R1+R2)

"Calculate RSO:
RSO = (R4*X2) / (1-X2)

NextScan
EndProg

into the CR1000. It is already programmed with the excitation voltage from
step 3.

b. Place the PRT in an ice bath (0 °C).

c. Measure the PRT. If you are doing a dry run, assume the result of
BrFull() = Xo = 0.

d. Calculate RSy
X20=(Xo/1000)+ (R2/(R1+R2)=0.01961
RSo= (R4 * X20) / (1 — X2¢) = 100000 mQ

Wow! We are lucky to have a perfect PRT! In the real world, PRT
resistance at 0 °C will probably land on either side of 100 Q.

5. Measure the sensor:
If you are doing a dry run, assume the temperature is 10 °C.
a. Enter CRBasic EXAMPLE: PT100 BrFull() Four-Wire Full-Bridge
Measurement (p. 283) into the CR1000. It is already programmed with the

excitation voltage from step 3 and RS¢ from step 4.

b. Place PT100 in medium to measure.

282

Section 7.

Installation

c. Measure with BrFull(). If you are doing a dry run, assume the result of

Resistance() = X0 = 0.7491.

d. Calculate RSi0:

X210 =(Xi10/1000) + (R2 / (R1 + R2) = 0.02036

RSi0= (R4 * X210) / (1 — X2109) = 103900
6. Calculate RS10/RSo, K, and temperature:
a. RS10/RSp =1.039

b. K = (RS10/RS0)-1 = 0.039

. T=g*KM+h*KN3+i*K2+j*K=9.99°C

d. T =(SQRT(d * (RS10/RSp) + €) - a) / f=9.99 °C

'A Campbell Scientific terminal-input module (TIM) can be used to complete the resistive bridge
circuit. Refer to the appendix Passive-Signal Conditioners — List (p. 591).

4 Get this value from a PRT-resistance-to-temperature table

CRBasic Programs and Notes

CRBasic EXAMPLE 62: PT100 BrFull() Four-Wire Full-Bridge Calibration

'"This program example demonstrates the calibration of a 100-ohm PRT (PT100) in a four-wire
"full bridge with voltage excitation. See previous procedure and schematic.

'Declare constants and variables:

Const R1 = 5000000 'Value of R1 bridge resistor
Const R2 = 120000 'Value of R2 bridge resistor

Const R4 = 5000000 'Value of R4 bridge resistor
Public X1 'Raw output from the bridge

Public X2 'Calculated intermediate value

PubTlic RSO 'Calculated PT100 resistance at 0 °C

BeginProg
Scan(1,Sec,0,0)

'"Measure X1

'"BrFull(Dest,Reps,Range,DiffChan, ExChan,MeasPEx,ExmV,RevEx,RevDiff,SettlingTime,

! Integ,Mult,Offset)

BrFull(x1,1,mv25,1,vx1,1,2500,True,True,0,250,1,0)

"Calculate X2:
X2 = (X1/1000) + (R2/(R1+R2)

"Calculate RSO:
RSO = (R4*X2) / (1-X2)

NextScan
EndProg

283

Section 7. Installation

CRBasic EXAMPLE 63: PT100 BrFull() Four-Wire Full-Bridge Measurement

284

'This program example demonstrates the measurement of a 100-ohm PRT (PT100) in a four-wire
"full bridge with voltage excitation. See previous procedure and schematic.
'Declare constants and variables:

Const R1 = 5000000 'Value of R1 bridge resistor

Const R2 120000 'Value of R2 bridge resistor

Const R4 = 5000000 'Value of R4 bridge resistor

Const RSO = 100000 'Resistance of PT100 at 0 °"C from calibration program
PubTlic X1 'Raw output from bridge

Public X2 'Calculated intermediate value

Public RS 'Calculated PT100 resistance

Public RS_RSO ‘Calculated ratio RS/RSO

Public DegC 'Calculated temperature of PT100

BeginProg
Scan(1,Sec,0,0)

'Measure X

'BrFull(Dest,Reps,Range,DiffChan, ExChan,MeasPEx,ExmV,RevEx,RevDiff,SettlingTime,
! Integ,Mult,Offset)

BrFull(X1,1,mv25,1,vx1,1,2500,True,True,0,250,1,0)

"Calculate X2
X2 = (X1/1000) + (R2/(R1+R2)

"Calculate RS and RS_RSO
RS = (R4*X2) / (1-X2)
RS_RSO = RS/RSO

. '"Calculate temperature from RS_RSO:
'"PRTCalc(Dest,Reps, Source, PRTType,Mult,Offset)
PRTCalc(DegC,1,RS_RS0,1,1.0,0)

NextScan
EndProg

Notes

The following relationships are used in, or are related to, the previous procedure.
Maximum Excitation Voltage
Used:
V1@maxt = maximum voltage in the CR1000 analog voltage input range
VXmax = V1@maxT/(R3@maxt/(R3@maxt+R4)) — (R2/(R1+R2)))
Related:

Section 7. Installation

Calibrate PRT

Used:

Xcar = (1000*%(V1car/VX)), where (1000*(V1car/VX)) is the output of
BrFull() with Mult = 1, Offset =0

X3caL = (Xcar*0.001) + (R2/(R1+R2))
Related:
Vlicar = VX*((R3car/(R3caLtR4)) — (R2/(R1+R2)))
Slope, Offset, and Xp
M =0.001
B = (R2/(R1+R2))
Xp = ((1000*(V1/VX))*M+B
Rs/RO, K, and temperature
Rs/RO = —(R4/((R4*X3car)/(1-X3car))) *(Xp/(Xp — 1))
K = (Rs/R0)-1

T =(SQRT(d * (R/R0O) +) —a) / f (see PRT Calculation Standards for
coefficients)

or

T=g*KM+h*K"3+1*K"2+j*K (see PRT Calculation Standards for
coefficients)

Resistance of the PRT (R3):
R3 =(R4 + X3)/(1 - X3)
X3 =(X/1000) + (R2/(R1+R2))
Measurement resolution:
There is a change of approximately 2 mV from the output at 40 °C to the

output at 51 °C, or 200 uV / °C. With a resolution of 0.33 pV on the £25
mV range, this means that the temperature resolution is 0.0009 °C.

7.7.17.6 PRT Callendar-Van Dusen Coefficients

As shown in the preceding PRT measurement examples, use the PRTCale()
instruction in the CRBasic program to process PRT resistance measurements.

285

286

Section 7.

Installation

NOTE PRT() (not PRTCalc()) is obsolete.

PRTCalc() uses the following inverse Callendar-Van Dusen equations to
calculate temperature from resistance.

For temperatures <0 °C:

T=geKe+j+K?+i+K>«h+K*, where K=Rs/Ro - 1 (Eq. 1)
For temperatures >0 °C:

T=(sqrt(d*Rs/Rop+e)—a)/f (Eq. 2)

Eq.1 conforms to US ASTM E1137-04 standard for conversion of resistance to
temperature. For temperatures 0 to 650 °C, it introduces <+0.0005 °C error to
the measurement. The source of the error is rounding errors in CR1000 math.

Eq. 2 is derived from US ASTM E1137-04 and conforms to other industry
standards. For temperatures —200 to 0 °C, it introduces < +0.003 °C error to the
measurement.

Eq. | and Eq. 2 yield approximations of the true linearity of a PRT. The
approximation error can be as high as several hundredths of a degree Celsius at
different points in the temperature range, and it varies from sensor to sensor.
Individual sensors also have errors relative to the ASTM E1137-04 standard.
These errors can be as much as £0.3 °C at 0 °C and increasing away from 0 °C.
Purchasing high quality PRTs will minimize this error.

The best accuracy comes from calibrated sensors over the range of use.
Calibration factors are applied to one or more of the following PRTCale()
parameters:

o Source

e Multiplier

o Offset

See the calibration sections in the previous PRT procedures for more information.

The following tables show sets of a, d, e, f, g, h, i, and j coefficients that are used
in the Eqgs. 1 and 2, depending on the PRTType code entered in PRTCalc().
Coefficients are rounded to the seventh significant digit to match CR1000 math
resolution.

PRTType codes depend on the alpha value of the PRT, which is determined and
published by the PRT manufacturer.

Section 7. Installation

TABLE 44: PRTCalc() PRTType = 1, a.= 0.00385"

Constants Coefficient
a 3.9083000E-03
d -2.3100000E-06
e 1.7584810E-05
f -1.1550000E-06
g 1.7909000E+00
h -2.9236300E+00
i 9.1455000E+00
j 2.5581900E+02

! Compliant with the following standards: IEC 60751:2008 (IEC 751), ASTM
E1137-04, JIS 1604:1997, EN 60751, DIN43760, BS1904, and others
(reference IEC 60751 and ASTM E1137), o= 0.00385

TABLE 45: PRTCalc() PRTType=2,a= 0.00392!

Constant Coefficient
a 3.9786300E-03
d -2.3452400E-06
e 1.8174740E-05
f -1.1726200E-06

1.7043690E+00

h -2.7795010E+00
i 8.8078440E+00
] 2.5129740E+02

!'US Industrial Standard, a = 0.00392 (Reference: Logan Enterprises)

TABLE 46: PRTCalc() PRTType = 3, a = 0.00391"

Constant Coefficient
a 3.9690000E-03
d -2.3364000E-06
e 1.8089360E-05
f -1.1682000E-06

287

Section 7. Installation

TABLE 46: PRTCalc() PRTType = 3, a.= 0.00391"

g 1.7010560E+00
h -2.6953500E+00
i 8.8564290E-+00
j 2.5190880E+02

' US Industrial Standard, a = 0.00391 (Reference: OMIL R84 (2003))

TABLE 47: PRTCalc() PRTType = 4, a. = 0.003916'

Constant Coefficient
a 3.9739000E-03
d -2.3480000E-06
e 1.8139880E-05
f -1.1740000E-06
g 1.7297410E+00
h -2.8905090E+00
i 8.8326690E+00
j 2.5159480E+02

1 Old Japanese Standard, o = 0.003916 (Reference: JIS C 1604:1981, National
Instruments)

TABLE 48: PRTCalc() PRTType = 5, @ = 0.00375"

Constant Coefficient

a 3.8100000E-03
d -2.4080000E-06
e 1.6924100E-05
f -1.2040000E-06
g 2.1790930E+00

-5.4315860E+00
i 9.9196550E+00
j 2.6238290E+02

! Honeywell Industrial Sensors, o = 0.00375 (Reference: Honeywell)

288

Section 7. Installation

TABLE 49: PRTCalc() PRTType = 6, 0. = 0.003926'

Constant Coefficient
a 3.9848000E-03
d -2.3480000E-06
e 1.8226630E-05
f -1.1740000E-06
g 1.6319630E+00
h -2.4709290E+00
i 8.8283240E+00
j 2.5091300E+02

! Standard ITS-90 SPRT, a = 0.003926 (Reference: Minco / Instrunet)

7.7.17.7 Self-Heating and Resolution

Programming the CR1000 to make a PRT measurement requires a judgment call.
To maximize measurement resolution, the excitation voltage must be maximized.
However, to minimize self-heating of the PRT element, excitation voltage must be
minimized. Keeping the voltage drop across the PRT to <25 mV addresses both
concerns since self-heating is normally less than 0.001°C in still air. To
maximize the measurement resolution, optimize the excitation voltage (Vx) such
that the voltage drop across the PRT spans, but does not exceed, the voltage input
range.

7.7.18 Serial I/O: Capturing Serial Data

The CR1000 communicates with smart sensors that deliver measurement data
through serial data protocols.

Read More See Comms and Data Retrieval (p. 453 for background on
CR1000 serial communications.

7.7.18.1 Introduction

Serial denotes transmission of bits (1s and 0s) sequentially, or "serially." A byte
is a packet of sequential bits. RS-232 and TTL standards use bytes containing
eight bits each. Consider an instrument that transmits the byte "11001010" to the
CR1000. The instrument does this by translating "11001010" into a series of
higher and lower voltages, which it transmits to the CR1000. The CR1000
receives and reconstructs these voltage levels as "11001010." Because an
RS-232 or TTL standard is adhered to by both the instrument and the CR1000, the
byte successfully passes between them.

289

Section 7. Installation

290

7.7.18.21/0 Ports

If the byte is displayed on a terminal as it was received, it will appear as an ASCII
/ ANSI character or control code. Table ASCII / ANSI Equivalents (p. 290) shows a
sample of ASCII / ANSI character and code equivalents.

TABLE 50: ASCII/ ANSI Equivalents

Bvte ASCII Decimal Hex
Recg ived Character ASCII ASCII
Displayed Code Code
00110010 2 50 32
1100010 b 98 62
00101011 + 43 2b
00001101 cr 13 d
00000001 © 1 1

Read More See ASCII/ ANSI Table for a complete list of ASCII / ANSI
codes and their binary and hex equivalents.

The face value of the byte, however, is not what is usually of interest. The
manufacturer of the instrument must specify what information in the byte is of
interest. For instance, two bytes may be received, one for character 2, the other for
character b. The pair of characters together, "2b", is the hexadecimal code for "+",
"+" being the information of interest. Or, perhaps, the leading bit, the MSB (Most
Significant Bit), on each of two bytes is dropped, the remaining bits combined,
and the resulting "super byte" translated from the remaining bits into a decimal
value. The variety of protocols is limited only by the number of instruments on
the market. For one in-depth example of how bits may be translated into usable
information, see F'P2 Data Format (p. 585).

Note ASCII/ ANSI control character ff-form feed (binary 00001100)
causes a terminal screen to clear. This can be frustrating for a developer
who prefers to see information on a screen, rather than a blank screen.
Some third party terminal emulator programs, such as Procomm, are
useful tools in serial I/O development since they handle this and other
idiosyncrasies of serial communication.

When a standardized serial protocol is supported by the CR1000, such as PakBus
or Modbus, translation of bytes is relatively easy and transparent. However, when
bytes require specialized translation, specialized code is required in the CRBasic
program, and development time can extend into several hours or days.

The CR1000 supports two-way serial communication with other instruments
through ports listed in table CR1000 Serial Ports (p. 291). A serial device will often
be supplied with a nine-pin D-type connector serial port. Check the manufacture's
pinout for specific information. In many cases, the standard nine-pin RS-232
scheme is used. If that is the case then the following apply:

Section 7. Installation

7.7.18.3 Protocols

Connect sensor RX (receive, pin 2) to a U or C terminal set up for Tx (C1, C3,
Cs5,C7).

e Connect sensor TX (transmit, pin 3) to a U or C terminal set up for Rx
(C2, C4, C6, C8)

e Connect sensor ground (pin 5) to datalogger ground (G terminal)

Note Rx and Tx lines on nine-pin connectors are sometimes switched by
the manufacturer.

TABLE 51: CR1000 Serial Ports

Serial Port Voltage Level Logic
. Full-duplex asynchronous
RS-232 (9 pin) RS-232 RS-232
. Full-duplex asynchronous
CS 1/O (9 pin) TTL RS-232
Full-duplex asynchronous
COM1 (C1-C2) TTL RS-232/TTL
Full-duplex asynchronous
COM2 (C3-C4) TTL RS-232/TTL
Full-duplex asynchronous
COM3 (C5-C6) TTL RS-232/TTL
Full-duplex asynchronous
COM4 (C7-C8) TTL RS-232/TTL
C1 5Vdc SDI-12
C3 5 Vde SDI-12
Cs5 5Vdc SDI-12
C7 5 Vde SDI-12
SDM (used with Campbell
CL,€2,C3 > Vde Scientific peripherals only)

PakBus is the protocol native to the CR1000 and transparently handles routine
point-to-point and network communications among PCs and Campbell Scientific
dataloggers. Modbus and DNP3 are industry-standard networking SCADA
protocols that optionally operate in the CR1000 with minimal user configuration.
PakBus®, Modbus, and DNP3 operate on the RS-232, CS 1/0, and four COM
ports. SDI-12 is a protocol used by some smart sensors that requires minimal
configuration on the CR1000.

291

Section 7. Installation

Read More See SDI-12 Sensor Support — Details (p. 407), PakBus

Comms — Overview (p. 79, DNP3 — Details (p. 462), and Modbus — Details
(p. 463).

Many instruments require non-standard protocols to communicate with the
CR1000.

Note If an instrument or sensor optionally supports SDI-12, Modbus, or
DNP3, consider using these protocols before programming a custom
protocol. These higher-level protocols are standardized among many
manufacturers and are easy to use relative to a custom protocol. SDI-12,
Modbus, and DNP3 also support addressing systems that allow
multiplexing of several sensors on a single communication port, which
makes for more efficient use of resources.

7.7.18.4 Glossary of Serial /0 Terms

Term: asynchronous
The transmission of data between a transmitting and a receiving device
occurs as a series of zeros and ones. For the data to be "read" correctly, the
receiving device must begin reading at the proper point in the series. In
asynchronous communication, this coordination is accomplished by having
each character surrounded by one or more start and stop bits which designate
the beginning and ending points of the information (see synchronous (p. 544)).
Indicates the sending and receiving devices are not synchronized using a
clock signal.

Term: baud rate

The rate at which data are transmitted.

Term: big endian
"Big end first." Placing the most significant integer at the beginning of a
numeric word, reading left to right. The processor in the CR1000 is MSB, or
puts the most significant integer first. See the appendix Endianness (p. 587).

Term: cr

Carriage return
Term: data bits

Number of bits used to describe the data, and fit between the start and stop
bits. Sensors typically use 7 or 8 data bits.

292

Section 7. Installation

Term: duplex

A serial communication protocol. Serial communications can be simplex,
half-duplex, or full-duplex.

Reading list: simplex (p. 542), duplex (p. 293), half duplex (p. 528, and full duplex (.
526).

Term: If

Line feed. Often associated with carriage return (<cr>). <ecr><If>.

Term: little endian
"Little end first." Placing the most significant integer at the end of a numeric
word, reading left to right. The processor in the CR1000 is MSB, or puts the
most significant integer first. See Endianness (p. 587).

Term: LSB

Least significant bit (the trailing bit). See the Endianness (. 587).

Term: marks and spaces
RS-232 signal levels are inverted logic compared to TTL. The different levels
are called marks and spaces. When referenced to signal ground, the valid
RS-232 voltage level for a mark is —3 to —25, and for a space is +3 to +25
with -3 to + 3 defined as the transition range that contains no information. A
mark is a logic 1 and negative voltage. A space is a logic 0 and positive
voltage.

Term: MSB

Most significant bit (the leading bit). See Endianness (p. 587).

Term: RS-232C

Refers to the standard used to define the hardware signals and voltage levels.
The CR1000 supports several options of serial logic and voltage levels
including RS-232 logic at TTL levels and TTL logic at TTL levels.

Term: RX

Receive

293

Section 7.

Installation

294

Term: SP

Space

Term: start bit

Is the bit used to indicate the beginning of data.

Term: stop bit

Is the end of the data bits. The stop bit can be 1, 1.5 or 2.

Term: TX

Transmit

7.7.18.5 Serial /0 CRBasic Programming

To transmit or receive RS-232 or TTL signals, a serial port (see table CR1000
Serial Ports (p. 291)) must be opened and configured through CRBasic with the
SerialOpen() instruction. The SerialClose() instruction can be used to close the
serial port. Below is practical advice regarding the use of SerialOpen() and
SerialClose(). Program CRBasic example Receiving an RS-232 String (. 300)
shows the use of SerialOpen(). Consult CRBasic Editor Help for more
information.

SerialOpen(COMPort,BaudRate,Format,TXDelay,BufferSize)

e COMPort — Refer to CRBasic Editor Help for a complete list of COM
ports available for use by SerialOpen().

¢ BaudRate — Baud rate mismatch is frequently a problem when
developing a new application. Check for matching baud rates. Some
developers prefer to use a fixed baud rate during initial development.
When set to -nnnn (where nnnn is the baud rate) or 0, auto baud-rate
detect is enabled. Autobaud is useful when using the CS I/O and
RS-232 ports since it allows ports to be simultaneously used for sensor
and PC comms.

e Format — Determines data type and if PakBus® communications can
occur on the COM port. If the port is expected to read sensor data and
support normal PakBus® telemetry operations, use an auto-baud rate
argument (0 or -nnnn) and ensure this option supports PakBus® in the
specific application.

o BufferSize — The buffer holds received data until it is removed.
Serialln(), SeriallnRecord(), and SeriallnBlock() instructions are used
to read data from the buffer to variables. Once data are in variables,
string manipulation instructions are used to format and parse the data.

Section 7. Installation

SerialClose() must be executed before SerialOpen() can be used again to
reconfigure the same serial port, or before the port can be used to communicate
with a PC.

7.7.18.5.1 Serial I/O Programming Basics
SerialOpen()’
e Closes PPP (if active)
e Returns TRUE or FALSE when set equal to a Boolean variable
e Be aware of buffer size (ring memory)
SerialClose()
e Examples of when to close
o Reopen PPP
o Finished setting new settings in a Hayes modem
o Finished dialing a modem
o Returns TRUE or FALSE when set equal to a Boolean variable
SerialFlush()
e Puts the read and write pointers back to the beginning
o Returns TRUE or FALSE when set equal to a Boolean variable
Serialln()'
e Can wait on the string until it comes in
e Timeout is renewed after each character is received
e SeriallnRecord() tends to obsolete Serialln().
e Buffer-size margin (one extra record + one byte)
SeriallnBlock()'
e For binary data (perhaps integers, floats, data with NULL characters).
e Destination can be of any type.

e Buffer-size margin (one extra record + one byte).

295

Section 7. Installation

296

SerialOutBlock()'**
e Binary

e Can run in pipeline mode inside the digital measurement task (along with
SDM instructions) if the COMPort parameter is set to a constant such as
COM1, COM2, COM3, or COM4, and the number of bytes is also
entered as a constant.

SerialOut()

e Use for ASCII commands and a known response, such as Hayes-modem
commands.

e If open, returns the number of bytes sent. If not open, returns 0.
SeriallnRecord()’

e Can run in pipeline mode inside the digital measurement task (along with
SDM instructions) if the COMPort parameter is set to a constant
argument such as COM1, COM2, COM3, or COM4, and the number of
bytes is also entered as a constant.

e Simplifies synchronization with one way.

e Simplifies working with protocols that send a "record" of data with
known start and/or end characters, or a fixed number of records in
response to a poll command.

e Ifastart and end word is not present, then a time gap is the only
remaining separator of records. Using COM1, COM2, COM3, or
COMH4 coincidentally detects a time gap of >100 bits if the records are
less than 256 bytes.

e Buffer size margin (one extra record + one byte).

! Processing instructions
2 Measurement instruction in the pipeline mode

3 . Lo .
Measurement instruction if expression evaluates to a constant

7.7.18.5.2 Serial I/O Input Programming Basics

Applications with the purpose of receiving data from another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Know what the sensor supports and exactly what the data are. Most sensors
work well with TTL voltage levels and RS-232 logic. Some things to

consider:

o Become thoroughly familiar with the data to be captured.

Section 7. Installation

o Can the sensor be polled?
o Does the sensor send data on its own schedule?

o Are there markers at the beginning or end of data? Markers are very
useful for identifying a variable length record.

o Does the record have a delimiter character such as a comma, space,
or tab? Delimiters are useful for parsing the received serial string

into usable numbers.

o Will the sensor be sending multiple data strings? Multiple strings
usually require filtering before parsing.

o How fast will data be sent to the CR1000?
o Is power consumption critical?

o Does the sensor compute a checksum? Which type? A checksum is
useful to test for data corruption.

2. Open a serial port with SerialOpen().
o Example:
SerialOpen(Coml,9600,0,0,10000)
o Designate the correct port in CRBasic.
o Correctly wire the device to the CR1000.

o Match the port baud rate to the baud rate of the device in CRBasic
(use a fixed baud rate — rather than autobaud — when possible).

3. Receive serial data as a string with Serialln() or SeriallnRecord().

— Example:
SerialInRecord(Com2,SerialInString,42,0,35,"",01)

o Declare the string variable large enough to accept the string.

— Example:
PubTic SerialInString As String * 25

o Observe the input string in the input string variable in a numeric
monitor (p. 533).

Note Serialln() and SeriallnRecord() both receive data. SeriallnRecord() is
best for receiving streaming data. Serialln() is best for receiving discrete
blocks.

297

Section 7. Installation

298

4. Parse (split up) the serial string using SplitStr()
o Separates string into numeric and / or string variables.
o Example:
Sp1itStr(InStringSplit,SerialInString,"",2,0)
o Declare an array to accept the parsed data.

— Example:
PubTic InStringSplit(2) As String

— Example:
Public SpTlitResult(2) As Float

7.7.18.5.3 Serial I/O Output Programming Basics
Applications with the purpose of transmitting data to another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Open a serial port with SerialOpen() to configure it for communications.

o Parameters are set according to the requirements of the
communication link and the serial device.

o Example:

SerialOpen(Coml,9600,0,0,10000)
o Designate the correct port in CRBasic.
o Correctly wire the device to the CR1000.
o Match the port baud rate to the baud rate of the device in CRBasic.
o Use a fixed baud rate (rather than auto baud) when possible.
2. Build the output string.
o Example:
SerialQOutString = "*" & "27.435" & "," & "56.789" & "#"
o Tip — concatenate (add) strings together using & instead of +.

o Tip — use CHR() instruction to insert ASCII / ANSI characters into
a string.

3. Output string via the serial port (SerialOut() or SerialOutBlock() command).

o Example:

SerialOut(Coml,SerialOutString,"",0,100)

Section 7. Installation

o Declare the output string variable large enough to hold the entire
concatenation.

o Example:

PubTic SerialOutString As String * 100

e SerialOut() and SerialOutBlock() output the same data, except that
SerialOutBlock() transmits null values while SerialOQut() strings are
terminated by a null value.

7.7.18.5.4 Serial I/O Translating Bytes

One or more of three principle data formats may end up in the SeriallnString()
variable (see examples in Serial Input Programming Basics (p. 296)). Data may be
combinations or variations of these. The instrument manufacturer must provide
the rules for decoding the data

e Alpha-numeric — Each digit represents an alpha-numeric value. For
example, R = the letter R, and 2 = decimal 2. This is the easiest
protocol to translate since the encode and translation are identical.
Normally, the CR1000 is programmed to parse (split) the string and
place values in variables.

Example string from humidity, temperature, and pressure sensor:

SerialInString = "RH= 60.5 %RH T= 23.7 "C Tdf= 15.6 "C Td= 15.6
‘Ca=13.0 g/m3 x= 11.1 g/kg Tw= 18.5 °C H20= 17889
ppmV pw=17.81 hPa pws 29.43 hPa h= 52.3 kJ/kg dT= 8.1 "C"

e Hex Pairs — Bytes are translated to hex pairs, consisting of digits 0 to 9
and letters a to f. Each pair describes a hexadecimal ASCII / ANSI code.
Some codes translate to alpha-numeric values, others to symbols or
non-printable control characters.

Example sting from temperature sensor:

SerialInString = "23 30 31 38 34 0OD"

which translates to

#01 84 cr

e Binary — Bytes are processed on a bit-by-bit basis. Character 0 (Null,
&b00) is a valid part of binary data streams. However, the CR1000 uses
Null terminated strings, so anytime a Null is received, a string is
terminated. The termination is usually premature when reading binary
data. To remedy this problem, use SeriallnBlock() or
SeriallnRecord() when reading binary data. The input string variable
must be an array set As Long data type, for example:

Dim SerialInString As Long

299

300

7.7.18.5.5

Serial I/O Memory Considerations

Several points regarding memory should be considered when receiving and
processing serial data.

o Serial buffer: The serial port buffer, which is declared in SerialOpen(),
must be large enough to hold all data a device will send. The buffer
holds the data for subsequent transfer to variables. Allocate extra
memory to the buffer when needed, but recognize that memory added to
the buffer reduces final-data memory (. 526).

Note Concerning SeriallnRecord() running in pipeline mode with
NBytes (number of bytes) parameter = 0:

For the digital measurement sequence to know how much room to allocate
in Scan() buffers (default of 3), SeriallnRecord() allocates the buffer size
specified by SerialOpen() (default 10,000, an overkill), or default 3 «
10,000 = 30 kB of buffer space. So, while making sure enough bytes are
allocated in SerialOpen() (the number of bytes per record °
((records/Scan)+1) + at least one extra byte), there is reason not to make
the buffer size too large. (Note that if the NumberOfBytes parameter is
non-zero, then SerialinRecord() allocates only this many bytes instead of
the number of bytes specified by SerialOpen()).

7.7.18.5.6

e Variable Declarations — Variables used to receive data from the serial
buffer can be declared as Public or Dim. Declaring variables as Dim
has the effect of consuming less comms bandwidth. When public
variables are viewed in software, the entire Public table is transferred at
the update interval. If the Public table is large, comms bandwidth can
be taxed such that other data tables are not collected.

e String Declarations — String variables are memory intensive.
Determine how large strings are and declare variables just large enough
to hold the string. If the sensor sends multiple strings at once, consider
declaring a single string variable and read incoming strings one at a time.

The CR1000 adjusts upward the declared size of strings. One byte is always
added to the declared length, which is then increased by up to another three
bytes to make the length divisible by four.

Declared string length, not number of characters, determines the memory
consumed when strings are written to memory. Consequently, large strings
not filled with characters waste significant memory.

Serial I/O Example |

CRBasic example Receiving an RS-232 String (p. 300 is provided as an exercise in
serial input / output programming. The example only requires the CR1000 and a
single-wire jumper between COM1 Tx and COM2 Rx. The program simulates a
temperature and relative humidity sensor transmitting RS-232 (simulated data
comes out of COM1 as an alpha-numeric string).

Section 7. Installation

CRBasic EXAMPLE 64: Receiving an RS-232 String

'"This program example demonstrates CR1000 serial I/0 features by:
" 1. Simulating a serial sensor
" 2. Transmitting a serial string via COM1 TX.

'"The serial string is received at COM2 RX via jumper wire. Simulated
'air temperature = 27.435 F, relative humidity = 56.789 %.

"Wiring:
"COM1 TX (C1) ----- COM2 RX (C4)

'Serial Out Declarations
PubTic TempOut As Float
Pub1lic RhOut As Float

'Declare a string variable large enough to hold the output string.
Public SerialQutString As String * 25

'Serial In Declarations
'Declare a string variable large enough to hold the input string
Public SerialInString As String * 25

'Declare strings to accept parsed data. If parsed data are strictly numeric, this
'array can be declared as Float or Long

Public InStringSplit(2) As String

Alias InStringSplit(1l) = Templn

Alias InStringSplit(2) = Rhln

'"Main Program

BeginProg
'Simulate temperature and RH sensor
TempOut = 27.435 'Set simulated temperature to transmit
RhOut = 56.789 'Set simulated relative humidity to transmit

Scan(5,Sec, 3, 0)

'Serial Out Code
'"Transmits string "#27.435,56.789#" out COM1
SerialOpen(Coml,9600,0,0,10000) '"Open a serial port

'Build the output string
SerialOutString = "*" & TempOut & "," & RhOut & "#"

"Output string via the serial port
SerialOut(Coml,SerialOutString,"",0,100)

'Serial In Code

'Receives string "27.435,56.789" via COM2

'"Uses * and # character as filters
SerialOpen(Com2,9600,0,0,10000) '"Open a serial port

'Receive serial data as a string
'42 is ASCII code for "*", 35 is code for "#"
SerialInRecord(Com2,SerialInString,42,0,35,"",01)

'"Parse the serial string
SpTitStr(InStringSplit(),SerialInString,"",2,0)

NextScan
EndProg

301

302

Section 7.

Installation

7.7.18.6 Serial 1/0 Application Testing

7.7.18.6.1

A common problem when developing a serial I/O application is the lack of an
immediately available serial device with which to develop and test programs.
Using HyperTerminal, a developer can simulate the output of a serial device or
capture serial input.

Note HyperTerminal is provided as a utility with Windows XP and earlier
versions of Windows. HyperTerminal is not provided with later versions
of Windows, but can be purchased separately from
http://www.hilgraeve.com. HyperTerminal automatically converts binary
data to ASCII on the screen. Binary data can be captured, saved to a file,
and then viewed with a hexadecimal editor. Other terminal emulators are
available from third-party vendors that facilitate capture of binary or
hexadecimal data.

Configure HyperTerminal

Create a HyperTerminal instance file by clicking Start | All Programs |
Accessories | Communications | HyperTerminal. The windows in the figures
HyperTerminal Connection Description (p. 302) through HyperTerminal ASCII
Setup (p. 304 are presented. Enter an instance name and click OK.

FIGURE 68: HyperTerminal New
Connection Description

Connection Description ﬂﬂ

Enter a name and chooge an icon for the connection:

Mame:
|Serial Test

leon:

Cancel |

Section 7. Installation

FIGURE 69: HyperTerminal Connect-To
Settings

Connect To ed |

it 4 Serial Test

Enter detailz for the phone number that you want ta dial:

Country/regiorn; IUnitEd States [1] j

Area code: 435

Phaone number: I

Connect using: |[a]Ek

FIGURE 70: HyperTerminal COM Port Settings Tab:
Click File | Properties | Settings | ASCII Setup... and
set as shown.

COM1 Properkties ﬂll
Port Settings |
Bitz per zecond: ISEDD j
Data bits: IE! j
Parity: INone j
Stop bits: |1 j
Elow control:

Bestore Defaults |
Ok I Cancel | Apply |

303

304

Section 7. Installation
FIGURE 71: HyperTerminal ASCII
Setup
ASCII Setup : 2] x|
— ASCH Sending
[T Send line ends with line feeds
v i_gc:h-:u twped characters locall
Lire delay: IEI millizeconds,
Character delay: IEI millizeconds.
— ASCI Receiving
[T Append line feeds ta incoming line ends
[T Force incoming data to 7-bit A5 C
IV Wiap lines that exceed terminal width
k. Cancel
7.7.18.6.2 Create Send-Text File
Create a file from which to send a serial string. The file shown in the figure
HyperTerminal Send-Text File Example (. 304 will send the string
[2008:028:10:36:22]C to the CR1000. Use Notepad (Microsoft Windows utility)
or some other text editor that will not place hidden characters in the file.
FIGURE 72: HyperTerminal Send-Text
File Example
I:
[C Command.txt - Nok - 10| x|
File Edit Format Wiew Help
[2008:028:10:36:22]C]
-
1 M s
To send the file, click Transfer | Send Text File | Browse for file, then click OK.
7.7.18.6.3 Create Text-Capture File

Figure HyperTerminal Text-Capture File Example (p. 305) shows a HyperTerminal
capture file with some data. The file is empty before use commences.

Section 7. Installation

FIGURE 73: HyperTerminal Text-Capture File Example

B capture.TXT - Notepad Al =10 x|
File Edit Format Wiew Help

01+0115. 02+1052 03+00270 04+01004 05+00138 06+512.9 07+04771 =
0140115, 0241052 02400270 04401004 05400138 06+4512.9 07404771
0140115, 0241052 03400270 04401004 05400138 064512.9 07404771
0140115, 02+1053 03400270 04401274 0OS+D0138 06+650.9 07+04771
0140115, 0241053 03400270 04401274 05400138 06+650.9 07404771
0140115, 0241053 03400270 04401274 0O5+00138 06+650.9 07404771
0140115, 0241053 03400270 04401274 05400138 0646509 07404771
0140115, 0241053 03400270 04401274 05400138 D06+650.9 07404771 =
4] | ¥

Engage text capture by clicking on Transfer | Capture Text | Browse, select the
file, and then click OK.

7.7.18.6.4 Serial I/O Example Il

CRBasic example Measure Sensors / Send RS-232 Data (p. 306 illustrates a use of
CR1000 serial I/0 features.

Example — An energy company has a large network of older CR510 dataloggers
into which new CR1000 dataloggers are to be incorporated. The CR510
dataloggers are programmed to output data in the legacy Campbell Scientific
Printable ASCII format, which satisfies requirements of the customer's data
acquisition network. The network administrator prefers to synchronize the
CR510 clocks from a central computer using the legacy Campbell Scientific C
command. The CR510 datalogger is hard-coded to output printable ASCII and
recognize the C command. CR1000 dataloggers, however, require custom
programming to output and accept these same ASCII strings. A similar program
can be used to emulate CR10X and CR23X dataloggers.

Solution — CRBasic example Measure Sensors / Send RS-232 Data (p. 306) imports
and exports serial data with the CR1000 RS-232 port. Imported data are expected
to have the form of the legacy Campbell Scientific time set C command. Exported
data has the form of the legacy Campbell Scientific Printable ASCII format.

Note The nine-pin RS-232 port can be used to download the CR1000
program if the SerialOpen() baud rate matches that of the datalogger
support software (p. 600. However, two-way PakBus® communications will
cause the CR1000 to occasionally send unsolicited PakBus® packets out
the RS-232 port for at least 40 seconds after the last PakBus®
communication. This will produce some "noise" on the intended
data-output signal.

Monitor the CR1000 RS-232 port with HyperTerminal as described in the section
Configure HyperTerminal ¢p. 302. Send C-command file to set the clock
according to the text in the file.

Note The HyperTerminal file will not update automatically with actual
time. The file only simulates a clock source for the purposes of this
example.

305

Section 7. Installation

CRBasic EXAMPLE 65: Measure Sensors / Send RS-232 Data

'This program example demonstrates the import and export serial data via the CR1000 RS-232
'port. Imported data are expected to have the form of the legacy Campbell Scientific
"time set C command:

" [YR:DAY:HR:MM:SS]C
'"Exported data has the form of the legacy Campbell Scientific Printable ASCII format:
" 01+0115. 02+135 03+00270 04+7999 05+00138 06+07999 07+04771

'Declarations

'"Visible Variables

Public StationID

PubTic KWH_In

PubTic KVarH_I

PubTic KWHHold

PubTic KVarHold

Pub1lic KWHH

PubTic KvarH

PubTic InString As String * 25
Public OutString As String * 100

'Hidden Variables

Dim i, rTime(9), OneMinData(6), OutFrag(6) As String

Dim InStringSize, InStringSplit(5) As String

Dim Date, Month, Year, DOY, Hour, Minute, Second, uSecond
Dim LeapMOD4, LeapMOD100, LeapMOD400

Dim Leap4 As Boolean, Leapl00 As Boolean, Leap400 As Boolean
Dim LeapYear As Boolean

Dim C1kSet(7) As Float

'One Minute Data Table
DataTable(OneMinTable,true,-1)
OpenInterval 'sets interval same as found in CR510
DataInterval(0,1,Min,10)
Totalize(l, KWHH,FP2,0)
Sample(1l, KWHHold,FP2)
Totalize(1l, KvarH,FP2,0)
Sample(1l, KVarHold,FP2)
Sample(1l, StationID,FP2)
EndTable

'"Clock Set Record Data Table

DataTable(ClockSetRecord,True,-1)
Sample(7,C1kSet(),FP2)

EndTable

'Subroutine to convert date formats (day-of-year to month and date)
Sub DOY2MODAY

'Store Year, DOY, Hour, Minute and Second to Input Locations.
Year = InStringSplit(1)

DOY = InStringSplit(2)

Hour = InStringSplit(3)

Minute = InStringSplit(4)

Second = InStringSplit(5)

uSecond = 0

306

Section 7. Installation

"Check if it is a leap year:

'"If Year Mod 4 = 0 and Year Mod 100 <> 0, then it is a leap year OR
'"If Year Mod 4 = 0, Year Mod 100 = 0, and Year Mod 400 = 0, then it
'is a leap year

LeapYear = 0 'Reset Teap year status location

LeapMOD4 = Year MOD 4

LeapMOD100 = Year MOD 100

LeapMOD400 Year MOD 400

If LeapMOD4 = 0 Then Leap4 = True Else Leap4 = False

If LeapMOD100 = 0 Then Leapl00 = True Else Leapl00 = False
If LeapMOD400 = 0 Then Leap400 = True Else Leap400 = False

If Leap4 = True Then
LeapYear = True
If Leapl00 = True Then
If Leap400 = True Then
LeapYear = True

Else
LeapYear = False
EndIf
EndIf
Else
LeapYear = False
EndIf

'"If it is a leap year, use this section.
If (LeapYear = True) Then
Select Case DOY

Case Is < 32

Month = 1

Date = DOY
Case Is < 61

Month = 2

Date = DOY + -31
Case Is < 92

Month = 3

Date = DOY + -60
Case Is < 122

Month = 4

Date = DOY + -91
Case Is < 153

Month = 5

Date = DOY + -121
Case Is < 183

Month = 6

Date = DOY + -152
Case Is < 214

Month = 7

Date = DOY + -182
Case Is < 245

Month = 8

Date = DOY + -213
Case Is < 275

Month = 9

Date = DOY + -244

307

Section 7. Installation

Case Is < 306

Month = 10

Date = DOY + -274
Case Is < 336

Month = 11

Date = DOY + -305
Case Is < 367

Month = 12
Date = DOY + -335
EndSelect

'"If it is not a leap year, use this section.

Else
Select Case DOY

Case Is < 32
Month = 1
Date = DOY

Case Is < 60
Month = 2
Date = DOY + -31

Case Is < 91
Month = 3

Date = DOY + -59
Case Is < 121

Month = 4

Date = DOY + -90
Case Is < 152

Month = 5

Date = DOY + -120
Case Is < 182

Month = 6

Date = DOY + -151
Case Is < 213

Month = 7

Date = DOY + -181
Case Is < 244

Month = 8

Date = DOY + -212
Case Is < 274

Month = 9

Date = DOY + -243
Case Is < 305

Month = 10

Date = DOY + -273
Case Is < 336

Month = 11

Date = DOY + -304
Case Is < 366

Month = 12
Date = DOY + -334
EndSelect
EndIf

EndSub

308

Section 7.

Installation

IS S S PROGRAM S S S S S S S
BeginProg

StationID = 4771

Scan(1,Sec, 3, 0)

IS/ Measurement Section/ /S
'"PulseCount (KWH_In, 1, 1, 2, 0, 1, 0) 'Activate this line in working program
KWH_In = 4.5 'Simulation -- delete this 1ine from working program

'"PulseCount(KVarH_I, 1, 2, 2, 0, 1, 0) 'Activate this line in working program
KVarH_I = 2.3 'Simulation -- delete this 1ine from working program
KWHH = KWH_In

KvarH = KVarH_I

KWHHold = KWHH + KWwHHold

KvarHold = KvarH + KVarHold

CallTable OneMinTable

IS/ Serial 1/0 Section/ /S
SerialOpen(ComRS232,9600,0,0,10000)

/S ///Serial Time Set Input Section///////////////

'Accept old C command -- [2008:028:10:36:22]C -- parse, process, set
'clock (Note: Chr(91) = "[", Chr(67) = "C")
SerialInRecord(ComRS232,InString,91,0,67,InStringSize,01)

If InStringSize <> 0 Then
Sp1itStr(InStringSplit,InString,"",5,0)
Call DOY2MODAY "Call subroutine to convert day-of-year
"to month & day
ClkSet (1) Year
C1kSet(2) = Month
Cl1kSet(3) = Date
ClkSet(4) = Hour
C1kSet(5) = Minute
Cl1kSet(6) = Second
Cl1kSet(7) = uSecond
'"Note: ClkSet array requires year, month, date, hour, min, sec, msec
ClockSet(C1kSet())
CallTabTe(ClockSetRecord)
EndIf

I/ /Serial Output Section/ /) S S S
"Construct old Campbell Scientific Printable ASCII data format and output to COM1

'"Read datalogger clock

RealTime(rTime)

If TimeIntoInterval(0,5,Sec) Then
"Load OneMinData table data for processing into printable ASCII
GetRecord(OneMinData(),0OneMinTable, 1)

309

310

Section 7. Installation

'Assign +/- Sign
For i=1 To 6
If OneMinData(i) < 0 Then
'"Note: chr45 is - sign
OutFrag(i)=CHR(45) & FormatFloat(ABS(OneMinData(i)), "%05g")
Else
'"Note: chr43 is + sign
OutFrag(i)=CHR(43) & FormatFloat(ABS(OneMinData(i)), "%05g")
EndIf
Next 1

'"Concatenate Printable ASCII string, then push string out RS-232

"(first 2 fields are ID, hhmm):

OutString = "01+0115." & " 02+" & FormatFloat(rTime(4),"%02.0f") & _
FormatFloat(rTime(5),"%02.0f")

OutString = OutString & " 03" & OutFrag(l) & " 04" & OutFrag(2) & _
" 05" & OutFrag(3)

OutString = OutString & " 06" & OutFrag(4) & " 07" & OutFrag(5) & _
CHR(13) & CHR(10) & "" 'add CR LF null

'Send printable ASCII string out RS-232 port
SerialOut(ComRS232,0utString,"",0,220)
EndIf

NextScan

EndProg

7.718.7Serial lIOQ & A

Q: I am writing a CR1000 program to transmit a serial command that contains a
null character. The string to transmit is:

CHR(02)+CHR(01)+"CWGTO"+CHR(03)+CHR (00) +CHR (13)+CHR (10)

How does the logger handle the null character?
Is there a way that we can get the logger to send this?

A: Strings created with CRBasic are NULL terminated. Adding strings together
means the second string will start at the first null it finds in the first string.

Use SerialOQutBlock() instruction, which lets you send null characters, as shown
below.

SerialOutBlock (COMRS232, CHR(02) + CHR(01) + "CWGTO" +
CHR(03),8)

SerialOutBlock (COMRS232, CHR(0),1)

SerialOutBlock (COMRS232, CHR(13) + CHR(10),2)

Q: Please summarize when the CR1000 powers the RS-232 port. [get that there
is an "always on" setting. How about when there are beacons? Does the
SerialOpen() instruction cause other power cycles?

A: The RS-232 port is left on under the following conditions:
e When the setting RS-232Power (. 575) is set

e When a SerialOpen() with argument COMRS232 is used in the program

Section 7. Installation

Both conditions power-up the interface and leave it on with no timeout. If
SerialClose() is used after SerialOpen(), the port is powered down and in a state
waiting for characters to come in.

Under normal operation, the port is powered down waiting for input. After
receiving input, there is a 40 second software timeout that must expire before
shutting down. The 40 second timeout is generally circumvented when
communicating with the datalogger support software (p. 89 because the software
sends information as part of the protocol that lets the CR1000 know that it can
shut down the port.

When in the "dormant" state with the interface powered down, hardware is
configured to detect activity and wake up, but there is the penalty of losing the
first character of the incoming data stream. PakBus® takes this into consideration
in the "ring packets" that are preceded with extra sync bytes at the start of the
packet. For this reason SerialOpen() leaves the interface powered up so no
incoming bytes are lost.

When the CR1000 has data to send with the RS-232 port, if the data are not a
response to a received packet, such as sending a beacon, it will power up the
interface, send the data, and return to the "dormant" state with no 40 second
timeout.

Q: How can I reference specific characters in a string?

A: The third 'dimension’ of a string variable provides access to that part of the
string after the position specified. For example, if

TempData = "STOP"

then,

TempData(l,1,2) "TOP"
TempData(1,1,3) = "OP"
TempData(1,1,1) = "STOP"

To handle single-character manipulations, declare a string with a size of 1. This
single-character string is then used to search for specific characters. In the
following example, the first character of string LargerString is determined and
used to control program logic:

PubTic TempData As String * 1
TempData = LargerString
If TempData = "S" Then...

A single character can be retrieved from any position in a string. The following
example retrieves the fifth character of a string:

Public TempData As String * 1
TempData = LargerString(1,1,5)

Q: How can I get Serialln(), SerialInBlock(), and SeriallnRecord() to read
extended characters?

311

312

Section 7.

Installation

A: Open the port in binary mode (mode 3) instead of PakBus-enabled mode
(mode 0).

Q: Tests with an oscilloscope showed the sensor was responding quickly, but the
data were getting held up in the internals of the CR1000 somewhere for 30 ms or
so. Characters at the start of a response from a sensor, which come out in 5 ms,
were apparently not accessible by the program for 30 ms or so; in fact, no data
were in the serial buffer for 30 ms or so.

A: As a result of internal buffering in the CR1000 and / or external interfaces, data
may not appear in the serial port buffer for a period ranging up to 50 ms
(depending on the serial port being used). This should be kept in mind when
setting timeouts for the Serialln() and SerialOut() instructions, or user-defined
timeouts in constructs using the SeriallnChk() instruction.

Q: What are the termination conditions that will stop incoming data from being
stored?

A: Termination conditions:
o TerminationChar argument is received
e MaxNumChars argument is met
e TimeOut argument is exceeded

Serialln() does NOT stop storing when a Null character (&h00) is received
(unless a NULL character is specified as the termination character). As a string
variable, a NULL character received will terminate the string, but nevertheless
characters after a NULL character will continue to be received into the variable
space until one of the termination conditions is met. These characters can later
be accessed with MoveBytes() if necessary.

Q: How can a variable populated by Serialln() be used in more than one
sequence and still avoid using the variable in other sequences when it contains old
data?

A: A simple caution is that the destination variable should not be used in more
than one sequence to avoid using the variable when it contains old data.
However, this is not always possible and the root problem can be handled more
elegantly.

When data arrives independent from execution of the CRBasic program, such as
occurs with streaming data, measures must be taken to ensure that the incoming
data are updated in time for subsequent processes using that data. When the task
of writing data is separate from the task of reading data, you should control the
flow of data with deliberate control features such as the use of flags or a
time-stamped weigh point as can be obtained from a data table.

There is nothing unique about Serialln() with regard to understanding how to
correctly write to and read from global variables using multiple sequences.
Serialln() is writing into an array of characters. Many other instructions write

Section 7. Installation

into an array of values (characters, floats, or longs), such as Move(),
MoveBytes(), GetVariables(), SeriallnRecord(), SeriallnBlock(). In all cases,
when writing to an array of values, it is important to understand what you are
reading, if you are reading it asynchronously, in other words reading it from some
other task that is polling for the data at the same time as it is being written,
whether that other task is some other machine reading the data, like LoggerNet, or
a different sequence, or task, within the same machine. If the process is
relatively fast, like the Move() instruction, and an asynchronous process is
reading the data, this can be even worse because the “reading old data” will
happen less often but is more insidious because it is so rare.

7.7.19 String Operations

String operations are performed using CRBasic string functions.

7.7.19.1 String Operators

The table String Operators . 313 lists and describes available string operators.
String operators are case sensitive.

TABLE 52: String Operators

Operator Description

Concatenates strings. Forces numeric values to strings
before concatenation.

&
Example
1&2&3&"a" &5 &6&7="123a567"
Adds numeric values until a string is encountered. When a
string is encountered, it is appended to the sum of the

+ numeric values. Subsequent numeric values are appended as
strings.
Example:

1+2+3+"a" +5+6+7="6a567"

"Subtracts" NULL ("") from the end of ASCII characters for
conversion to an ASCII code (LONG data type).

Example:

T

ASCII codes of the first characters in each string are
compared. If the difference between the codes is zero, codes
- for the next characters are compared. When unequal codes
or NULL are encountered (NULL terminates all strings), the
difference between the last compared ASCII codes is
returned.

Examples:

Note — ASCII code fora=97,b=98,¢c=99,d=100, ¢ =
101, and all strings end with NULL.

Difference between NULL and NULL

313

Section 7. Installation

314

TABLE 52: String Operators

Operator

Description

abc" - "abc" =0

Difference between e and ¢
"abe" - "abc" = 2

Difference between ¢ and b
"ace" - "abe" =1

Difference between d and NULL
"abcd" - "abc" = 100

ASCII codes of the first characters in each string are
compared. If the difference between the codes is zero, codes
for the next characters are compared. When unequal codes
or NULL are encountered (NULL terminates all strings), the
requested comparison is made. If the comparison is true, -1
or True is returned. If false, 0 or False is returned.

Examples:

Expression Result

X = -1 or True
= 0 or False
X = -1 or True

x = "abc" = "abc
= "abe" = "abc

x = "ace" > "abe

X
|
X
|

7.7.19.2 String Concatenation

Concatenation is the building of strings from other strings ("abc123"), characters
("a" or chr()), numbers, or variables. The table String Concatenation Examples
(- 314) lists some expressions and expected results. CRBasic example

Concatenation of Numbers and Strings (p. 314) demonstrates several concatenation

examples.

When non-string values are concatenated with strings, once a string is
encountered, all subsequent operands will first be converted to a string before the
+ operation is performed. When working with strings, exclusive use of the &
operator ensures that no string value will be converted to an integer.

TABLE 53: String Concatenation Examples

Expression Comments Result
Str(1) = 5.4 + 3 + " Volts" Add floats, concatenate strings "8.4 Volts"
Str(2) = 5.4 & 3 & " Volts" Concatenate floats and strings "5.43 Volts"
Lng(1) = "123" Convert string to long 123

Add floats to string / convert to

Lng(2) = 1+2+"3" 33
long

Lng(3) = "1"+2+3 Concatenate string and floats 123

Lng(4) = 1&2&"3" Concatenate floats and string 123

Section 7. Installation

CRBasic EXAMPLE 66: Concatenation of Numbers and Strings

'"This program example demonstrates the concatenation of numbers and strings to variables
"declared As Float and As String.

'Declare Variables

PubTic Num(12) As Float

Public Str(2) As String

Dim I

BeginProg
Scan(1,Sec,0,0)

I =0 'Set I to zero

'Data type of the following destination variables is Float
'"because Num() array is declared As Float.
I += 1 'Increment I by 1 to clock through sequential elements of the Num() array

'As shown in the following expression, if all parameter are numbers, the result
'of using '+' is a sum of the numbers:
Num(I) =2 + 3 + 4 -9

'"Following are examples of using '+' and '*' when one or more parameters are strings.
'"Parameters are processed in the standard order of operations. In the order of
'operation, once a string or an '&' is processed, all following parameters will

'be processed (concatenated) as strings:

I +=1

Num(I) = "1" + 2 + 3 + 4 '= 1234
I+=1

Num(I) =1+ "2" +3 + 4 '= 1234
I+=1

Num(I) =1 +2 + "3" + 4 '= 334
I+=1

Num(I) =1 + 2 + 3 + "4" '= 64
I+=1

Num(I) =1 +2 + "3" +4 +5 + "6" '= 33456
I +=1

Num(I) =1 +2 + "3" + (4 +5) + "6" '= 3396
I +=1

Num(I) =1+ 2 + "3" +4 *5 + "6" '= 33206
I +=1

Num(I) =1 &2 + 3 + 4 '= 1234
I+=1

Num(I) =1 +2 +3&4 '= 64

'"If a non-numeric string is attempted to be processed into a float destination,
'operations are truncated at that point

I +=1
Num(I) =1 + 2 + "hey" + 4 + 5 + "6" '= 3
I+=1
Num(I) =1 + 2 + "hey" + (4 + 5) + "6" '= 3

'"The same rules apply when the destination is of data type String, except in the
'case wherein a non-numeric string is encountered as follows. Data type of the

315

Section 7. Installation

"following destination variables is String because Str() array is declared As String.
I=0

I +=1
Str(I)
I +=1
Str(I)

1+2+ "hey" +4 + 5+ "6" '= 3hey456

1+2+ "hey" + (4 +5) + "6" '= 3hey96

NextScan
EndProg

7.7.19.3 String NULL Character

All strings are automatically NULL terminated. NULL is the same as Chr(0) or
""" counts as one of the characters in the string. Assignment of just one character
is that character followed by a NULL, unless the character is a NULL.

TABLE 54: String NULL Character Examples

Expression Comments Resul

Subtract NULL, ASCII code

results 35

Longvar(5) = "#"-""

LongVar(6) = StrComp("#","™) Also subtracts NULL 35

Example:
Objective:

Insert a NULL character into a string, and then reconstitute the string.

Given:
StringVar(3) = "123456789"
Execute:
StringVar(3,1,4) = "" "123<NULL>56789"
Results:
StringVar(4) = StringVar(3) "123"
but,
StringVar(3) still = "123<NULL>56789",
S0,
StringVar(5) = StringVar(3,1,4+1) '"56789"
StringVar(6) = StringVar(3) + 4 + StringvVar(3,1,4+1)
'"123456789"

316

Section 7. Installation

Some smart sensors send strings containing NULL characters. To manipulate a
string that has NULL characters within it (in addition to being terminated with
another NULL), use MoveBytes() instruction.

7.7.19.4Inserting String Characters
Example:
Objective:
Use MoveBytes() to change "123456789" to "123A56789"
Given:

StringVar(7) = "123456789" 'Result 1is
"123456789"

try (does not work):

StringVar(7,1,4) = "A" 'Result 1is
"123A<NULL>56789"

Instead, use:

StringVar(7) = MoveBytes(Strings(7,1,4),0,"A",0,1) 'Result is
"123A56789"

7.7.20 Subroutines

A subroutine is a group of programming instructions that is called by, but runs
outside of, the main program. Subroutines are used for the following reasons:

e To reduce program length. Subroutine code can be executed multiple
times in a program scan.

e To ease integration of proven code segments into new programs.
e To compartmentalize programs to improve organization.

By executing the Call() instruction, the main program can call a subroutine from
anywhere in the program.

A subroutine has access to all global variables . 527. Variables local p. 530)to a
subroutine are declared within the subroutine instruction. Local variables can be
aliased (as 0f 4/2013; OS 26) but are not displayed in the Public table. Global
and local variables can share the same name and not conflict. If global variables
are passed to local variables of different type, the same type conversion rules
apply as apply to conversions among variables declared as Public or Dim. See
Expressions with Numeric Data Types (p. 166) for conversion types.

Note To avoid programming conflicts, pass information into local
variables and / or define some global variables and use them exclusively
by a subroutine.

317

Section 7.

Installation

CRBasic example Subroutine with Global and Local Variables (p. 318 shows the
use of global and local variables. Variables counter() and pi_product are global.
Variable i_sub is global but used exclusively by subroutine process. Variables
jO and OutVar are local since they are declared as parameters in the Sub()
instruction,

Sub process(j(4) AS Long,OutVar).

Variable j() is a four-element array and variable QutVar is a single-element
array. The call statement,

Call ProcessSub (counter(1),pi_product)

passes five values into the subroutine: pi_product and four elements of array
counter(). Array counter() is used to pass values into, and extract values from,
the subroutine. The variable pi_product is used to extract a value from the
subroutine.

Call() passes the values of all listed variables into the subroutine. Values are
passed back to the main scan at the end of the subroutine.

CRBasic EXAMPLE 67: Subroutine with Global and Local Variables

[

'"This program example demonstrates the use of global and Tlocal variables with subroutines.

'Global variables are those declared anywhere in the program as Public or Dim.
"Local variables are those declared in the Sub() instruction.

'"Program Function: Passes two variables to a subroutine. The subroutine increments each
'variable once per second, multiplies each by pi, then passes results back to the main
'program for storage in a data table.

'Global variables (Used only outside subroutine by choice)
'Declare Counter in the Main Scan.

318

PubTic counter(2) As Long

'Declare Product of PI * counter(2).
PubTic pi_product(2) As Float

'Global variable (Used only in subroutine by choice)
'"For / Next incrementor used in the subroutine.
Public i_sub As Long

'Declare Data Table
DataTable(pi_results,True,-1)
Sample(1,counter(),IEEE4)

EndTable

'Declare Subroutine
'Declares j(4) as local array (can only be used in subroutine)
Sub ProcessSub (j(2) As Long,OutVar(2) As Float)
For i_sub = 1 To 2
j(@i_sub) = j(i_sub) + 1
'Processing to show functionality

OutVar(i_sub) = j(i_sub) * 4 * ATN(1) "(Tip: 4 * ATN(1) = pi to IEEE4 precision)

Next i_sub
EndSub

Section 7.

Installation

BeginProg
counter(l) =1
counter(2) = 2
Scan(1,Sec,0,0)

'"Pass Counter() array to j() array, pi_pruduct() to OutVar()
Call ProcessSub (counter(),pi_product())
CallTable pi_results

NextScan
EndProg

319

8.

Operation

Related Topics:

* Quickstart (p. 35)

* Specifications (p. 95)
* Installation (p. 97)

* Operation (p. 321)

8.1 Measurements — Details

Related Topics:

» Sensors — Quickstart (p. 35)

» Measurements — Overview (p. 65)
* Measurements — Details (p. 321)

» Sensors — Lists (p. 595)

Several features give the CR1000 the flexibility to measure most sensor types.
Some sensors require precision excitation or a source of power. See
Switched-Voltage Output — Details (p. 410).

8.1.1 Time Keeping — Details

Related Topics:
» Time Keeping — Overview (p. 65)
» Time Keeping — Details (p. 321)

—Measurement of time is an essential function of the CR1000. Time
measurement with the on-board clock enables the CR1000 to attach time stamps
to data, measure the interval between events, and time the initiation of control
functions.

8.1.1.1 Time Stamps

A measurement without an accurate time reference has little meaning. Data on
the CR1000 are stored with time stamps. How closely a time stamp corresponds
to the actual time a measurement is taken depends on several factors.

The time stamp in common CRBasic programs matches the time at the beginning
of the current scan as measured by the real-time clock in the CR1000. If a scan
starts at 15:00:00, data output during that scan will have a time stamp of 15:00:00
regardless of the length of the scan or when in the scan a measurement is made.
The possibility exists that a scan will run for some time before a measurement is
made. For instance, a scan may start at 15:00:00, execute time-consuming code,
then make a measurement at 15:00:00.51. The time stamp attached to the
measurement, if the CallTable() instruction is called from within the Scan() /
NextScan construct, will be 15:00:00, resulting in a time-stamp skew of 510 ms.

321

322

Section 8. Operation

Time-stamp skew is not a problem with most applications because,

e program execution times are usually short, so time stamp skew is only a
few milliseconds. Most measurement requirements allow for a few
milliseconds of skew.

e data processed into averages, maxima, minima, and so forth are
composites of several measurements. Associated time stamps only
reflect the time the last measurement was made and processing
calculations were completed, so the significance of the exact time a
specific sample was measured diminishes.

Applications measuring and storing sample data wherein exact time stamps are
required can be adversely affected by time-stamp skew. Skew can be avoided by

e Making measurements in the scan before time-consuming code.

e Programming the CR1000 such that the time stamp reflects the system
time rather than the scan time. When CallTable() is executed from
within the Scan() / NextScan construct, as is normally done, the time
stamp reflects scan time. By executing the CallTable() instruction
outside the Scan() / NextScan construct, the time stamp will reflect
system time instead of scan time. CRBasic example Time Stamping
with System Time (p. 322) shows the basic code requirements. The
DataTime() instruction is a more recent introduction that facilitates time
stamping with system time. See topics concerning data table
declarations in CRBasic Editor Help for more information.

CRBasic EXAMPLE 68: Time Stamping with System Time

'This program example demonstrates the time stamping of data with system time instead of
"the default use of scan time (time at which a scan started).

[

'Declare Variables
PubTic value

'Declare data table
DataTable(Test,True,1000)

Sample(1,Value, FP2)
EndTable

SequentialMode

BeginProg

Section 8. Operation

Scan(1,Sec,10,0)

'Delay -- in an operational program, delay may be caused by other code
Delay(1,500,mSec)

'Measure Value -- can be any analog measurement
PanelTemp(Value,0)

"Immediately call SlowSequence to execute CallTable()
TriggerSequence(1,0)

NextScan

'Allow data to be stored 510 ms into the Scan with a s.51 time stamp
STowSequence
Do
WaitTriggerSequence
CallTable(Test)
Loop

EndProg

Other time-processing CRBasic instructions are governed by these same rules.

Consult CRBasic Editor Help for more information on specific instructions.

8.1.2 Analog Measurements — Details

Related Topics:
» Analog Measurements — Overview (p. 66)
* Analog Measurements — Details (p. 323)

The CR1000 measures the following sensor analog output types:
e Voltage
o Single-ended
o Differential
e Current (using a resistive shunt)
e Resistance

e Full-bridge

Half-bridge

Sensor connection is to H/L terminals configured for differential (DIFF) or
single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

323

Section 8. Operation

8.1.2.1 Voltage Measurement Quality

Read More Consult the following technical papers at
www.campbellsci.com/app-notes for in-depth treatments of several topics
addressing voltage measurement quality:

* Preventing and Attacking Measurement Noise Problems

* Benefits of Input Reversal and Excitation Reversal for Voltage
Measurements

* Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements

» Estimating Measurement Accuracy for Ratiometric Measurement
Instructions.

The following topics discuss methods of generally improving voltage
measurements. Related information for special case voltage measurements
(thermocouples (p. 341), current loops (p. 366), resistance (p. 353), and strain (p. 364)) s
located in sections for those measurements.

Single-Ended or Differential?
Deciding whether a differential or single-ended measurement is appropriate is
usually, by far, the most important consideration when addressing voltage
measurement quality. The decision requires trade-offs of accuracy and precision,
noise cancelation, measurement speed, available measurement hardware, and
fiscal constraints.
In broad terms, analog voltage is best measured differentially because these
measurements include noise reduction features, listed below, that are not included
in single-ended measurements.

e Passive Noise Rejection

o No voltage reference offset

o Common-mode noise rejection, which filters capacitively coupled
noise

e Active Noise Rejection
o Input reversal

— Review Input and Excitation Reversal (p. 336) for details
— Increases by twice the input reversal signal integration time

Reasons for using single-ended measurements, however, include:

e Not enough differential terminals available. Differential measurements
use twice as many H/L terminals as do single-ended measurements.

e Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

324

Section 8. Operation

Integration

e Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the
draw backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

Sensors with a high signal-to-noise ratio, such as a relative-humidity sensor with a
full-scale output of 0 to 1000 mV, can normally be measured as single-ended
without a significant reduction in accuracy or precision.

Sensors with a low signal-to-noise ratio, such as thermocouples, should normally
be measured differentially. However, if the measurement to be made does not
require high accuracy or precision, such as thermocouples measuring brush-fire
temperatures, which can exceed 2500 °C, a single-ended measurement may be
appropriate. If sensors require differential measurement, but adequate input
terminals are not available, an analog multiplexer should be acquired to expand
differential input capacity.

Because a single-ended measurement is referenced to CR1000 ground, any
difference in ground potential between the sensor and the CR1000 will result in an
error in the measurement. For example, if the measuring junction of a
copper-constantan thermocouple being used to measure soil temperature is not
insulated, and the potential of earth ground is 1 mV greater at the sensor than at
the point where the CR1000 is grounded, the measured voltage will be 1 mV
greater than the true thermocouple output, or report a temperature that is
approximately 25 °C too high. A common problem with ground-potential
difference occurs in applications wherein external, signal-conditioning circuitry is
powered by the same source as the CR1000, such as an ac mains power
receptacle. Despite being tied to the same ground, differences in current drain and
lead resistance may result in a different ground potential between the two
instruments. So, as a precaution, a differential measurement should be made on
the analog output from an external signal conditioner; differential measurements
MUST be used when the low input is known to be different from ground.

The CR1000 incorporates circuitry to perform an analog integration on voltages to
be measured prior to the A-fo-D (. 515 conversion. Integrating the the analog
signal removes noise that creates error in the measurement. Slow integration
removes more noise than fast integration. When the duration of the integration
matches the duration of one cycle of ac power mains noise, that noise is filtered
out. The table Analog Measurement Integration (p. 326) lists valid integration
duration arguments.

Faster integration may be preferred to achieve the following objectives:
e Minimize time skew between successive measurements
e Maximize throughput rate

e Maximize life of the CR1000 power supply

325

Section 8. Operation

e Minimize polarization of polar sensors such as those for measuring
conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

e Improve accuracy of an LVDT measurement. The induced voltage in an
LVDT decays with time as current in the primary coil shifts from the
inductor to the series resistance; a long integration may result in most of
signal decaying before the measurement is complete.

Note See White Paper "Preventing and Attacking Measurement Noise
Problems" at www.campbellsci.com.

The magnitude of the frequency response of an analog integrator is a SIN(x)/x
shape, which has notches (transmission zeros) occurring at 1/(integer multiples) of
the integration duration. Consequently, noise at 1/(integer multiples) of the
integration duration is effectively rejected by an analog integrator. If reversing the
differential inputs or reversing the excitation is specified, there are two separate
integrations per measurement; if both reversals are specified, there are four
separate integrations.

TABLE 55: Analog Measurement Integration

Integration Time (ms) Paraggg{:ﬂ";:;men ¢ Comments
0 to 16000 ps 0to 16000 250 ps is considered fast
and normally the
minimum
16.667 ms _60Hz Filters 60 Hz noise
20 ms _50Hz Filters 50 Hz noise

Ac Power Noise Rejection

Grid or mains power (50 or 60 Hz, 230 or 120 Vac) can induce electrical noise at
integer multiples of 50 or 60 Hz. Small analog voltage signals, such as
thermocouples and pyranometers, are particularly susceptible. CR1000 voltage
measurements can be programmed to reject (filter) 50 Hz or 60 Hz related noise.
Noise is rejected by using a signal integration time that is relative to the length of
the ac noise cycle, as illustrated in the figure Ac Power Noise Rejection
Techniques (p. 327).

326

Section 8. Operation

Ac Power Noise Rejection Techniques

| Full Cycle Technigue |

|:| Full Cycle Integration

- 112 Cycle Integration

‘ 112 Cycle Technique ‘

Ac Noise Rejection on Small Signals

The CR1000 rejects ac power line noise on all voltage ranges except m V5000 and
mV2500 by integrating the measurement over exactly one full ac cycle before

A-to-D (p. 515 conversion as listed in table Ac Noise Rejection on Small Signals (p.
327).

TABLE 56: Ac Noise Rejection on Small Signals’

Ac Power Line Measurement CRBasic Integration
Frequency Integration Duration Code
60 Hz 16.667 ms _60H7
50 Hz 20 ms _50Hz

! Applies to all analog input voltage ranges except m V2500 and mV5000.

Ac Noise Rejection on Large Signals

If rejecting ac-line noise when measuring with the 2500 mV (m¥V2500) and 5000
mV (mV5000) ranges, the CR1000 makes two fast measurements separated in
time by one-half line cycle. A 60 Hz half cycle is 8333 ps, so the second
measurement must start 8333 ps after the first measurement integration began.
The A-to-D conversion time is approximately 170 ps, leaving a maximum
input-settling time of approximately 8160 us (8333 pus— 170 ps). Ifthe
maximum input-settling time is exceeded, 60 Hz line-noise rejection will not
occur. For 50 Hz rejection, the maximum input settling time is approximately
9830 pus (10,000 ps — 170 ps). The CR1000 does not prevent or warn against
setting the settling time beyond the half-cycle limit. Table Ac Noise Rejection on
Large Signals (p. 329 lists details of the half-cycle ac-power line-noise rejection
technique.

327

Section 8. Operation

328

TABLE 57: Ac Noise Rejection on Large Signals'

Measurement CRBasic Default Maximum
Ac-Power Line Integration Integration Settling Recommended
Frequency Time Code Time Settling Time?
60 Hz 250 s + 2 _60H 3000 ps 8330 ps
50 Hz 250 s + 2 _50Hz 3000 ps 10000 ps

! Applies to analog input voltage ranges m V2500 and mV5000.

2 Excitation time and settling time are equal in measurements requiring excitation. The CR1000 cannot excite VX
excitation terminals during A-to-D conversion. The one-half-cycle technique with excitation limits the length of
recommended excitation and settling time for the first measurement to one-half-cycle. The CR1000 does not
prevent or warn against setting a settling time beyond the one-half-cycle limit. For example, a settling time of up
to 50000 ps can be programmed, but the CR1000 will execute the measurement as follows:

1. CR1000 turns excitation on, waits 50000 ps, and then makes the first measurement.

2. During A-to-D, CR1000 turns off excitation for =170 ps.

3. Excitation is switched on again for one-half cycle, then the second measurement is made.
Restated, when the CR1000 is programmed to use the half-cycle 50 Hz or 60 Hz rejection techniques, a sensor
does not see a continuous excitation of the length entered as the settling time before the second measurement — if

the settling time entered is greater than one-half cycle. This causes a truncated second excitation. Depending on
the sensor used, a truncated second excitation may cause measurement errors.

Signal Settling Time

Settling time allows an analog voltage signal to settle closer to the true magnitude
prior to measurement. To minimize measurement error, signal settling is needed
when a signal has been affected by one or more of the following:

e A small transient originating from the internal multiplexing that connects
a CR1000 terminal with measurement circuitry

e A relatively large transient induced by an adjacent excitation conductor
on the signal conductor, if present,because of capacitive coupling during
a bridge measurement

e Dielectric absorption. 50 Hz or 60 Hz integrations require a relatively
long reset time of the internal integration capacitor before the next
measurement.

The rate at which the signal settles is determined by the input settling time
constant, which is a function of both the source resistance and fixed-input
capacitance (3.3 nfd) of the CR1000.

Rise and decay waveforms are exponential. Figure Input Voltage Rise and
Transient Decay (p. 329 shows rising and decaying waveforms settling closer to the
true signal magnitude, Vso. The SettlingTime parameter of an analog
measurement instruction allows tailoring of measurement instruction settling
times with 100 ps resolution up to 50000 ps.

Section 8. Operation

Programmed settling time is a function of arguments placed in the Settling Time
and Integ parameters of a measurement instruction. Argument combinations and
resulting settling times are listed in table CRBasic Measurement Settling Times (p.
329). Default settling times (those resulting when SettlingTime = 0) provide
sufficient settling in most cases. Additional settling time is often programmed
when measuring high-resistance (high-impedance) sensors or when sensors
connect to the input terminals by long leads.

Measurement time of a given instruction increases with increasing settling time.
For example, a 1 ms increase in settling time for a bridge instruction with input
reversal and excitation reversal results in a 4 ms increase in time for the CR1000
to perform the instruction.

FIGURE 74: Input voltage rise and transient decay

Vg0

Input o
Voltage S

\ Rise

0 Time 0.5ms

TABLE 58: CRBasic Measurement Settling Times

SettlingTime Integ Resultant
Argument Argument Settling Time'
0 250 450 ps
0 _50H 3 ms
0 _60Hz 3 ms
us entered in
integer > 100 integer SettlingTime
argument

1450 ps is the minimum settling time required to meet CR1000 resolution
specifications.

Settling Errors

When sensors require long lead lengths, use the following general practices to
minimize settling errors:

e Do not use wire with PVC-insulated conductors. PVC has a high
dielectric constant, which extends input settling time.

329

Section 8. Operation

330

e Where possible, run excitation leads and signal leads in separate shields
to minimize transients.

e When measurement speed is not a prime consideration, additional time
can be used to ensure ample settling time. The settling time required
can be measured with the CR1000.

e In difficult cases, settling error can be measured as described in
Measuring Settling Time (p. 330).

Measuring Settling Time

Settling time for a particular sensor and cable can be measured with the CR1000.
Programming a series of measurements with increasing settling times will yield
data that indicate at what settling time a further increase results in negligible
change in the measured voltage. The programmed settling time at this point
indicates the settling time needed for the sensor / cable combination.

CRBasic example Measuring Settling Time (p. 330) presents CRBasic code to help
determine settling time for a pressure transducer using a high-capacitance
semiconductor. The code consists of a series of full-bridge measurements
(BrFull()) with increasing settling times. The pressure transducer is placed in
steady-state conditions so changes in measured voltage are attributable to settling
time rather than changes in pressure. Reviewing CRBasic Programming —
Details (. 124y may help in understanding the CRBasic code in the example.

The first six measurements are shown in table First Six Values of Settling Time
Data . 331. Each trace in figure Settling Time for Pressure Transducer (p. 331)
contains all twenty PT() mV/V values (left axis) for a given record number, along
with an average value showing the measurements as percent of final reading (right
axis). The reading has settled to 99.5% of the final value by the fourteenth
measurement, which is contained in variable PT(14). This is suitable accuracy
for the application, so a settling time of 1400 pus is determined to be adequate.

CRBasic EXAMPLE 69: Measuring Settling Time

'This program example demonstrates the measurement of settling time using a single
'measurement instruction multiple times in succession. In this case, the program measures
"the temperature of the CR1000 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) 'Instruction to make measurement
NextScan
EndProg measures the settling time of a sensor measured with a differential
'voltage measurement

PubTic PT(20) "Variable to hold the measurements
DataTable(Settle,True,100)

Samp1e (20,PT(),IEEE4)
EndTable

Section 8. Operation

BeginProg
Scan(1,Sec,3,0)

BrFull(PT(1),1,mV7.
BrFull1(PT(2),1,mV7.
BrFul1(PT(3),1,mV7.
BrFul1(PT(4),1,mV7.
BrFul1(PT(5),1,mvV7.
BrFull(PT(6),1,mV7.
BrFul1(PT(7),1,mV7.
BrFul1(PT(8),1,mV7.
BrFul1(PT(9),1,mvV7.
BrFul1(PT(10),1,mV7.
BrFull(PT(11),1,mV7.
BrFull(PT(12),1,mV7.
BrFull1(PT(13),1,mV7.
BrFul1(PT(14),1,mV7.
BrFull(PT(15),1,mV7.
BrFull1(PT(16),1,mV7.
BrFull1(PT(17),1,mV7.
BrFull1(PT(18),1,mV7.
BrFul1(PT(19),1,mV7.
BrFul1(PT(20),1,mV7.

CallTable Settle

NextScan
EndProg

x1,2500,True,True,100, 250,1.0,0)
x1,2500,True,True,200, 250,1.0,0)
x1,2500,True,True,300, 250,1.0,0)
x1,2500,True,True,400, 250,1.0,0)
x1,2500,True,True,500, 250,1.0,0)
x1,2500,True,True,600, 250,1.0,0)
x1,2500,True,True,700, 250,1.0,0)
x1,2500,True,True, 800, 250,1.0,0)
x1,2500,True,True,900, 250,1.0,0)
,Vx1,2500,True,True, 1000, 250,1.0,0)
,Vx1,2500,True,True, 1100, 250,1.0,0)
,Vx1,2500,True,True,1200, 250,1.0,0)
,Vx1,2500,True,True, 1300, 250,1.0,0)
,Vx1,2500,True,True, 1400, 250,1.0,0)
,Vx1,2500,True,True, 1500, 250,1.0,0)
,Vx1,2500,True,True, 1600, 250,1.0,0)
,Vx1,2500,True,True, 1700, 250,1.0,0)
,Vx1,2500,True,True, 1800, 250,1.0,0)
,Vx1,2500,True,True, 1900, 250,1.0,0)
,Vx1,2500,True,True, 2000, 250,1.0,0)

FIGURE 75: Settling Time for Pressure Transducer

Settling Time

0.044

0.043 —r

99

S
/,

97

95

0.042 \/
0.041

—— Channel 1 L 93

0.039

—— Channel 3
—m— Channel 4
=¥~ Channel 5

% of Final Value

P91

0.038

—&— Channel 6
—m—% Final Val

89

0.037

87

0.036

Time (x100 ps)

1 2 3 4 5 6 7 8 9 10 11 12

85

Section 8. Operation

TABLE 59: First Six Values of Settling Time Data

TIMESTAMP REC PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)
Smp Smp Smp Smp Smp Smp
1/3/2000 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745
1/3/2000 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396
1/3/2000 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745
1/3/2000 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531
1/3/2000 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

332

Open-input Detect

Note The information in this section is highly technical. It is not
necessary for the routine operation of the CR1000.

Summary

* An option to detect an open-input, such as a broken sensor or loose
connection, is available in the CR1000.

» The option is selected by appending a C to the Range code.

» Using this option, the result of a measurement on an open connection
will be NAN (not a number).

A useful option available to single-ended and differential measurements is the
detection of open inputs due to a broken or disconnected sensor wire. This
prevents otherwise undetectable measurement errors. Range codes appended
with C enable open-input detect for all input ranges except the 25000 mV input
range. See TABLE: Analog Input Voltage Ranges and Options (p. 367).

Appending the Range code with a C results in a 50 ps internal connection of the
V+ input of the PGIA to a large over-voltage. The V- input is connected to
ground. Upon disconnecting the inputs, the true input signal is allowed to settle
and the measurement is made normally. If the associated sensor is connected, the
signal voltage is measured. If the input is open (floating), the measurement will
over-range since the injected over-voltage will still be present on the input, with
NAN as the result.

Range codes and applicable over-voltage magnitudes are found in TABLE: Range
Code Option C Over-Voltages (p. 333).

The C option may not work, or may not work well, in the following applications:

e [fthe input is not a truly open circuit, such as might occur on a wet cut
cable end, the open circuit may not be detected because the input
capacitor discharges through external leakage to ground to a normal
voltage within the settling time of the measurement. This problem is
worse when a long settling time is selected, as more time is given for the
input capacitors to discharge to a "normal" level.

Section 8. Operation

e Ifthe open circuit is at the end of a very long cable, the test pulse (300
mV) may not charge the cable (with its high capacitance) up to a voltage
that generates NAN or a distinct error voltage. The cable may even act as
an aerial and inject noise which also might not read as an error voltage.

e The sensor may "object" to the test pulse being connected to its output,
even for 100 us. There is little or no risk of damage, but the sensor
output may be caused to temporarily oscillate. Programming a longer
settling time in the CRBasic measurement instruction to allow
oscillations to decay before the A-to-D conversion may mitigate the
problem.

TABLE 60: Range-Code Option C Over-Voltages

Input Range (mV) Over-Voltage
2.5
e 300 mV
+250
+2500 C option with caveat'
+5000 C option not available

!C results in the H terminal being briefly connected to a voltage greater than
2500 mV, while the L terminal is connected to ground. The resulting
common-mode voltage is 1250 mV, which is not adequate to null residual
common-mode voltage, but is adequate to facilitate a type of open-input
detect. This requires inclusion of an If / Then / Else statement in the CRBasic
program to test the results of the measurement. For example:

*The result of a VoltDiff() measurement using m¥V2500C as the Range code
can be tested for a result >2500 mV, which would indicate an open input.

*The result of the BrHalf() measurement, X, using the m¥V2500C range code
can be tested for values >1. A result of X > 1 indicates an open input for the
primary measurement, V1, where X = V1/Vx and Vx is the excitation voltage.
A similar strategy can be used with other bridge measurements.

Offset Voltage Compensation

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

333

Section 8. Operation

334

Summary
Measurement offset voltages are unavoidable, but can be minimized.

Offset voltages originate with:

» Ground currents

» Seebeck effect

* Residual voltage from a previous measurement

Remedies include:

» Connect power grounds to power ground terminals (G)

* Use input reveral (RevDiff = True) with differential measurements

+ Automatic offset compensation for differential measurements when
RevDiff = False

» Automatic offset compensation for single-ended measurements when
MeasOff = False

» Better offset compensation when MeasOff = True

» Excitation reversal (RevEx = True)

* Longer settling times

Voltage offset can be the source of significant error. For example, an offset of 3

pV on a 2500 mV signal causes an error of only 0.00012%, but the same offset on
a 0.25 mV signal causes an error of 1.2%. The primary sources of offset voltage
are ground currents and the Seebeck effect.

Single-ended measurements are susceptible to voltage drop at the ground terminal
caused by return currents from another device that is powered from the CR1000
wiring panel, such as another manufacturer's comms modem, or a sensor that
requires a lot of power. Currents >5 mA are usually undesirable. The error can
be avoided by routing power grounds from these other devices to a power ground
G terminal on the CR1000 wiring panel, rather than using a signal ground (=)
terminal. Ground currents can be caused by the excitation of resistive-bridge
sensors, but these do not usually cause offset error. These currents typically only
flow when a voltage excitation is applied. Return currents associated with
voltage excitation cannot influence other single-ended measurements because the
excitation is usually turned off before the CR1000 moves to the next
measurement. However, if the CRBasic program is written in such a way that an
excitation terminal is enabled during an unrelated measurement of a small voltage,
an offset error may occur.

The Seebeck effect results in small thermally induced voltages across junctions of
dissimilar metals as are common in electronic devices. Differential
measurements are more immune to these than are single-ended measurements
because of passive voltage cancelation occurring between matched high and low
pairs such as 1H/1L. So use differential measurements when measuring critical
low-level voltages, especially those below 200 mV, such as are output from
pyranometers and thermocouples. Differential measurements also have the
advantage of an input reversal option, RevDiff. When RevDiff is True, two
differential measurements are made, the first with a positive polarity and the
second reversed. Subtraction of opposite polarity measurements cancels some
offset voltages associated with the measurement.

Single-ended and differential measurements without input reversal use an offset
voltage measurement with the PGIA inputs grounded. For differential

Section 8. Operation

measurements without input reversal, this offset voltage measurement is
performed as part of the routine auto-calibration of the CR1000. Single-ended
measurement instructions VoltSE() and TCSe() MeasOff parameter determines
whether the offset voltage measured is done at the beginning of measurement
instruction, or as part of self-calibration. This option provides you with the
opportunity to weigh measurement speed against measurement accuracy. When
MeasOff = True, a measurement of the single-ended offset voltage is made at the
beginning of the VoItSE() instruction. When MeasOff = False, an offset voltage
measurement is made during self-calibration. For slowly fluctuating offset
voltages, choosing MeasOff = True for the VoltSE() instruction results in better
offset voltage performance.

Ratiometric measurements use an excitation voltage or current to excite the sensor
during the measurement process. Reversing excitation polarity also reduces
offset voltage error. Setting the RevEx parameter to True programs the
measurement for excitation reversal. Excitation reversal results in a polarity
change of the measured voltage so that two measurements with opposite polarity
can be subtracted and divided by 2 for offset reduction similar to input reversal for
differential measurements. Ratiometric differential measurement instructions
allow both RevDiff and RevEx to be set True. This results in four measurement
sequences:

e positive excitation polarity with positive differential input polarity
e negative excitation polarity with positive differential input polarity
e positive excitation polarity with negative differential input polarity

e positive excitation polarity then negative excitation differential input
polarity

For ratiometric single-ended measurements, such as a BrHalf(), setting RevEx =
True results in two measurements of opposite excitation polarity that are
subtracted and divided by 2 for offset voltage reduction. For RevEx = False for
ratiometric single-ended measurements, an offset-voltage measurement is made
during the self-calibration.

When analog voltage signals are measured in series by a single measurement
instruction, such as occurs when VoItSE() is programmed with Reps = 2 or more,
measurements on subsequent terminals may be affected by an offset, the
magnitude of which is a function of the voltage from the previous measurement.
While this offset is usually small and negligible when measuring large signals,
significant error, or NAN, can occur when measuring very small signals. This
effect is caused by dielectric absorption of the integrator capacitor and cannot be
overcome by circuit design. Remedies include the following:

e Program longer settling times

e Use an individual instruction for each input terminal, the effect of which
is to reset the integrator circuit prior to filtering.

e Avoid preceding a very small voltage input with a very large voltage
input in a measurement sequence if a single measurement instruction
must be used.

335

Section 8. Operation

TABLE: Offset Voltage Compensation Options (p. 336) lists some of the tools
available to minimize the effects of offset voltages.

TABLE 61: Offset Voltage Compensation Options

Measure Offset
During
Background
Measure Calibration

CRBasic Excitation Offset During (RevDiff = False)

Measurement Input Reversal Reversal Measurement (RevEx = False)

Instruction (RevDiff =True) (RevEx = True) (MeasOff = True) (MeasOff = False)
AM25T() v v v’
BrHalf() v v
BrHalf3W() v v
BrHalf4W() v v v
BrFull() v v v
BrFulloéW() v v v
TCDiff() v v
TCSe() v v
Therm107() v v
Therm108() v v
Therm109() v v
VoltDiff() v 4
VoltSe() v v

Input and Excitation Reversal

Reversing inputs (differential measurements) or reversing polarity of excitation
voltage (bridge measurements) cancels stray voltage offsets. For example, if 3
pV offset exists in the measurement circuitry, a 5 mV signal is measured as 5.003
mV. When the input or excitation is reversed, the second sub-measurement is
—4.997 mV. Subtracting the second sub-measurement from the first and then
dividing by 2 cancels the offset:

5.003 mV - (-4.997 mV) = 10.000 mV
10.000 mV / 2 = 5.000 mV

When the CR1000 reverses differential inputs or excitation polarity, it delays the
same settling time after the reversal as it does before the first sub-measurement.
So, there are two delays per measurement when either RevDiff or RevEx is used.
If both RevDiff and RevEx are True, four sub-measurements are performed;
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The automatic procedure then is as
follows,

336

Section 8. Operation

1. Switches to the measurement terminals

2. Sets the excitation, and then settle, and then measure

3. Reverse the excitation, and then settles, and then measure

4. Reverse the excitation, reverse the input terminals, settle, measure

5. Reverse the excitation, settle, measure

There are four delays per measure. The CR1000 processes the four
sub-measurements into the reported measurement. In cases of excitation

reversal, excitation time for each polarity is exactly the same to ensure that ionic
sensors do not polarize with repetitive measurements.

Read More A white paper entitled "The Benefits of Input Reversal and
Excitation Reversal for Voltage Measurements” is available at
www.campbellsci.com.

Ground Reference Offset Voltage

When MeasOff is enabled (= True), the CR1000 measures the offset voltage of
the ground reference prior to each VoltSe() or TCSe() measurement. This offset
voltage is subtracted from the subsequent measurement.

From Auto Self-Calibration

If RevDiff, RevEx, or MeasOff is disabled (= False), offset voltage compensation
is continues to be automatically performed, albeit less effectively, by using
measurements from the auto self-calibration. Disabling RevDiff, RevEx, or
MeasOff speeds up measurement time; however, the increase in speed comes at
the cost of accuracy because of the following:

1 RevDiff, RevEx, and MeasOff are more effective.

2 Auto self-calibrations are performed only periodically, so more time skew
occurs between the auto self-calibration offsets and the measurements to
which they are applied.

Note When measurement duration must be minimal to maximize
measurement frequency, consider disabling RevDiff, RevEx, and
MeasOff when CR1000 module temperatures and return currents are slow
to change.

Time Skew Between Measurements
Time skew between consecutive voltage measurements is a function of settling
and integration times, A-to-D conversion, and the number entered into the Reps

parameter of the VoltDiff() or VoltSE() instruction. A close approximation is:

time skew = settling time + integration time + A-to-D conversion time + reps

337

Section 8. Operation

338

where A-to-D conversion time equals 15 ps. If reps (repetitions) > 1 (multiple
measurements by a single instruction), no additional time is required. Ifreps =1
in consecutive voltage instructions, add 15 ps per instruction.

Measurement Accuracy

Read More For an in-depth treatment of accuracy estimates, see the
technical paper Measurement Error Analysis soon available at
www.campbellsci.com/app-notes.

Accuracy describes the difference between a measurement and the true value.
Many factors affect accuracy. This section discusses the affect
percent-or-reading, offset, and resolution have on the accuracy of the
measurement of an analog voltage sensor signal. Accuracy is defined as follows:

accuracy = percent-of-reading + offset

where percents-of-reading are tabulated in the table Analog Voltage Measurement

Accuracy (p. 338), and offsets are tabulated in the table Analog Voltage

Measurement Offsets (. 338).

Note Error discussed in this section and error-related specifications of
the CR1000 do not include error introduced by the sensor or by the

transmission of the sensor signal to the CR1000.

TABLE 62: Analog Voltage Measurement Accuracy'

0 to 40 °C -251to 50 °C —55 to 85 °C?
+(0.06% of reading + +(0.12% of reading + +(0.18% of reading +
offset) offset) offset)

! Assumes the CR1000 is within factory specifications

2 Available only with purchased extended temperature option (-XT)

TABLE 63: Analog Voltage Measurement Offsets

Differential
Measurement
With Input Reversal

Differential
Measurement
Without Input

Reversal

Single-Ended

1.5 « Basic Resolution +
1.0 uv

3 « Basic Resolution +
2.0 uwv

3 « Basic Resolution +
3.0 uvV

Note — the value for Basic Resolution is found in the table Analog Voltage
Measurement Resolution p. 338).

Section 8. Operation

TABLE 64: Analog Voltage Measurement Resolution

Differential
Input Measurement
Voltage Range With Input Reversal Basic Resolution

(mV) (1v) (1v)
+5000 667 1333
+2500 333 667
+250 33.3 66.7

25 3.33 6.7

7.5 1.0 2.0

2.5 0.33 0.67

Note — see Specifications (p. 95) for a complete tabulation of measurement
resolution

As an example, figure Voltage Measurement Accuracy Band Example (p. 340)
shows changes in accuracy as input voltage changes on the +2500 input range.
Percent-of-reading is the principle component, so accuracy improves as input
voltage decreases. Offset is small, but could be significant in applications
wherein the sensor-signal voltage is very small, such as is encountered with
thermocouples.

Offset depends on measurement type and voltage-input range. Offsets equations
are tabulated in table Analog Voltage Measurement Offsets (p. 338. For example,
for a differential measurement with input reversal on the +5000 mV input range,
the offset voltage is calculated as follows:

offset = 1.5 » Basic Resolution + 1.0 uV

=(1.5+667 uV)+ 1.0 uv

=1001.5 pVv

where Basic Resolution is the published resolution is taken from the table Analog
Voltage Measurement Resolution (p. 338).

339

Section 8. Operation

FIGURE 76: Example voltage measurement accuracy band, including
the effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to 40
°C.

.
%7 \g
NANAVR T EAVAYARY:
RONIANIN, 1000 A 2000

-3000 3000

Voltage Measurement Error (mV)

Input Voltage (mV)

Measurement Accuracy Example

The following example illustrates the effect percent-of-reading and offset have on
measurement accuracy. The effect of offset is usually negligible on large signals:

Example:
e Sensor-signal voltage: ~2500 mV
e CRBasic measurement instruction: VoltDiff()
e Programmed input-voltage range (Range): mV2500 (£2500 mV)
e Input measurement reversal (RevDiff): True
e CR1000 circuitry temperature: 10 °C
Accuracy of the measurement is calculated as follows:

accuracy = percent-of-reading + offset

340

Section 8. Operation

Electronic Noise

where
percent-of-reading = 2500 mV + +0.06%
==+1.5mV
and
offset = (1.5« 667 uV) + 1 uVv
=1.00 mV
Therefore,
accuracy = 1.5 mV + 1.00 mV

=4+2.5mV

Electronic "noise" can cause significant error in a voltage measurement,
especially when measuring voltages less than 200 mV. So long as input
limitations are observed, the PGIA ignores voltages, including noise, that are
common to each side of a differential-input pair. This is the common-mode
voltage. Ignoring (rejecting or canceling) the common-mode voltage is an
essential feature of the differential input configuration that improves voltage
measurements.

Figure PGIA with Input Signal Decomposition (p. 369), illustrates the
common-mode component (Vem) and the differential-mode component (Vam) of a
voltage signal. Vcm is the average of the voltages on the V+ and V- inputs. So,
Vem = (V+ + V=-)/2 or the voltage remaining on the inputs when Vym =0. The
total voltage on the V+ and V— inputs is given as V+ = V¢y + Vaw/2, and Vi =
Vem — Vam/2, respectively.

8.1.2.2 Thermocouple Measurements — Details

Related Topics:
» Thermocouple Measurements — Details
» Thermocouple Measurements — Instructions

Thermocouple measurements are special case voltage measurements.

Note Thermocouples are inexpensive and easy to use. However, they
pose several challenges to the acquisition of accurate temperature data,
particularly when using external reference junctions. Campbell Scientific
strongly encourages you to carefully evaluate the section Thermocouple
Error Analysis (p. 342. An introduction to thermocouple measurements is
located in the section Tutorial: Measuring a Thermocouple (p. 40).

341

342

Section 8. Operation

The micro-volt resolution and low-noise voltage measurement capability of the
CR1000 is well suited for measuring thermocouples. A thermocouple consists of
two wires, each of a different metal or alloy, joined at one end to form the
measurement junction. At the opposite end, each lead connects to terminals of a
voltage measurement device, such as the CR1000. These connections form the
reference junction. If the two junctions (measurement and reference) are at
different temperatures, a voltage proportional to the difference is induced in the
wires. This phenomenon is known as the Seebeck effect. Measurement of the
voltage between the positive and negative terminals of the voltage-measurement
device provides a direct measure of the temperature difference between the
measurement and reference junctions. A third metal (e.g., solder or CR1000
terminals) between the two dissimilar-metal wires form parasitic-thermocouple
junctions, the effects of which cancel if the two wires are at the same temperature.
Consequently, the two wires at the reference junction are placed in close
proximity so they remain at the same temperature. Knowledge of the reference
junction temperature provides the determination of a reference junction
compensation voltage, corresponding to the temperature difference between the
reference junction and 0°C. This compensation voltage, combined with the
measured thermocouple voltage, can be used to compute the absolute temperature
of the thermocouple junction. To facilitate thermocouple measurements, a
thermistor is integrated into the CR1000 wiring panel for measurement of the
reference junction temperature by means of the PanelTemp() instruction.

TCDiff() and TCSe() thermocouple instructions determine thermocouple
temperatures using the following sequence. First, the temperature (°C) of the
reference junction is determined. Next, a reference junction compensation voltage
is computed based on the temperature difference between the reference junction
and 0°C. If the reference junction is the CR1000 analog-input terminals, the
temperature is conveniently measured with the PanelTemp() instruction. The
actual thermocouple voltage is measured and combined with the reference
junction compensation voltage. It is then used to determine the
thermocouple-junction temperature based on a polynomial approximation of
NIST thermocouple calibrations.

8.1.2.2.1 Thermocouple Error Analysis

The error in the measurement of a thermocouple temperature is the sum of the
errors in the reference junction temperature measurement plus the
temperature-to-voltage polynomial fit error, the non-ideal nature of the
thermocouple (deviation from standards published in NIST Monograph 175), the
thermocouple-voltage measurement accuracy, and the voltage-to-temperature
polynomial fit error (difference between NIST standard and CR1000 polynomial
approximations). The discussion of errors that follows is limited to these errors in
calibration and measurement and does not include errors in installation or
matching the sensor and thermocouple type to the environment being measured.

Panel Temperature Error

The panel temperature thermistor (Betatherm 10K3A1A) is just under the panel in
the center of the two rows of analog input terminals. It has an interchangeability
specification of 0.1 °C for temperatures between 0 and 70 °C. Below freezing and
at higher temperatures, this specification is degraded. Combined with possible
errors in the completion-resistor measurement and the Steinhart and Hart equation

Section 8. Operation

used to calculate the temperature from resistance, the accuracy of panel
temperature is estimated in FIGURE: Panel Temperature Error Summary (p. 343).
In summary, error is estimated at + 0.1 °C over 0 to 40 °C, + 0.3 °C from -25 to
50 °C, and + 0.8 °C from —55 to 85 °C.

The error in the reference temperature measurement is a combination of the error
in the thermistor temperature and the difference in temperature between the panel
thermistor and the terminals the thermocouple is connected to. The terminal strip
cover should always be used when making thermocouple measurements. It
insulates the terminals from drafts and rapid fluctuations in temperature as well as
conducting heat to reduce temperature gradients. In a typical installation where
the CR1000 is in a weather-tight enclosure not subject to violent swings in
temperature or uneven solar radiation loading, the temperature difference between
the terminals and the thermistor is likely to be less than 0.2 °C.

With an external driving gradient, the temperature gradients on the input panel
can be much worse. For example, the CR1000 was placed in a controlled
temperature chamber. Thermocouples in terminals at the ends and middle of each
analog terminal strip measured the temperature of an insulated aluminum bar
outside the chamber. The temperature of this bar was also measured by another
datalogger. Differences between the temperature measured by one of the
thermocouples and the actual temperature of the bar are due to the temperature
difference between the terminals the thermocouple is connected to and the
thermistor reference (the figures have been corrected for thermistor errors).
FIGURE: Panel Temperature Gradients (Low to High) (p. 344 shows the errors
when the chamber was changed from low temperature to high in approximately 15
minutes. FIGURE: Panel Temperature Gradients (High to Low) (p. 344) shows the
results when going from high temperature to low. During rapid temperature
changes, the panel thermistor will tend to lag behind terminal temperature because
it is mounted deeper in the CR1000.

FIGURE 77: Panel Temperature Error Summary

Panel Temperature Error Summary

0.8

—A— Sum of Worst-Case Errors
—=—Thermistor Tolerance
—e—CR1000 Measurement /
0.6 Completion-Resistor Error
S&H Err /
0.5
0.4 / /

i

0.7

Error °C

N e
\\\“._“—_—./
85 B 5 N 5 25 45 65 T

Panel Temperature °C

343

Section 8. Operation

FIGURE 78: Panel Temperature Gradients (low temperature to high)

Reference - Temperature Errors Due to Panel Gradient
Chamber Changed from -55° to 85° C

80

@
o

o —— Channel 1 40
§ —4— Channel 3
) —&- Channel 4
o 6
[=} —— Channel 5 20
3 —3— Channel 6
g ~—4— Channel 8
! —— RefTemp_Avg
B4 Ch, Te
5 amber Temp o
2
©
(7]
=

N
S

Chamber and Reference Temperature (Degrees C)

-40

1 3 5 7 9 1 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Time (Minutes)

FIGURE 79: Panel Temperature Gradients (high temperature to low)

Reference -Temperature Errors Due to Panel Gradient
Chamber Changed from 85° to 25° C

-3
S

\
1
}
3

-1 ' - == —+—Channel-t

4 =
A ——Channel 3
R —&—Channel 4

-2

——Channel 6

3
=]

Measured - Actual (degrees C)
Chamber and Reference Temperatures (deg. C)

—4—Channel 8 50
3 —m—RefTemp_Avg
- ~4—Chamber Temp
\
40
-4
5 30
6 20

13 5 7 9 M 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Time (Minutes)

Thermocouple Limits of Error

The standard reference that lists thermocouple output voltage as a function of
temperature (reference junction at 0°C) is the NIST (National Institute of
Standards and Technology) Monograph 175 (1993). ANSI (American National
Standards Institute) has established limits of error on thermocouple wire which is

344

Section 8. Operation

accepted as an industry standard (ANSI MC 96.1, 1975). Table Limits of Error for
Thermocouple Wire (p. 345) gives the ANSI limits of error for standard and special
grade thermocouple wire of the types accommodated by the CR1000.

When both junctions of a thermocouple are at the same temperature, no voltage is
generated, a result of the law of intermediate metals. A consequence of this is that
a thermocouple cannot have an offset error; any deviation from a standard
(assuming the wires are each homogeneous and no secondary junctions exist) is
due to a deviation in slope. In light of this, the fixed temperature-limits of error
(e.g., 1.0 °C for type T as opposed to the slope error of 0.75% of the
temperature) in the table above are probably greater than one would experience
when considering temperatures in the environmental range (i.e., the reference
junction, at 0°C, is relatively close to the temperature being measured, so the
absolute error — the product of the temperature difference and the slope error —
should be closer to the percentage error than the fixed error). Likewise, because
thermocouple calibration error is a slope error, accuracy can be increased when
the reference junction temperature is close to the measurement temperature. For
the same reason differential temperature measurements, over a small temperature
gradient, can be extremely accurate.

To quantitatively evaluate thermocouple error when the reference junction is not
fixed at 0°C limits of error for the Seebeck coefficient (slope of thermocouple
voltage vs. temperature curve) are needed for the various thermocouples. Lacking
this information, a reasonable approach is to apply the percentage errors, with
perhaps 0.25% added on, to the difference in temperature being measured by the
thermocouple.

TABLE 65: Limits of Error for Thermocouple Wire (Reference Junction at 0°C)

Limits of Error
Thermocouple Temperature (Whichever is greater)
Type Range °C Standard Special
T -200t0 0 +1.0°Cor1.5%
0to 350 +1.0 °C or 0.75% + 0.5 °C or 0.4%
0to 750 +2.2°Cor0.75% + 1.1 °C or 0.4%
E —200to0 0 + 1.7 °C or 1.0%
0 to 900 +1.7°Cor 0.5% + 1.0 °C or 0.4%
K —200to0 0 +2.2 °C or 2.0%
0 to 1250 +2.2°Cor0.75% + 1.1 °C or 0.4%
RorS 0 to 1450 +1.5°Cor 0.25% +0.6 °C or 0.1%
B 800 to 1700 +0.5% Not Established.

Thermocouple Voltage Measurement Error

Thermocouple outputs are extremely small — 10 to 70 uV per °C. Unless high
resolution input ranges are used when programming, the CR1000, accuracy and
sensitivity are compromised. Table Voltage Range for Maximum Thermocouple

345

346

Section 8. Operation

Resolution (. 346) lists high resolution ranges available for various thermocouple
types and temperature ranges. The following four example calculations of
thermocouple input error demonstrate how the selected input voltage range
impacts the accuracy of measurements. Figure Input Error Calculation (p. 347)
shows from where various values are drawn to complete the calculations. See
Measurement Accuracy for more information on measurement accuracy and
accuracy calculations.

When the thermocouple measurement junction is in electrical contact with the
object being measured (or has the possibility of making contact) a differential
measurement should be made to avoid ground looping.

TABLE 66: Voltage Range for Maximum Thermocouple Resolution’

Temperature Temperature Temperature Temperature
TC Type and Range (°C) Range (°C) Range (°C) Range (°C)
Temperature for ¥2.5 mV for 7.5 mV for ¥25 mV for £250 mV
Range (°C) Input Range Input Range Input Range Input Range
T: =270 to 400 —45 to 75 —270 to 180 —270 to 400 not used
E: =270 to 1000 —20to 60 —120 to 130 —270 to 365 >365
K: 270 to 1372 —40 to 80 —270 to 200 —270 to 620 >620
J: 210 to 1200 —25 10 65 —145to 155 -210 to 475 >475
B: -0 to 1820 0to 710 0 to 1265 0 to 1820 not used
R: -50to 1768 —50 to 320 —50to 770 —50to 1768 not used
S: =50 to 1768 —50 to 330 —50 to 820 —50 to 1768 not used
N: 270 to 1300 —80 to 105 —270 to 260 -270 to 725 >725

! Reference temperature at 20°C

Section 8. Operation

FIGURE 80: Input Error Calculation

Thermocouple Measurement Specifics

Conditions:

Temperature = 45° C

Reference Temperature = 25° C

DeltaT =20°C

Output Multiplier at 450 C =424 uyvo C'
Thermocouple Output =20°C* 424 uvVeoC' = 830.7 uv

~

CR1000 Specifications ~ Example 1. Input Error Calculation
RANGES and RESOLUTION: Basic resolution (Basic Res) is I __HV Error = Gain Term + Offset Term
the A/D resolution of a single conversion. Resolution of ~a
DF measurements with input reversal is half the Basic Res. =(830.7 pV * 0.12%) + (1.5* 0.67 WV + 1.0 V)
Input Range (mV)’ DF Res (uV)? Basic Res (uV) _— //"/
+5000 667 1333 =0.997 WV + 20tV
+2500 333 667 - /,/
+250 333 66.7 - _—=3.01 vV (=0.071°CQ) y
425 3.33 6.7 _ P
+7.5 1.0 20 _— y
+2.5 0.33 067 y
'Range overhead of ~9% exists on all ranges to gua’réntee) pd g
that the full-scale range values will not cause overrange. // ’
2Resolution of DF measun{amentsf\yl;/ith input reversal. ///
ACCURACY: e
+(0.06% of reading + offset), 0° to 40°C //
+(0.12% of reading + offset), -25° to 50°C pd

+(0.18% of reading + offset), -40° to 85°C (-XT only) // g

3Accuracy does not include sensor and measurement noise.
Offsets are defined as: y

7 g
Offset for DF w/ input reversal =1.5-Basic Res + 1.0 uv
Offset for DF w/o input reversal = 3-Basic Res + 2.0 uv
Offset for SE = 3-Basic Res + 3.0 pv

Input Error Examples: Type T Thermocouple @ 45°C
These examples demonstrate that in the environmental temperature range,
input-offset error is much greater than input-gain error because a small input
range is used.
Conditions:
CR1000 module temperature, —25 to 50 °C
Temperature = 45 °C
Reference temperature = 25 °C
Delta T (temperature difference) =20 °C
Thermocouple output multiplier at 45 °C = 42.4 uV °C!
Thermocouple output = 20°C » 42.4 pV °C!' = 830.7 uV

Input range = +2.5 mV

347

Section 8. Operation

Error Calculations with Input Reversal = True
pV error = gain term + offset term
=(830.7 uV ¢ 0.12%) + (1.5 0.67 uV + 1.0 uV)
=0.997 uvV +2.01 pv
=3.01 pV (=0.071 °C)

Error Calculations with Input Reversal = False
pnV Error = gain term + offset term
=(830.7 uV +0.12%) + (3 * 0.67 uV + 2.0 uV)
=0.997 uV +4.01 uv

=5.01 uV (= 0.12 °C)

Input Error Examples: Type K Thermocouple @ 1300°C
Error in the temperature due to inaccuracy in the measurement of the
thermocouple voltage increases at temperature extremes, particularly when the
temperature and thermocouple type require using the £200[250 mV range. For
example, assume type K (chromel-alumel) thermocouples are used to measure
temperatures around 1300°C.

These examples demonstrate that at temperature extremes, input offset error is
much less than input gain error because the use of a larger input range is required.

Conditions
CR1000 module temperature, —25 to 50 °C
Temperature = 1300 °C
Reference temperature = 25 °C
Delta T (temperature difference) = 1275 °C
Thermocouple output multiplier at 1300 °C = 34.9 pV °C!
Thermocouple output = 1275 °C » 34.9 uV °C™' = 44500 uV
Input range = +250 mV
Error Calculations with Input Reversal = True
pV error = gain term + offset term

= (44500 uV * 0.12%) + (1.5 * 66.7 uV + 1.0 uV)

348

Section 8. Operation

=534 uV+101.0 pv
=154 uV (=4.41°C)

Error Calculations with Input Reversal = False
pV error = gain term + offset term
= (44500 pV * 0.12%) + (3 * 66.7 uV + 2.0 uV)
=534 pV+200 pv

=7.25uV (= 7.25 °C)

Ground Looping Error

Noise Error

When the thermocouple measurement junction is in electrical contact with the
object being measured (or has the possibility of making contact), a differential
measurement should be made to avoid ground looping.

The typical input noise on the +£2_5 mV range for a differential measurement with
16.67 ms integration and input reversal is 0.19 pV RMS. On a type-T
thermocouple (approximately 40 uV/°C), this is 0.005°C.

Note Thisis an RMS value; some individual readings will vary by greater
than this.

Thermocouple Polynomial Error

NIST Monograph 175 gives high-order polynomials for computing the output
voltage of a given thermocouple type over a broad range of temperatures. To
speed processing and accommodate the CR1000 math and storage capabilities,
four separate 6th-order polynomials are used to convert from volts to temperature
over the range covered by each thermocouple type. The table Limits of Error on
CR1000 Thermocouple Polynomials (p. 349) gives error limits for the thermocouple
polynomials.

349

Section 8. Operation

350

TABLE 67: Limits of Error on CR1000 Thermocouple Polynomials

Limits of Error °C
TC Relative to NIST
Type Range °C Standards
T -270 to 400
-270 to —200 18 @270
—200 to -100 +0.08
-100 to 100 +0.001
100 to 400 +0.015
J -150 to 760 +0.008
-100 to 300 +0.002
E -240 to 1000
—240 to -130 +0.4
-130 to 200 +0.005
200 to 1000 +0.02
K -50 to 1372
=50 to 950 +0.01
950 to 1372 +0.04

Reference Junction Error

Thermocouple instructions TCDiff() and TCSe() include the parameter TRef to
incorporate the reference junction temperature into the measurement. A reference
junction compensation voltage is computed from 7Ref as part of the
thermocouple instruction, based on the temperature difference between the
reference junction and 0 °C. The polynomials used to determine the reference
junction compensation voltage do not cover the entire thermocouple range, as
illustrated in tables Limits of Error on CR1000 Thermocouple Polynomials (p. 349)
and Reference Temperature Compensation Range and Polynomial Error (p. 351).
Substantial errors in the reference junction compensation voltage will result if the
reference junction temperature is outside of the polynomial-fit ranges given.

The reference junction temperature measurement can come from a PanelTemp()
instruction or from any other temperature measurement of the reference junction.
The standard and extended (-XT) operating ranges for the CR1000 are —25 to 50
°C and —55 to 85 °C, respectively. These ranges also apply to the reference
junction temperature measurement using PanelTemp().

Two sources of error arise when the reference temperature is out of the
polynomial-fit range. The most significant error is in the calculated compensation
voltage; however, a small error is also created by non-linearities in the Seebeck
coefficient.

Section 8. Operation

TABLE 68: Reference Temperature Compensation Range and Error

TC Type Range °C Limits of Error °C’
T —100 to 100 +0.001
E —150 to 206 +0.005
J —150 to 296 +0.005
K —50to 100 +0.01

! Relative to ITS-90 Standard in NIST Monograph 175

Thermocouple Error Summary

Errors in the thermocouple- and reference-temperature linearizations are
extremely small, and error in the voltage measurement is negligible.

The magnitude of the errors discussed in Error Analysis (p. 342) show that the
greatest sources of error in a thermocouple measurement are usually,

e The typical (and industry accepted) manufacturing error of thermocouple
wire

e The reference temperature

The table Thermocouple Evror Examples (p. 351) tabulates the relative magnitude of
these errors. It shows a worst case example where,

o A temperature of 45 °C is measured with a type-T thermocouple and all
errors are maximum and additive:

e Reference temperature is 25 °C, but it is indicating 25.1 °C.

e The terminal to which the thermocouple is connected is 0.05 °C cooler
than the reference thermistor (0.15 °C error).

351

Section 8. Operation

TABLE 69: Thermocouple Error Examples

Source

Error: °C : % of Total Error

Differential without Input Reversal
250 s Integration

Differential with Input Reversal
50/60 Hz Rejection Integration

ANSI TC Error (1 °C)

TC Error 1% Slope

ANSI TC Error (1 °C)

TC Error 1% Slope

Reference Temperature

0.15°:11.5%

0.15°:29.9%

0.15°:12.2%

0.15°:34.7%

TC Output 1.0°:76.8% 0.2°:39.8% 1.0°:81.1% 0.2°:46.3%
Voltage Measurement 0.12°:9.2% 0.12°:23.9% 0.07°: 5.7% 0.07°:16.2%
Noise 0.03°:2.3% 0.03°:6.2% 0.01°: 0.8% 0.01°:2.3%

Reference Linearization

0.001°:0.1%

0.001°: 0.2%

0.001°:0.1%

0.001°: 0.25%

Output Linearization

0.001°:0.1%

0.001°:0.2%

0.001°:0.1%

0.001°:0.25%

Total Error

1.302°: 100%

0.502° : 100%

1.232°:100%

0.432°:100%

8.1.2.2.2 Use of External Reference Junction

352

An external junction in an insulated box is often used to facilitate thermocouple
connections. It can reduce the expense of thermocouple wire when measurements
are made long distances from the CR1000. Making the external junction the
reference junction, which is preferable in most applications, is accomplished by
running copper wire from the junction to the CR1000. Alternatively, the junction
box can be used to couple extension-grade thermocouple wire to the
thermocouples, with the PanelTemp() instruction used to determine the reference
junction temperature.

Extension-grade thermocouple wire has a smaller temperature range than standard
thermocouple wire, but it meets the same limits of error within that range. One
situation in which thermocouple extension wire is advantageous is when the
junction box temperature is outside the range of reference junction compensation
provided by the CR1000. This is only a factor when using type K thermocouples,
since the upper limit of the reference compensation polynomial fit range is 100 °C
and the upper limit of the extension grade wire is 200 °C. With the other types of
thermocouples, the reference compensation polynomial-fit range equals or is
greater than the extension-wire range. In any case, errors can arise if temperature
gradients exist within the junction box.

Figure Diagram of a Thermocouple Junction Box (p. 353) illustrates a typical
junction box wherein the reference junction is the CR1000. Terminal strips are a
different metal than the thermocouple wire. Thus, if a temperature gradient exists
between A and A' or B and B', the junction box will act as another thermocouple
in series, creating an error in the voltage measured by the CR1000. This
thermoelectric-offset voltage is also a factor when the junction box is used as the
reference junction. This offset can be minimized by making the thermal
conduction between the two points large and the distance small. The best solution
when extension-grade wire is being connected to thermocouple wire is to use
connectors which clamp the two wires in contact with each other.

Section 8. Operation

When an external-junction box is also the reference junction, the points A, A, B,
and B' need to be very close in temperature (isothermal) to measure a valid
reference temperature, and to avoid thermoelectric-offset voltages. The box
should contain elements of high thermal conductivity, which will act to rapidly
equilibrate any thermal gradients to which the box is subjected. It is not necessary
to design a constant-temperature box. It is desirable that the box respond slowly to
external-temperature fluctuations. Radiation shielding must be provided when a
junction box is installed in the field. Care must also be taken that a thermal
gradient is not induced by conduction through the incoming wires. The CR1000
can be used to measure the temperature gradients within the junction box.

FIGURE 81: Diagram of a Thermocouple Junction Box

Datalogger 2
Terminals J unction BOX Thermocouple

Junction

A’ A v

02 B D

8.1.2.3 Resistance Measurements — Details

Related Topics:

» Resistance Measurements — Specifications

* Resistance Measurements — Overview (p. 70)

* Resistance Measurements — Details (p. 353)

* Measurement: RTD, PRT, PT100, PT1000 (p. 268)

By supplying a precise and known voltage to a resistive-bridge circuit and
measuring the returning voltage, resistance can be calculated.

CRBasic instructions for measuring resistance include:

BrHalf() — half-bridge

BrHalf3W() — three-wire half-bridge
BrHalf4W() — four-wire half-bridge
BrFull() — four-wire full-bridge
BrFulloW() — six-wire full-bridge

Read More Available resistive-bridge completion modules are listed in
Signal Conditioners — List (p. 591).

The CR1000 has five CRBasic bridge-measurement instructions. Table
Resistive-Bridge Circuits with Voltage Excitation (p. 354 shows ideal circuits and
related equations. In the diagrams, resistors labeled R are normally the sensors
and those labeled Rrare normally precision fixed (static) resistors. CRBasic
example Four-Wire Full-Bridge Measurement . 355 lists CRBasic code that
measures and processes four-wire full-bridge circuits.

Offset voltages compensation applies to bridge measurements. In addition to
RevDiff and MeasOff parameters discussed in Offset Voltage Compensation (p.

353

354

Section 8. Operation

333, CRBasic bridge measurement instructions include the RevEx parameter that
provides the option to program a second set of measurements with the excitation
polarity reversed. Much of the offset error inherent in bridge measurements is
canceled out by setting RevDiff, MeasOff, and RevEx to True.

Measurement speed can be slowed when using RevDiff, MeasOff, and RevEx.
When more than one measurement per sensor are necessary, such as occur with
the BrHalf3W(), BrHalf4W(), and BrFull6W instructions, input and excitation
reversal are applied separately to each measurement. For example, in the
four-wire half-bridge (BrHalf4W()), when excitation is reversed, the differential
measurement of the voltage drop across the sensor is made with excitation at both
polarities and then excitation is again applied and reversed for the measurement of
the voltage drop across the fixed resistor. Further, the results of measurement
instructions (X) must be processed further to obtain the resistance value. This
processing requires additional program execution time.

TABLE 70: Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and
Circuit Diagram

CRBasic Instruction and
Fundamental Relationship

Relational Formulas

Half-Bridge'

Datalogger
Termina Is

CRBasic Instruction: BrHalf()

Fundamental Relationship?:

Vi R,

XV, "R +R

X
S

_R(1-X)

R¢ X

Three-Wire Half-Bridge!*

Datalogger
Terminals

CRBasic Instruction: BrHalf3W()

VX voltage excitation(Vy !
% R Fundamental Relationshipz: Rf = RS / X
SE1 csmgle-ended
K SE2 O X = M - R_" Rs=ReX
\A4 R, VX — V] Rf
|_L -
= © signal ground
CRBasic Instruction: BrHalf4W()
. -2,
Fundamental Relationship~: R, =RX
Four-Wire Half-Bridge'*
V, R, Rr=R,/X

=V "Ry

Section 8. Operation

TABLE 70: Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and

CRBasic Instruction and
Fundamental Relationship

Relational Formulas

Circuit Diagram
Datalogger
Terminals
VXo voltage excitation (Vy) l
F Ho— e
\A R,
2Lo differential low I

F IHO G
Vi R:

Lo 3

differential low

J

— signal ground

Full-Bridge'?

Datalogger
Terminals

VX O voltage excitation (Vy)
Ry

differential high

© differential low

-1

(o

CRBasic Instruction: BrFull()

Fundamental Relationship?:

V,
X = 1000 7

_ R; R,
= lmm(R; s v e Rz)

Six-Wire Full-Bridge!
Datalogger
Terminals

‘
VXO voltage excitation (Vy) 1

—1HO differential high
Vi

Ry

differential low

differential high

differential low

—©0 signal ground

CRBasic Instruction: BrFulloW()

Fundamental Relationship?:

X= '””“\ﬁ

_ R3 R>
lnnn(R] e Rg)

These relationships apply to BrFull()
and BrFulloW().

= K R;
X1=7000 TR: + Ry
Ry(1 - Xj)
R[= Xl
R X,
R:=T X,
X R,
X2=7000 TR, + R,

_ RuXy
Rs=12%X,

Ri(1-X
R, = 3(X,) 2)

Key: Vy = excitation voltage; V1, V2 = sensor return voltages; R¢ = fixed, bridge or completion resistor; Rs = variable

or sensing resistor.

>Where X = result of the CRBasic bridge measurement instruction with a multiplier of 1 and an offset of 0.
3See the appendix Resistive Bridge Modules (. 592 for a list of available terminal input modules to facilitate this

measurement.

Section 8. Operation

356

CRBasic EXAMPLE 70: Four-Wire Full-Bridge Measurement and Processing

'This program example demonstrates the measurement and processing of a four-wire resistive
"full bridge. 1In this example, the default measurement stored in variable X is
'"deconstructed to determine the resistance of the R1 resistor, which is the variable
'resistor in most sensors that have a four-wire full-bridge as the active element.

'Declare Variables

Public X

PubTic X1

Public R1

PubTic R2 = 1000 'Resistance of fixed resistor R2
PubTic R3 = 1000 'Resistance of fixed resistor R2
PubTic R4 = 1000 'Resistance of fixed resistor R4

'Main Program
BeginProg
Scan(500,mSec,1,0)

"Full Bridge Measurement:
BrFull(X,1,mv2500,1,vx1,1,2500,True,True,0,_60Hz,1.0,0.0)

X1 = ((-1 * X) / 1000) + (R3 / (R3 + R4))
Rl =(R2 * (1-X1) /X1
NextScan
EndProg

8.1.2.3.1 Ac Excitation

Some resistive sensors require ac excitation. Ac excitation is defined as
excitation with equal positive (+) and negative (—) duration and magnitude.

These include electrolytic tilt sensors, soil moisture blocks, water-conductivity
sensors, and wetness-sensing grids. The use of single polarity dc excitation with

these sensors can result in polarization of sensor materials and the substance

measured. Polarization may cause erroneous measurement, calibration changes,

or rapid sensor decay.

Other sensors, for example, LVDTs (linear variable differential transformers),
require ac excitation because they require inductive coupling to provide a signal.

Dc excitation in an LVDT will result in no measurement.

CRBasic bridge-measurement instructions have the option to reverse polarity to

provide ac excitation by setting the RevEx parameter to True.

Note Take precautions against ground loops when measuring sensors
that require ac excitation. See Ground Looping in lonic Measurements (p.

105).

8.1.2.3.2 Accuracy — Resistance Measurements

Read More Consult the following technical papers at

www.campbellsci.com/app-notes for in-depth treatments of several topics

addressing voltage measurement quality:
* Preventing and Attacking Measurement Noise Problems
* Benefits of Input Reversal and Excitation Reversal for Voltage

Section 8. Operation

Measurements

* Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements

* Estimating Measurement Accuracy for Ratiometric Measurement
Instructions.

Note Error discussed in this section and error-related specifications of
the CR1000 do not include error introduced by the sensor or by the
transmission of the sensor signal to the CR1000.

The accuracy specifications for ratiometric-resistance measurements are
summarized in the tables Ratiometric-Resistance Measurement Accuracy (p. 357).

TABLE 71: Ratiometric-Resistance Measurement Accuracy

—-25 to 50 °C

+(0.04% of voltage measurement + offset)!

'Voltage measurement is variable Vi or V3 in the table Resistive-Bridge
Circuits with Voltage Excitation (p. 354). Offset is the same as that for simple
analog voltage measurements. See the table Analog Voltage Measurement
Offsets (p. 338).

Assumptions that support the ratiometric-accuracy specification include:
e CRI1000 is within factory calibration specification.

e Excitation voltages less than 1000 mV are reversed during the excitation
phase of the measurement.

e Effects due to the following are not included in the specification:
o Bridge-resistor errors
o Sensor noise
o Measurement noise
For a full treatise on the accuracy of ratiometric measurements, consult the

technical paper Estimating Measurement Accuracy for Ratiometric Measurement
Instructions at www.campbellsci.com/app-notes.

357

358

Section 8. Operation

8.1.2.4 Auto Self-Calibration — Details

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

The CR1000 auto self-calibrates to compensate for changes caused by changing
operating temperatures and aging. Disable auto self-calibration when it interferes
with execution of very fast programs and less accuracy can be tolerated.

With auto self-calibration disabled, measurement accuracy over the operational
temperature range is specified as less accurate by a factor of 10. That is, over the
extended temperature range of —40 °C to 85 °C, the accuracy specification of
10.12% of reading can degrade to 1% of reading with auto self-calibration
disabled. Ifthe temperature of the CR1000 remains the same, there is little
calibration drift if auto-calibration is disabled. Auto self-calibration can become
disabled when the scan rate is too small. It can be disabled by the CRBasic
program when using the Calibrate() instruction.

Note The CR1000 is equipped with an internal voltage reference used
for calibration. The voltage reference should be periodically checked and
re-calibrated by Campbell Scientific for applications with critical analog
voltage measurement requirements. A minimum two-year recalibration
cycle is recommended.

Unless a Calibrate() instruction is present, the CR1000 auto self-calibrates during
spare time in the background as a slow sequence (p. 161) with a segment of the
calibration occurring every four seconds. If there is insufficient time to do the auto
self-calibration because of a scan-consuming user program, the CR1000 will
display the following warning at compile time: Warning: Background
calibration is disabled.

8.1.2.4.1 Auto Self-Calibration Process

The composite transfer function of the PGIA . 371) and A-to-D . 515 converter of
the CR1000 is described by the following equation:

COUNTS=G-+Vin+B

where COUNTS is the result from an A-to-D conversion, G is the voltage gain for
a given input range, Vin is the input voltage connected to V+ and V-, and B is the
internally measured offset voltage.

Auto self-calibration calibrates only the G and B values necessary to run a given
CRBasic program, resulting in a program dependent number of auto
self-calibration segments ranging from a minimum of six to a maximum of 91. A
typical number of segments required in auto self-calibration is 20 for analog

Section 8. Operation

ranges and one segment for the wiring-panel temperature measurement, totaling
21 segments. So, (21 segments) * (4 s / segment) = 84 s per complete auto
self-calibration. The worst-case is (91 segments) * (4 s / segment) = 364 s per
complete auto self-calibration.

During instrument power-up, the CR1000 computes calibration coefficients by
averaging ten complete sets of auto self-calibration measurements. After power
up, newly determined G and B values are low-pass filtered as follows:

Next_Value = (1/5) ¢ (new value) + (4/5) * (old value)
This results in the following settling percentages:

e 20% for 1 new value,

e 49% for 3 new values

e 67% for 5 new values

e 89% for 10 new values

e 96% for 14 new values

If this rate of update is too slow, the Calibrate() instruction can be used. The
Calibrate() instruction computes the necessary G and B values every scan
without any low-pass filtering.

For a VoltSe() instruction, B is determined as part of auto self-calibration only if
the parameter MeasOff = (. An exception is B for VoltSe() on the £2500 input
range with a 250 ps integration, which is always determined in auto
self-calibration for use internally. For a VoltDiff() instruction, B is determined as
part of auto self-calibration only if the parameter RevDiff = 0.

VoltSe() and VoltDiff() instructions, on a given input range with the same
integration durations, use the same G values but different B values. The six
input-voltage ranges (5000 mV, £2500 mV, £250 mV, and £25 mV), in
combination with the three most common integration durations (250 us, 50 Hz
half-cycle, and 60 Hz half-cycle) result in a maximum of 18 different gains (G),
and 18 offsets for VoltSe() measurements (B), and 18 offsets for VoltDiff()
measurements (B) to be determined during auto self-calibration (maximum of 54
values). These values can be viewed in the Status table, with entries identified as
listed in table CalGain() Field Descriptions (p. 360)

Auto self-calibration can be overridden with the Calibrate() instruction, which
forces a calibration for each execution, and does not employ low-pass filtering on
the newly determined G and B values. The Calibrate() instruction has two
parameters: CalRange and Dest. CalRange determines whether to calibrate only
the necessary input ranges for a given CRBasic program (CalRange = 0) or to
calibrate all input ranges (CalRange # 0). The Dest parameter should be of
sufficient dimension for all returned G and B values, which is a minimum of two
for the auto self-calibration of VoItSE() including B (offset) for the 2500 mV
input range with first 250 ps integration, and a maximum of 54 for all
input-voltage ranges used and possible integration durations.

359

Section 8. Operation

An example use of the Calibrate() instruction programmed to calibrate all input
ranges is given in the following CRBasic code snip:

"Calibrate(Dest,Range)
Calibrate(cal(l),true)

where Dest is an array of 54 variables, and Range # 0 to calibrate all input ranges.

Results of this command are listed in the table Calibrate() Instruction Results (p.
362).

Integration

CalGain(7) 60 Hz Rejection
CalGain(8) 60 Hz Rejection

CalGain(9) 60 Hz Rejection
CalGain(10) 60 Hz Rejection

360

Section 8. Operation

*mV Input .

CalSeOffset(7) 60 Hz Rejection
CalSeOffset(8) 60 Hz Rejection
CalSeOffset(9) 60 Hz Rejection
CalSeOffset(10) 60 Hz Rejection

361

Section 8. Operation

TABLE 74: CalDiffOffset() Field Descriptions

*mV Input
Range

Field Integration

CalDiffOffset(7) 5000 60 Hz Rejection
CalDiffOffset(8) 2500 60 Hz Rejection
CalDiffOffset(9) 250 60 Hz Rejection
CalDiffOffset(10) 25 60 Hz Rejection
CalDiffOffset(11) 7.5 60 Hz Rejection
CalDiffOffset(12) 2.5 60 Hz Rejection

Descriptions of Array Elements

Typical Value

Differential (Diff)
Single-Ended (SE) Range

*mV Input

Offset or Gain Integration

Offset +5LSB
Offset +5 LSB
Gain -0.67 mV/LSB

362

Section 8. QOperation

TABLE 75: Calibrate() Instruction Results

Cal() Descriptions of Array Elements

7:7;74‘;, S?rlrf;?fgrsgelzg)(gg) Offset or Gain in,;‘;,’,';’g ut Integration Typical Value
10 SE Offset 25 250 ms +5LSB
11 Diff Offset 25 250 ms +5LSB
12 Gain 25 250 ms —0.0067 mV/LSB
13 SE Offset 7.5 250 ms +10 LSB
14 Diff Offset 7.5 250 ms +10 LSB
15 Gain 7.5 250 ms —0.002 mV/LSB
16 SE Offset 2.5 250 ms +20 LSB
17 Diff Offset 2.5 250 ms +20 LSB
18 Gain 2.5 250 ms —0.00067 mV/LSB
19 SE Offset 5000 60 Hz Rejection +5 LSB
20 Diff Offset 5000 60 Hz Rejection +5 LSB
21 Gain 5000 60 Hz Rejection —0.67 mV/LSB
22 SE Offset 2500 60 Hz Rejection +5 LSB
23 Diff Offset 2500 60 Hz Rejection +5LSB
24 Gain 2500 60 Hz Rejection —0.34 mV/LSB
25 SE Offset 250 60 Hz Rejection +5 LSB
26 Diff Offset 250 60 Hz Rejection +5 LSB
27 Gain 250 60 Hz Rejection —0.067 mV/LSB
28 SE Offset 25 60 Hz Rejection +5LSB
29 Diff Offset 25 60 Hz Rejection +5LSB
30 Gain 25 60 Hz Rejection —0.0067 mV/LSB
31 SE Offset 7.5 60 Hz Rejection +10 LSB
32 Diff Offset 7.5 60 Hz Rejection +10 LSB
33 Gain 7.5 60 Hz Rejection —0.002 mV/LSB
34 SE Offset 2.5 60 Hz Rejection +20 LSB
35 Diff Offset 2.5 60 Hz Rejection +20 LSB
36 Gain 2.5 60 Hz Rejection —0.00067 mV/LSB
37 SE Offset 5000 50 Hz Rejection +5 LSB
38 Diff Offset 5000 50 Hz Rejection +5 LSB
39 Gain 5000 50 Hz Rejection —0.67 mV/LSB

363

Section 8. Operation

TABLE 75: Calibrate() Instruction Results

Cal() Descriptions of Array Elements

;;\:7273; S?r'g‘lefgrl;géc(lo(g?:') Offset or Gain t";‘a/'gg ut Integration Typical Value
40 SE Offset 2500 50 Hz Rejection +5 LSB
41 Diff Offset 2500 50 Hz Rejection +5 LSB
42 Gain 2500 50 Hz Rejection —0.34 mV/LSB
43 SE Offset 250 50 Hz Rejection +5 LSB
44 Diff Offset 250 50 Hz Rejection +5 LSB
45 Gain 250 50 Hz Rejection —0.067 mV/LSB
46 SE Offset 25 50 Hz Rejection +5LSB
47 Diff Offset 25 50 Hz Rejection +5 LSB
48 Gain 25 50 Hz Rejection —0.0067 mV/LSB
49 SE Offset 7.5 50 Hz Rejection +10 LSB
50 Diff Offset 7.5 50 Hz Rejection +10 LSB
51 Gain 7.5 50 Hz Rejection —0.002 mV/LSB
52 SE Offset 2.5 50 Hz Rejection +20 LSB
53 Diff Offset 2.5 50 Hz Rejection +20 LSB
54 Gain 2.5 50 Hz Rejection —0.00067 mV/LSB

364

8.1.2.5 Strain Measurements — Details

Related Topics:

» Strain Measurements — Overview (p. 71)
» Strain Measurements — Details (p. 364)

* FieldCalStrain() Examples (p. 238)

A principal use of the four-wire full bridge is the measurement of strain gages in
structural stress analysis. StrainCalc() calculates microstrain (pe) from the
formula for the particular strain bridge configuration used. All strain gages
supported by StrainCale() use the full-bridge schematic. In strain-gage parlance,
'quarter-bridge', 'half-bridge' and 'full-bridge' refer to the number of active
elements in the full-bridge schematic. In other words, a quarter-bridge strain
gage has one active element, a half-bridge has two, and a full-bridge has four.

StrainCalc() requires a bridge-configuration code. The table StrainCale()
Instruction Equations (p. 365) shows the equation used by each configuration code.
Each code can be preceded by a dash (-). Use a code without the dash when the
bridge is configured so the output decreases with increasing strain. Use a dashed
code when the bridge is configured so the output increases with increasing strain.
A dashed code sets the polarity of V; to negative.

Section 8. Operation

StrainCalc()
BrConfig Code

Configuration

o —HF100V,
M= GE(1+2vy

Half-bridge strain gage'. One gage parallel to strain, the
other at 90° to strain:

i (U2
HE™ GF[(1+v)-2V,(-1)]

Full-bridge strain gage. Two gages parallel to +&, the
other two parallel to -E!:

_ —106vr
e GF

Full-bridge strain gage. Half the bridge has two gages
parallel to +&€ and -V €, and the other halfto -V&€ and
+el.

2100V,
MG+)-V,0-1)]

365

366

Section 8. Operation

TABLE 76: StrainCalc() Instruction Equations

StrainCalc()
BrConfig Code Configuration

1

e V:Poisson's Ratio (0 if not applicable)

e GF: Gage Factor

e V. 0.001 (Source-Zero) if BRConfig code is positive (+)
e V.:—0.001 (Source-Zero) if BRConfig code is negative (—)
and where:

e "source": the result of the full-bridge measurement (X = 1000 * Vi / Vy)
when multiplier = 1 and offset = 0.

o "zero": gage offset to establish an arbitrary zero (see FieldCalStrain() in
FieldCal() Examples (p. 227)).

StrainCalc Example: See FieldCalStrain() Examples (p. 238).

8.1.2.6 Current Measurements — Details

Related Topics:
» Current Measurements — Overview (p. 69)
» Current Measurements — Details (p. 366)

For a complete treatment of current-loop sensors (4 to 20 mA, for example),
please consult the following publications available at
www.campbellsci.com/app-notes:

e Current Output Transducers Measured with Campbell Scientific
Dataloggers (2MI-B)

e CURSI00 100 Ohm Current Shunt Terminal Input Module

8.1.2.7 Voltage Measurements — Details

Related Topics:

» Voltage Measurements — Specifications
» Voltage Measurements — Overview (p. 66)
* Voltage Measurements — Details (p. 366)

8.1.2.7.1 Voltage Measurement Limitations

Caution Sustained voltages in excess of £8.6 V applied to terminals
configured for analog input can temporarily corrupt all analog
measurements.

Section 8. Operation

Warning Sustained voltages in excess of +16 V applied to terminals
configured for analog input will damage CR1000 circuitry.

Voltage Ranges

Related Topics:

» Voltage Measurements — Specifications
» Voltage Measurements — Overview (p. 66)
» Voltage Measurements — Details (p. 366)

In general, use the smallest fixed-input range that accommodates the full-scale
output of the sensor. This results in the best measurement accuracy and resolution.
The CR6 has fixed input ranges for voltage measurements and an auto-range to
automatically determine the appropriate input voltage range for a given
measurement. The table Analog Voltage Input Ranges and Options (p. 367) lists
these input ranges and codes.

An approximate 9% range overhead exists on fixed input voltage ranges. In
other words, over-range on the £2500 mV input range occurs at approximately
2725 mV and —2725 mV. The CR1000 indicates a measurement over-range by
returning a NAN (not a number) for the measurement.

Automatic Range Finding

For signals that do not fluctuate too rapidly, range argument AutoRange allows
the CR1000 to automatically choose the voltage range. AutoRange makes two
measurements. The first measurement determines the range to use. It is made
with a 250 us integration on the +5000 mV range. The second measurement is
made using the range determined from the first. Both measurements use the
settling time entered in the Settling Time parameter. Auto-ranging optimizes
resolution but takes longer than a measurement on a fixed range because of the
two-measurement sequences.

An auto-ranged measurement will return NAN ("not a number") if the voltage
exceeds the range picked by the first measurement. To avoid problems with a
signal on the edge of a range, AutoRange selects the next larger range when the
signal exceeds 90% of a range.

Use auto-ranging for a signal that occasionally exceeds a particular range, for
example, a type-J thermocouple measuring a temperature usually less than 476 °C
(£25 mV range) but occasionally as high as 500 °C (£250 mV range).
AutoRange should not be used for rapidly fluctuating signals, particularly signals
traversing multiple voltage ranges rapidly. The possibility exists that the signal
can change ranges between the internal range check and the actual measurement.

TABLE 77: Analog Voltage Input Ranges and Options

Range Code Description

measures voltages between +5000

mV5000 mV

367

Section 8. Operation

368

TABLE 77: Analog Voltage Input Ranges and Options

Range Code Description
1 measures voltages between +2500
mV2500 mV
mV250° measures voltages between £250 mV
my25° measures voltages between £25 mV
mV7_5° measures voltages between 7.5 mV
my2_ 5 measures voltages between +2.5 mV
Lotz datalogger 'determmes the most
suitable range

! Append with C to enable common-mode null / open-input detect and set
excitation to full-scale (~2700 mV) (Example: mV2500)

2 Append with C to enable common-mode null / open-input detect (Example:
mV25C)

3 Append with C to enable common-mode null / open-input detect on ranges <
+250 mV, or just common-mode null on ranges > £250 mV (Example:
AutoRangeC)

Input Limits / Common-Mode Range

Related Topics:

» Voltage Measurements — Specifications
» Voltage Measurements — Overview (p. 66)
* Voltage Measurements — Details (p. 366)

Note This section contains advanced information not required for normal
operation of the CR1000.

Summary

» Voltage input limits for measurement are +5 Vdc. [Input Limits is the
specification listed in Specifications (p. 95).

+ Common-mode range is not a fixed number. It varies with respect to
the magnitude of the input voltage.

+ The CR1000 has features that help mitigate some of the effects of
signals that exceed the Input Limits specification or the common-mode
range.

With reference to the figure PGIA with Input-Signal Decomposition (p. 369, the
PGIA processes the voltage difference between V+ and V—. It ignores the
common-mode voltage, or voltages that are common to both inputs. The figure
shows the applied input voltage decomposed into a common-mode voltage (Vem)

Section 8. Operation

and the differential-mode component (V4m) of a voltage signal. Ven is the
average of the voltages on the V+ and V—inputs. So, Vem = (V++ V-)/2 or the
voltage remaining on the inputs when Vgm = 0. The total voltage on the V+ and
V- inputs is given as V+ = V¢m + Van/2, and V— = Vem — Vam/2, respectively.

The PGIA ignores or rejects common-mode voltages as long as voltages at V+
and V- are within the Input Limits specification, which for the CR6 is +5 Vdc
relative to ground. Input voltages wherein V+ or V—, or both, are beyond the +5
Vdc limit may suffer from undetected measurement errors. The Common-Mode
Range defines the range of common-mode voltages that are not expected to
induce undetected measurement errors. Common-Mode Range is different than
Input Limits when the differential mode voltage in non-negligible. The following
relationship is derived from the PGIA figure as:

Common-Mode Range = +5 Vdc — [Vaw/2|.

The conclusion follows that the common-mode range is not a fixed number, but
instead decreases with increasing differential voltage. For differential voltages
that are small compared to the input limits, common-mode range is essentially
equivalent to Input Limits. Yet for a 5000 mV differential signal, the
common-mode range is reduced to £2.5 Vdc, whereas Input Limits are always +5
Vdc. Consequently, the term Input Limits is used to specify the valid voltage
range of the V+ and V— inputs into the PGIA.

FIGURE 82: PGIA with Input Signal Decomposition

Vo

Var=(Vut W)/ 2
Vi = Vo + Vam/ 2
\/L :\/cm_\/dm/2
- Vo =Gain(Y~ V) =Gain *Vyp,

8.1.2.7.2 Voltage Measurement Mechanics

Measurement Sequence

An analog voltage measurement as illustrated in the figure Simplified Voltage
Measurement Sequence (p. 370), proceeds as follows:

1. Switch
2. Settle
3. Amplify

4. Integrate

5. Ato D (successive approximation)

369

370

Section 8. Operation

6. Measurement scaled with multiplier and offset

7. Scaled value placed in memory

FIGURE 83: Simplified voltage measurement sequence.

AtoD

Switch/Settle Switch/Settle

(45
B
%

AtoD

Section 8. Operation

Voltage measurements are made using a successive approximation A-fo-D . 515)
converter to achieve a resolution of 14 bits. Prior to the A-to-D, a high
impedance programmable-gain instrumentation amplifier (PGIA) amplifies the
signal. See figure Programmable Gain Input Amplifier (PGIA) . 371). The
CRBasic program controls amplifier gain and configuration — either single-ended
input or differential input. Internal multiplexers route individual terminals to the
PGIA.

Timing (. 155) of measurement tasks is precisely controlled. The measurement
schedule is determined at compile time and loaded into memory.

Using two different voltage-measurement instructions with the same voltage
range takes about twice as long as using one instruction with two repetitions.

See table Parameters That Control Measurement Sequence and Timing (p. 372).

FIGURE 84: Programmable Gain Input Amplifier (PGIA):
Hto V+, L to V-, VH to VV+, VL to V- correspond to

text.
H
O—
Vo
O—
L Vo= Gain* (Vi)

A voltage measurement proceeds as follows:

1. Set PGIA gain for the voltage range selected with the CRBasic measurement
instruction parameter Range.

2. Turn on excitation to the level selected with ExmV.

3. Multiplex selected terminals (InChan) to the PGIA and delay for the entered
settling time (Settling Time).

4. Integrate the signal (see Measurement Integration (p. 372)) and perform the
A-to-D conversion.

5. Repeat for excitation reversal and input reversal as determined by parameters
RevEx and RevDiff.

6. Apply multitplier (Mult) and offset (Offset) to measured result.
See Basic Voltage Measurements — Specifications for measurement speeds.
The CR1000 measures analog voltage by integrating the input signal for a fixed

duration and then holding the integrated value during the successive
approximation analog-to-digital (A-to-D) conversion. The CR1000 can make and

371

Section 8. Operation

store measurements from up to eight differential or 16 single-ended channels
configured from H/L terminals at the minimum scan interval of 10 ms (100 Hz)
using fast-measurement-programming techniques as discussed in Measurement:
Fast Analog Voltage (p. 242. The maximum conversion rate is 2000 per second (2
kHz) for measurements made on a one single-ended channel.

TABLE 78: Parameters that Control Measurement Sequence and

Timing

CRBasic Instruction Parameter Action

MeasOfs Correct ground offset on single-ended

measurements.
SettlingTime Sensor input settling time.
Integ Duration of input signal integration.
RevDiff Reverse high .and low differential

mputs.

RevEx Reverse polarity of excitation voltage.

Measurement Integration
Integrating the signal removes noise that creates error in the measurement. Slow
integration removes more noise than fast integration. Integration time can be

modified to reject 50 Hz and 60 Hz mains-power line noise.

Fast integration may be preferred at times to,

e minimize time skew between successive measurements.

e maximize throughput rate.

e maximize life of the CR1000 power supply.

e minimize polarization of polar sensors such as those for measuring
conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

improve accuracy of an LVDT measurement. The induced voltage in an LVDT
decays with time as current in the primary coil shifts from the inductor to the

series resistance; a long integration time may result in most of signal decaying
before the measurement is complete.

Single-Ended Measurements — Details

Related Topics:
» Single-Ended Measurements — Overview (p. 68)
» Single-Ended Measurements — Details (p. 372)

372

Section 8. Operation

With reference to the figure Programmable Gain Input Amplifier (PGIA) . 371),
during a single-ended measurement, the high signal (H) is routed to V+. The low
signal (L) is automatically connected internally to signal ground with the low
signal tied to ground (=) at the wiring panel. V+ corresponds to odd or even
numbered SE terminals on the CR1000 wiring panel. The single-ended
configuration is used with the following CRBasic instructions:

e VoItSE()

e BrHalf()

e BrHalf3W()

e TCSE()

e Therm107()

e Therm108()

e Therm109()

e Thermistor()

Differential Measurements — Details

Related Topics:
» Differential Measurements — Overview (p. 69)
» Differential Measurements — Details (p. 373)

Using the figure Programmable Gain Input Amplifier (PGIA) . 371, for reference,
during a differential measurement, the high signal (H) is routed to V+ and the low
signal (L) is routed to V—.

An H terminal of an H/L terminal pair differential corresponds to V+. The L
terminal corresponds to V—. The differential configuration is used with the
following CRBasic instructions:

e VoltDiff()

e BrFull()

e BrFulloW()
e BrHalf4w()

e TCDiff()

373

Section 8. Operation

8.1.2.7.3 Voltage Measurement Quality

Read More Consult the following technical papers at
www.campbellsci.com/app-notes for in-depth treatments of several topics
addressing voltage measurement quality:

* Preventing and Attacking Measurement Noise Problems

* Benefits of Input Reversal and Excitation Reversal for Voltage
Measurements

* Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements

» Estimating Measurement Accuracy for Ratiometric Measurement
Instructions.

The following topics discuss methods of generally improving voltage
measurements. Related information for special case voltage measurements
(thermocouples (p. 341), current loops (p. 366), resistance (p. 353), and strain (p. 364)) s
located in sections for those measurements.

Single-Ended or Differential?
Deciding whether a differential or single-ended measurement is appropriate is
usually, by far, the most important consideration when addressing voltage
measurement quality. The decision requires trade-offs of accuracy and precision,
noise cancelation, measurement speed, available measurement hardware, and
fiscal constraints.
In broad terms, analog voltage is best measured differentially because these
measurements include noise reduction features, listed below, that are not included
in single-ended measurements.

e Passive Noise Rejection

o No voltage reference offset

o Common-mode noise rejection, which filters capacitively coupled
noise

e Active Noise Rejection
o Input reversal

— Review Input and Excitation Reversal (p. 336) for details
— Increases by twice the input reversal signal integration time

Reasons for using single-ended measurements, however, include:

e Not enough differential terminals available. Differential measurements
use twice as many H/L terminals as do single-ended measurements.

e Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

374

Section 8. Operation

Integration

e Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the
draw backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

Sensors with a high signal-to-noise ratio, such as a relative-humidity sensor with a
full-scale output of 0 to 1000 mV, can normally be measured as single-ended
without a significant reduction in accuracy or precision.

Sensors with a low signal-to-noise ratio, such as thermocouples, should normally
be measured differentially. However, if the measurement to be made does not
require high accuracy or precision, such as thermocouples measuring brush-fire
temperatures, which can exceed 2500 °C, a single-ended measurement may be
appropriate. If sensors require differential measurement, but adequate input
terminals are not available, an analog multiplexer should be acquired to expand
differential input capacity.

Because a single-ended measurement is referenced to CR1000 ground, any
difference in ground potential between the sensor and the CR1000 will result in an
error in the measurement. For example, if the measuring junction of a
copper-constantan thermocouple being used to measure soil temperature is not
insulated, and the potential of earth ground is 1 mV greater at the sensor than at
the point where the CR1000 is grounded, the measured voltage will be 1 mV
greater than the true thermocouple output, or report a temperature that is
approximately 25 °C too high. A common problem with ground-potential
difference occurs in applications wherein external, signal-conditioning circuitry is
powered by the same source as the CR1000, such as an ac mains power
receptacle. Despite being tied to the same ground, differences in current drain and
lead resistance may result in a different ground potential between the two
instruments. So, as a precaution, a differential measurement should be made on
the analog output from an external signal conditioner; differential measurements
MUST be used when the low input is known to be different from ground.

The CR1000 incorporates circuitry to perform an analog integration on voltages to
be measured prior to the A-fo-D (p. 515 conversion. Integrating the the analog
signal removes noise that creates error in the measurement. Slow integration
removes more noise than fast integration. When the duration of the integration
matches the duration of one cycle of ac power mains noise, that noise is filtered
out. The table Analog Measurement Integration (p. 326) lists valid integration
duration arguments.

Faster integration may be preferred to achieve the following objectives:
e Minimize time skew between successive measurements
e Maximize throughput rate

e Maximize life of the CR1000 power supply

375

Section 8. Operation

e Minimize polarization of polar sensors such as those for measuring
conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

e Improve accuracy of an LVDT measurement. The induced voltage in an
LVDT decays with time as current in the primary coil shifts from the
inductor to the series resistance; a long integration may result in most of
signal decaying before the measurement is complete.

Note See White Paper "Preventing and Attacking Measurement Noise
Problems" at www.campbellsci.com.

The magnitude of the frequency response of an analog integrator is a SIN(x)/x
shape, which has notches (transmission zeros) occurring at 1/(integer multiples) of
the integration duration. Consequently, noise at 1/(integer multiples) of the
integration duration is effectively rejected by an analog integrator. If reversing the
differential inputs or reversing the excitation is specified, there are two separate
integrations per measurement; if both reversals are specified, there are four
separate integrations.

TABLE 79: Analog Measurement Integration

Integration Time (ms) Paraggg{:ﬂ";:;men ¢ Comments
0 to 16000 ps 0to 16000 250 ps is considered fast
and normally the
minimum
16.667 ms _60Hz Filters 60 Hz noise
20 ms _50Hz Filters 50 Hz noise

Ac Power Noise Rejection

Grid or mains power (50 or 60 Hz, 230 or 120 Vac) can induce electrical noise at
integer multiples of 50 or 60 Hz. Small analog voltage signals, such as
thermocouples and pyranometers, are particularly susceptible. CR1000 voltage
measurements can be programmed to reject (filter) 50 Hz or 60 Hz related noise.
Noise is rejected by using a signal integration time that is relative to the length of
the ac noise cycle, as illustrated in the figure Ac Power Noise Rejection
Techniques (p. 327).

376

Section 8. Operation

FIGURE 85: Ac Power Noise Rejection Techniques

| Full Cycle Technigue |

|:| Full Cycle Integration

- 112 Cycle Integration

‘ 112 Cycle Technique ‘

Ac Noise Rejection on Small Signals

The CR1000 rejects ac power line noise on all voltage ranges except m V5000 and
mV2500 by integrating the measurement over exactly one full ac cycle before

A-to-D (p. 515 conversion as listed in table Ac Noise Rejection on Small Signals (p.
327).

TABLE 80: Ac Noise Rejection on Small Signals’

Ac Power Line Measurement CRBasic Integration
Frequency Integration Duration Code
60 Hz 16.667 ms _60H7
50 Hz 20 ms _50Hz

! Applies to all analog input voltage ranges except m V2500 and mV5000.

Ac Noise Rejection on Large Signals

If rejecting ac-line noise when measuring with the 2500 mV (m¥2500) and 5000
mV (mV5000) ranges, the CR1000 makes two fast measurements separated in
time by one-half line cycle. A 60 Hz half cycle is 8333 ps, so the second
measurement must start 8333 ps after the first measurement integration began.
The A-to-D conversion time is approximately 170 ps, leaving a maximum
input-settling time of approximately 8160 us (8333 pus — 170 ps). Ifthe
maximum input-settling time is exceeded, 60 Hz line-noise rejection will not
occur. For 50 Hz rejection, the maximum input settling time is approximately
9830 pus (10,000 ps — 170 us). The CR1000 does not prevent or warn against
setting the settling time beyond the half-cycle limit. Table Ac Noise Rejection on
Large Signals p. 328 lists details of the half-cycle ac-power line-noise rejection
technique.

377

Section 8. Operation

378

TABLE 81: Ac Noise Rejection on Large Signals'

Measurement CRBasic Default Maximum
Ac-Power Line Integration Integration Settling Recommended
Frequency Time Code Time Settling Time?
60 Hz 250 s + 2 _60H 3000 ps 8330 ps
50 Hz 250 s + 2 _50Hz 3000 ps 10000 ps

! Applies to analog input voltage ranges m V2500 and mV5000.

2 Excitation time and settling time are equal in measurements requiring excitation. The CR1000 cannot excite VX
excitation terminals during A-to-D conversion. The one-half-cycle technique with excitation limits the length of
recommended excitation and settling time for the first measurement to one-half-cycle. The CR1000 does not
prevent or warn against setting a settling time beyond the one-half-cycle limit. For example, a settling time of up
to 50000 ps can be programmed, but the CR1000 will execute the measurement as follows:

1. CR1000 turns excitation on, waits 50000 ps, and then makes the first measurement.

2. During A-to-D, CR1000 turns off excitation for =170 ps.

3. Excitation is switched on again for one-half cycle, then the second measurement is made.
Restated, when the CR1000 is programmed to use the half-cycle 50 Hz or 60 Hz rejection techniques, a sensor
does not see a continuous excitation of the length entered as the settling time before the second measurement — if

the settling time entered is greater than one-half cycle. This causes a truncated second excitation. Depending on
the sensor used, a truncated second excitation may cause measurement errors.

Signal Settling Time

Settling time allows an analog voltage signal to settle closer to the true magnitude
prior to measurement. To minimize measurement error, signal settling is needed
when a signal has been affected by one or more of the following:

e A small transient originating from the internal multiplexing that connects
a CR1000 terminal with measurement circuitry

e Arelatively large transient induced by an adjacent excitation conductor
on the signal conductor, if present,because of capacitive coupling during
a bridge measurement

e Dielectric absorption. 50 Hz or 60 Hz integrations require a relatively
long reset time of the internal integration capacitor before the next
measurement.

The rate at which the signal settles is determined by the input settling time
constant, which is a function of both the source resistance and fixed-input
capacitance (3.3 nfd) of the CR1000.

Rise and decay waveforms are exponential. Figure Input Voltage Rise and
Transient Decay (p. 329 shows rising and decaying waveforms settling closer to the
true signal magnitude, Vso. The SettlingTime parameter of an analog
measurement instruction allows tailoring of measurement instruction settling
times with 100 ps resolution up to 50000 ps.

Section 8. Operation

Programmed settling time is a function of arguments placed in the Settling Time
and Integ parameters of a measurement instruction. Argument combinations and
resulting settling times are listed in table CRBasic Measurement Settling Times (p.
329). Default settling times (those resulting when SettlingTime = 0) provide
sufficient settling in most cases. Additional settling time is often programmed
when measuring high-resistance (high-impedance) sensors or when sensors
connect to the input terminals by long leads.

Measurement time of a given instruction increases with increasing settling time.
For example, a 1 ms increase in settling time for a bridge instruction with input
reversal and excitation reversal results in a 4 ms increase in time for the CR1000
to perform the instruction.

FIGURE 86: Input voltage rise and transient decay

Vg0

Input o
Voltage S

\ Rise

0 Time 0.5ms

TABLE 82: CRBasic Measurement Settling Times

SettlingTime Integ Resultant
Argument Argument Settling Time'
0 250 450 ps
0 _50H 3 ms
0 _60Hz 3 ms
us entered in
integer > 100 integer SettlingTime
argument

1450 ps is the minimum settling time required to meet CR1000 resolution
specifications.

Settling Errors

When sensors require long lead lengths, use the following general practices to
minimize settling errors:

e Do not use wire with PVC-insulated conductors. PVC has a high
dielectric constant, which extends input settling time.

379

Section 8. Operation

380

e Where possible, run excitation leads and signal leads in separate shields
to minimize transients.

e When measurement speed is not a prime consideration, additional time
can be used to ensure ample settling time. The settling time required
can be measured with the CR1000.

e In difficult cases, settling error can be measured as described in
Measuring Settling Time (p. 330).

Measuring Settling Time

Settling time for a particular sensor and cable can be measured with the CR1000.
Programming a series of measurements with increasing settling times will yield
data that indicate at what settling time a further increase results in negligible
change in the measured voltage. The programmed settling time at this point
indicates the settling time needed for the sensor / cable combination.

CRBasic example Measuring Settling Time (p. 330) presents CRBasic code to help
determine settling time for a pressure transducer using a high-capacitance
semiconductor. The code consists of a series of full-bridge measurements
(BrFull()) with increasing settling times. The pressure transducer is placed in
steady-state conditions so changes in measured voltage are attributable to settling
time rather than changes in pressure. Reviewing CRBasic Programming —
Details . 124y may help in understanding the CRBasic code in the example.

The first six measurements are shown in table First Six Values of Settling Time
Data . 331. Each trace in figure Settling Time for Pressure Transducer (p. 331)
contains all twenty PT() mV/V values (left axis) for a given record number, along
with an average value showing the measurements as percent of final reading (right
axis). The reading has settled to 99.5% of the final value by the fourteenth
measurement, which is contained in variable PT(14). This is suitable accuracy
for the application, so a settling time of 1400 pus is determined to be adequate.

CRBasic EXAMPLE 71: Measuring Settling Time

'This program example demonstrates the measurement of settling time using a single
'measurement instruction multiple times in succession. In this case, the program measures
"the temperature of the CR1000 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) 'Instruction to make measurement
NextScan
EndProg measures the settling time of a sensor measured with a differential
'voltage measurement

PubTic PT(20) "Variable to hold the measurements
DataTable(Settle,True,100)

Samp1e (20,PT(),IEEE4)
EndTable

Section 8. Operation

BeginProg
Scan(1,Sec,3,0)

BrFull(PT(1),1,mV7.
BrFull1(PT(2),1,mV7.
BrFul1(PT(3),1,mV7.
BrFul1(PT(4),1,mV7.
BrFul1(PT(5),1,mvV7.
BrFull(PT(6),1,mV7.
BrFul1(PT(7),1,mV7.
BrFul1(PT(8),1,mV7.
BrFul1(PT(9),1,mvV7.
BrFull1(PT(10),1,mV7.
BrFull(PT(11),1,mV7.
BrFull(PT(12),1,mV7.
BrFull1(PT(13),1,mV7.
BrFul1(PT(14),1,mV7.
BrFull(PT(15),1,mV7.
BrFull1(PT(16),1,mV7.
BrFull1(PT(17),1,mV7.
BrFull1(PT(18),1,mV7.
BrFul1(PT(19),1,mV7.
BrFul1(PT(20),1,mV7.

CallTable Settle

NextScan
EndProg

x1,2500,True,True,100, 250,1.0,0)
x1,2500,True,True,200, 250,1.0,0)
x1,2500,True,True,300, 250,1.0,0)
x1,2500,True,True,400, 250,1.0,0)
x1,2500,True,True,500, 250,1.0,0)
x1,2500,True,True,600, 250,1.0,0)
x1,2500,True,True,700, 250,1.0,0)
x1,2500,True,True, 800, 250,1.0,0)
x1,2500,True,True,900, 250,1.0,0)
,Vx1,2500,True,True, 1000, 250,1.0,0)
,Vx1,2500,True,True, 1100, 250,1.0,0)
,Vx1,2500,True,True,1200, 250,1.0,0)
,Vx1,2500,True,True, 1300, 250,1.0,0)
,Vx1,2500,True,True, 1400, 250,1.0,0)
,Vx1,2500,True,True, 1500, 250,1.0,0)
,Vx1,2500,True,True, 1600, 250,1.0,0)
,Vx1,2500,True,True, 1700, 250,1.0,0)
,Vx1,2500,True,True, 1800, 250,1.0,0)
,Vx1,2500,True,True, 1900, 250,1.0,0)
,Vx1,2500,True,True, 2000, 250,1.0,0)

FIGURE 87: Settling Time for Pressure Transducer

Settling Time

0.044

0.043 —r

99

S
/,

97

95

0.042 \/
0.041

—— Channel 1 L 93

0.039

—— Channel 3
—m— Channel 4
=¥~ Channel 5

% of Final Value

P91

0.038

—&— Channel 6
—m—% Final Val

89

0.037

87

0.036

Time (x100 ps)

1 2 3 4 5 6 7 8 9 10 11 12

85

Section 8. Operation

TABLE 83: First Six Values of Settling Time Data

TIMESTAMP REC PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)
Smp Smp Smp Smp Smp Smp
1/3/2000 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745
1/3/2000 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396
1/3/2000 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745
1/3/2000 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531
1/3/2000 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

382

Open-input Detect

Note The information in this section is highly technical. It is not
necessary for the routine operation of the CR1000.

Summary

* An option to detect an open-input, such as a broken sensor or loose
connection, is available in the CR1000.

» The option is selected by appending a C to the Range code.

» Using this option, the result of a measurement on an open connection
will be NAN (not a number).

A useful option available to single-ended and differential measurements is the
detection of open inputs due to a broken or disconnected sensor wire. This
prevents otherwise undetectable measurement errors. Range codes appended
with C enable open-input detect for all input ranges except the 25000 mV input
range. See TABLE: Analog Input Voltage Ranges and Options (p. 367).

Appending the Range code with a C results in a 50 ps internal connection of the
V+ input of the PGIA to a large over-voltage. The V- input is connected to
ground. Upon disconnecting the inputs, the true input signal is allowed to settle
and the measurement is made normally. If the associated sensor is connected, the
signal voltage is measured. If the input is open (floating), the measurement will
over-range since the injected over-voltage will still be present on the input, with
NAN as the result.

Range codes and applicable over-voltage magnitudes are found in TABLE: Range
Code Option C Over-Voltages (p. 333).

The C option may not work, or may not work well, in the following applications:

e [fthe input is not a truly open circuit, such as might occur on a wet cut
cable end, the open circuit may not be detected because the input
capacitor discharges through external leakage to ground to a normal
voltage within the settling time of the measurement. This problem is
worse when a long settling time is selected, as more time is given for the
input capacitors to discharge to a "normal" level.

Section 8. Operation

e Ifthe open circuit is at the end of a very long cable, the test pulse (300
mV) may not charge the cable (with its high capacitance) up to a voltage
that generates NAN or a distinct error voltage. The cable may even act as
an aerial and inject noise which also might not read as an error voltage.

e The sensor may "object" to the test pulse being connected to its output,
even for 100 us. There is little or no risk of damage, but the sensor
output may be caused to temporarily oscillate. Programming a longer
settling time in the CRBasic measurement instruction to allow
oscillations to decay before the A-to-D conversion may mitigate the
problem.

TABLE 84: Range-Code Option C Over-Voltages

Input Range (mV) Over-Voltage
2.5
e 300 mV
+250
+2500 C option with caveat'
+5000 C option not available

!C results in the H terminal being briefly connected to a voltage greater than
2500 mV, while the L terminal is connected to ground. The resulting
common-mode voltage is 1250 mV, which is not adequate to null residual
common-mode voltage, but is adequate to facilitate a type of open-input
detect. This requires inclusion of an If / Then / Else statement in the CRBasic
program to test the results of the measurement. For example:

*The result of a VoltDiff() measurement using m¥V2500C as the Range code
can be tested for a result >2500 mV, which would indicate an open input.

*The result of the BrHalf() measurement, X, using the m¥V2500C range code
can be tested for values >1. A result of X > 1 indicates an open input for the
primary measurement, V1, where X = V1/Vx and Vx is the excitation voltage.
A similar strategy can be used with other bridge measurements.

Offset Voltage Compensation

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

383

Section 8. Operation

384

Summary
Measurement offset voltages are unavoidable, but can be minimized.

Offset voltages originate with:

» Ground currents

» Seebeck effect

* Residual voltage from a previous measurement

Remedies include:

» Connect power grounds to power ground terminals (G)

* Use input reveral (RevDiff = True) with differential measurements

+ Automatic offset compensation for differential measurements when
RevDiff = False

» Automatic offset compensation for single-ended measurements when
MeasOff = False

» Better offset compensation when MeasOff = True

» Excitation reversal (RevEx = True)

* Longer settling times

Voltage offset can be the source of significant error. For example, an offset of 3

pV on a 2500 mV signal causes an error of only 0.00012%, but the same offset on
a 0.25 mV signal causes an error of 1.2%. The primary sources of offset voltage
are ground currents and the Seebeck effect.

Single-ended measurements are susceptible to voltage drop at the ground terminal
caused by return currents from another device that is powered from the CR1000
wiring panel, such as another manufacturer's comms modem, or a sensor that
requires a lot of power. Currents >5 mA are usually undesirable. The error can
be avoided by routing power grounds from these other devices to a power ground
G terminal on the CR1000 wiring panel, rather than using a signal ground (=)
terminal. Ground currents can be caused by the excitation of resistive-bridge
sensors, but these do not usually cause offset error. These currents typically only
flow when a voltage excitation is applied. Return currents associated with
voltage excitation cannot influence other single-ended measurements because the
excitation is usually turned off before the CR1000 moves to the next
measurement. However, if the CRBasic program is written in such a way that an
excitation terminal is enabled during an unrelated measurement of a small voltage,
an offset error may occur.

The Seebeck effect results in small thermally induced voltages across junctions of
dissimilar metals as are common in electronic devices. Differential
measurements are more immune to these than are single-ended measurements
because of passive voltage cancelation occurring between matched high and low
pairs such as 1H/1L. So use differential measurements when measuring critical
low-level voltages, especially those below 200 mV, such as are output from
pyranometers and thermocouples. Differential measurements also have the
advantage of an input reversal option, RevDiff. When RevDiff is True, two
differential measurements are made, the first with a positive polarity and the
second reversed. Subtraction of opposite polarity measurements cancels some
offset voltages associated with the measurement.

Single-ended and differential measurements without input reversal use an offset
voltage measurement with the PGIA inputs grounded. For differential

Section 8. Operation

measurements without input reversal, this offset voltage measurement is
performed as part of the routine auto-calibration of the CR1000. Single-ended
measurement instructions VoltSE() and TCSe() MeasOff parameter determines
whether the offset voltage measured is done at the beginning of measurement
instruction, or as part of self-calibration. This option provides you with the
opportunity to weigh measurement speed against measurement accuracy. When
MeasOff = True, a measurement of the single-ended offset voltage is made at the
beginning of the VoItSE() instruction. When MeasOff = False, an offset voltage
measurement is made during self-calibration. For slowly fluctuating offset
voltages, choosing MeasOff = True for the VoltSE() instruction results in better
offset voltage performance.

Ratiometric measurements use an excitation voltage or current to excite the sensor
during the measurement process. Reversing excitation polarity also reduces
offset voltage error. Setting the RevEx parameter to True programs the
measurement for excitation reversal. Excitation reversal results in a polarity
change of the measured voltage so that two measurements with opposite polarity
can be subtracted and divided by 2 for offset reduction similar to input reversal for
differential measurements. Ratiometric differential measurement instructions
allow both RevDiff and RevEx to be set True. This results in four measurement
sequences:

e positive excitation polarity with positive differential input polarity
e negative excitation polarity with positive differential input polarity
e positive excitation polarity with negative differential input polarity

e positive excitation polarity then negative excitation differential input
polarity

For ratiometric single-ended measurements, such as a BrHalf(), setting RevEx =
True results in two measurements of opposite excitation polarity that are
subtracted and divided by 2 for offset voltage reduction. For RevEx = False for
ratiometric single-ended measurements, an offset-voltage measurement is made
during the self-calibration.

When analog voltage signals are measured in series by a single measurement
instruction, such as occurs when VoItSE() is programmed with Reps = 2 or more,
measurements on subsequent terminals may be affected by an offset, the
magnitude of which is a function of the voltage from the previous measurement.
While this offset is usually small and negligible when measuring large signals,
significant error, or NAN, can occur when measuring very small signals. This
effect is caused by dielectric absorption of the integrator capacitor and cannot be
overcome by circuit design. Remedies include the following:

e Program longer settling times

e Use an individual instruction for each input terminal, the effect of which
is to reset the integrator circuit prior to filtering.

e Avoid preceding a very small voltage input with a very large voltage
input in a measurement sequence if a single measurement instruction
must be used.

385

Section 8. Operation

TABLE: Offset Voltage Compensation Options (p. 336) lists some of the tools
available to minimize the effects of offset voltages.

TABLE 85: Offset Voltage Compensation Options

Measure Offset
During
Background
Measure Calibration

CRBasic Excitation Offset During (RevDiff = False)

Measurement Input Reversal Reversal Measurement (RevEx = False)

Instruction (RevDiff =True) (RevEx = True) (MeasOff = True) (MeasOff = False)
AM25T() v v v’
BrHalf() v v
BrHalf3W() v v
BrHalf4W() v v v
BrFull() v v v
BrFulloéW() v v v
TCDiff() v v
TCSe() v v
Therm107() v v
Therm108() v v
Therm109() v v
VoltDiff() v 4
VoltSe() v v

Input and Excitation Reversal

Reversing inputs (differential measurements) or reversing polarity of excitation
voltage (bridge measurements) cancels stray voltage offsets. For example, if 3
pV offset exists in the measurement circuitry, a 5 mV signal is measured as 5.003
mV. When the input or excitation is reversed, the second sub-measurement is
—4.997 mV. Subtracting the second sub-measurement from the first and then
dividing by 2 cancels the offset:

5.003 mV - (-4.997 mV) = 10.000 mV
10.000 mV / 2 = 5.000 mV

When the CR1000 reverses differential inputs or excitation polarity, it delays the
same settling time after the reversal as it does before the first sub-measurement.
So, there are two delays per measurement when either RevDiff or RevEx is used.
If both RevDiff and RevEx are True, four sub-measurements are performed;
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The automatic procedure then is as
follows,

386

Section 8. Operation

1. Switches to the measurement terminals

2. Sets the excitation, and then settle, and then measure

3. Reverse the excitation, and then settles, and then measure

4. Reverse the excitation, reverse the input terminals, settle, measure

5. Reverse the excitation, settle, measure

There are four delays per measure. The CR1000 processes the four
sub-measurements into the reported measurement. In cases of excitation

reversal, excitation time for each polarity is exactly the same to ensure that ionic
sensors do not polarize with repetitive measurements.

Read More A white paper entitled "The Benefits of Input Reversal and
Excitation Reversal for Voltage Measurements” is available at
www.campbellsci.com.

Ground Reference Offset Voltage

When MeasOff is enabled (= True), the CR1000 measures the offset voltage of
the ground reference prior to each VoltSe() or TCSe() measurement. This offset
voltage is subtracted from the subsequent measurement.

From Auto Self-Calibration

If RevDiff, RevEx, or MeasOff is disabled (= False), offset voltage compensation
is continues to be automatically performed, albeit less effectively, by using
measurements from the auto self-calibration. Disabling RevDiff, RevEx, or
MeasOff speeds up measurement time; however, the increase in speed comes at
the cost of accuracy because of the following:

1 RevDiff, RevEx, and MeasOff are more effective.
2 Auto self-calibrations are performed only periodically, so more time skew

occurs between the auto self-calibration offsets and the measurements to
which they are applied.

Note When measurement duration must be minimal to maximize
measurement frequency, consider disabling RevDiff, RevEx, and
MeasOff when CR1000 module temperatures and return currents are slow
to change.

387

Section 8. Operation

388

Time Skew Between Measurements

Time skew between consecutive voltage measurements is a function of settling
and integration times, A-to-D conversion, and the number entered into the Reps
parameter of the VoltDiff() or VoltSE() instruction. A close approximation is:

time skew = settling time + integration time + A-to-D conversion time + reps
where A-to-D conversion time equals 15 ps. If reps (repetitions) > 1 (multiple

measurements by a single instruction), no additional time is required. Ifreps=1
in consecutive voltage instructions, add 15 ps per instruction.

Measurement Accuracy

Read More For an in-depth treatment of accuracy estimates, see the
technical paper Measurement Error Analysis soon available at
www.campbellsci.com/app-notes.

Accuracy describes the difference between a measurement and the true value.
Many factors affect accuracy. This section discusses the affect
percent-or-reading, offset, and resolution have on the accuracy of the
measurement of an analog voltage sensor signal. Accuracy is defined as follows:

accuracy = percent-of-reading + offset
where percents-of-reading are tabulated in the table Analog Voltage Measurement

Accuracy (. 338), and offsets are tabulated in the table Analog Voltage
Measurement Offsets (p. 338.

Note Error discussed in this section and error-related specifications of
the CR1000 do not include error introduced by the sensor or by the
transmission of the sensor signal to the CR1000.

TABLE 86: Analog Voltage Measurement Accuracy!
0to 40 °C -251to 50 °C —55 to 85 °C?

+(0.06% of reading + +(0.12% of reading + +(0.18% of reading +
offset) offset) offset)

! Assumes the CR1000 is within factory specifications
2 Available only with purchased extended temperature option (-XT)

Section 8. Operation

TABLE 87: Analog Voltage Measurement Offsets

Differential Differential
Measurement .
Measurement Without Inout Single-Ended
With Input Reversal p
Reversal

1.5 » Basic Resolution + | 3 ¢ Basic Resolution + 3 « Basic Resolution +
1.0 uv 2.0 uwv 3.0 uwV

Note — the value for Basic Resolution is found in the table Analog Voltage
Measurement Resolution (p. 338).

TABLE 88: Analog Voltage Measurement Resolution

Differential
Input Measurement
Voltage Range With Input Reversal Basic Resolution

(mV) (wv) (wv)
+5000 667 1333
+2500 333 667
+250 333 66.7

25 3.33 6.7

7.5 1.0 2.0

2.5 0.33 0.67

Note — see Specifications (p. 95) for a complete tabulation of measurement
resolution

As an example, figure Voltage Measurement Accuracy Band Example (p. 340)
shows changes in accuracy as input voltage changes on the +2500 input range.
Percent-of-reading is the principle component, so accuracy improves as input
voltage decreases. Offset is small, but could be significant in applications
wherein the sensor-signal voltage is very small, such as is encountered with
thermocouples.

Offset depends on measurement type and voltage-input range. Offsets equations
are tabulated in table Analog Voltage Measurement Offsets (p. 338. For example,
for a differential measurement with input reversal on the +5000 mV input range,
the offset voltage is calculated as follows:

offset = 1.5 * Basic Resolution + 1.0 pV

=(1.5+667 uV)+1.0 pv

=1001.5 pV

where Basic Resolution is the published resolution is taken from the table Analog
Voltage Measurement Resolution (p. 338).

389

Section 8. Operation

FIGURE 88: Example voltage measurement accuracy band, including
the effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to 40
°C.

.
%7 \g
NANAVR T EAVAYARY:
RONIANIN, 1000 A 2000

-3000 3000

Voltage Measurement Error (mV)

Input Voltage (mV)

Measurement Accuracy Example

The following example illustrates the effect percent-of-reading and offset have on
measurement accuracy. The effect of offset is usually negligible on large signals:

Example:
e Sensor-signal voltage: ~2500 mV
e CRBasic measurement instruction: VoltDiff()
e Programmed input-voltage range (Range): mV2500 (£2500 mV)
e Input measurement reversal (RevDiff): True
e CR1000 circuitry temperature: 10 °C
Accuracy of the measurement is calculated as follows:

accuracy = percent-of-reading + offset

390

Section 8. Operation

Electronic Noise

where
percent-of-reading = 2500 mV + +0.06%
==+1.5mV
and
offset = (1.5« 667 uV) + 1 uVv
=1.00 mV
Therefore,
accuracy = 1.5 mV + 1.00 mV

=4+2.5mV

Electronic "noise" can cause significant error in a voltage measurement,
especially when measuring voltages less than 200 mV. So long as input
limitations are observed, the PGIA ignores voltages, including noise, that are
common to each side of a differential-input pair. This is the common-mode
voltage. Ignoring (rejecting or canceling) the common-mode voltage is an
essential feature of the differential input configuration that improves voltage
measurements.

Figure PGIA with Input Signal Decomposition (p. 369), illustrates the
common-mode component (Vem) and the differential-mode component (Vam) of a
voltage signal. Vcm is the average of the voltages on the V+ and V- inputs. So,
Vem = (V+ + V-)/2 or the voltage remaining on the inputs when Vym =0. The
total voltage on the V+ and V— inputs is given as V+ = V¢y + Vaw/2, and Vi =
Vem — Vam/2, respectively.

8.1.3 Pulse Measurements — Details

Related Topics:

» Pulse Measurements — Specifications
* Pulse Measurements — Overview (p. 71)
* Pulse Measurements — Details (p. 391)

Read More Review the PULSE COUNTERS (p. 391) and Pulse on C
Terminals sections in Specifications (p. 95. Review pulse measurement
programming in CRBasic Editor Help for the PulseCount() and TimerlO()
instructions.

391

Section 8. Operation

392

Note Peripheral devices are available from Campbell Scientific to expand
the number of pulse input channels measured by the CR1000. See
Measurement and Control Peripherals — List (p. 590).

The figure Pulse Sensor Output Signal Types (p. 72) illustrates pulse signal types
measurable by the CR1000:

o low-level ac

e high-frequency

e switch closure
The figure Switch Closure Pulse Sensor (p. 392) illustrates the basic internal circuit
and the external connections of a switch closure pulse sensor. The table Pulse
Measurements.: Terminals and Programming (p. 393) summarizes available
measurements, terminals available for those measurements, and the CRBasic

instructions used. The number of terminals configurable for pulse input is
determined from the table CR1000 Terminal Definitions (p. 58.

FIGURE 89: Pulse Sensor Output Signal Types

Vdc H H H H H H HHigh-frequency square wave

t

Vac 0 //\\.//\\.//\U/\\ Low-level ac sine wave
t

Vdc H H H H H H HSWitCh closure series
— o o—

Open
t

FIGURE 90: Switch Closure Pulse Sensor

Datalogger
Terminals

¥
PorC O

switch closure

= [o— 0O 097
— O \
signal ground

Section 8. Operation
FIGURE 91: Terminals Configurable for Pulse Input
Terminals Configurable
for Low-Level Ac Input
. "7 CR1000 Saimens
"5FJ-FGFJ-'I|7FJ-QBFJ=-S L3
Tl e e T L O RS-232 (Not Isolated) o
= illllllll‘lllll
'\”\'\“\\‘ wagtinusa C €
Terminals Configurable
for Switch-Closure and
High-Frequency Input
TABLE 89: Pulse Measurements: Terminals and Programming
P (o CRBasic
Measurement Terminals Terminals Instruction
Low-level ac, counts v PulseCount()
Low-level ac, Hz v PulseCount()
Low-level ac, running v PulseCount()
average
High frequency, counts v v PulseCount()
High frequency, Hz v v PulseCount()
High frequency, running v v PulseCount()
average
Switch closure, counts v v PulseCount()
Switch closure, Hz v v PulseCount()
Switch closure, running v v PulseCount()
average
Calculated period TimerIO()
Calculated frequency TimerlO()
Time from edge on previous v TimerIO()
port
Time from edge on port 1 v TimerIO()

393

394

Section 8. Operation

TABLE 89: Pulse Measurements: Terminals and Programming

Count of edges v TimerIO()
Pulse count, period v TimerIO()
Pulse count, frequency v TimerIO()

8.1.3.1 Pulse Measurement Terminals

P Terminals

C Terminals

e Input voltage range =-20to 20 V

If pulse input voltages exceed £20 V, third-party external-signal conditioners
should be employed. Under no circumstances should voltages greater than 50 V
be measured.

e Input voltage range =—8 to 16 Vdc

C terminals configured for pulse input have a small 25 ns input RC-filter time
constant between the terminal block and the CMOS input buffer, which allows for
high-frequency pulse measurements up to 250 kHz and edge counting up to 400
kHz. The CMOS input buffer recognizes inputs >3.8 V as being high and inputs
<1.2V as being low.

Open-collector (bipolar transistors) or open-drain (MOSFET) sensors are
typically measured as frequency sensors. C terminals can be conditioned for open
collector or open drain with an external pull-up resistor as shown in figure
Connecting Switch Closures to C Terminals Configured for Control. The pull-up
resistor counteracts an internal 100 kQ pull-down resistor, allowing inputs to be
pulled to >3.8 V for reliable measurements.

8.1.3.2 Low-Level Ac Measurements — Details

Related Topics:

* Low-Level Ac Input Modules — Overview (p. 417)
* Low-Level Ac Measurements — Details (p. 394

* Pulse Input Modules — List (p. 590)

Low-level ac (sine-wave) signals can be measured on P terminals. Sensors that
commonly output low-level ac include:

e Ac generator anemometers

Section 8. Operation

Measurements include the following:

e Counts

e Frequency (Hz)

e Running average
Rotating magnetic-pickup sensors commonly generate ac voltage ranging from
thousandths of volts at low-rotational speeds to several volts at high-rotational
speeds. Terminals configured for low-level ac input have in-line signal

conditioning for measuring signals ranging from 20 mV RMS (£28 mV
peak-to-peak) to 14 V RMS (£20 V peak-to-peak).

P Terminals
e Maximum input frequency is dependent on input voltage:
o 1.0to 20 Hz at 20 mV RMS
o 0.5t0200 Hz at 200 mV RMS
o 0.3 to 10 kHz at 2000 mV RMS
o 0.3 t020kHzat 5000 mV RMS
e CRBasic instruction: PulseCount()
Internal ac coupling is used to eliminate dc-offset voltages of up to £0.5 Vde.
C Terminals
Low-level ac signals cannot be measured directly by C terminals. Refer to Pulse

Input Modules — List (p. 590) for information on peripheral terminal expansion
modules available for converting low-level ac signals to square-wave signals.

8.1.3.3 High-Frequency Measurements

High-frequency (square-wave) signals can be measured on P or C terminals.
Common sensors that output high-frequency include:

e Photo-chopper anemometers

e Flow meters
Measurements include counts, frequency in hertz, and running average. Refer to
the section Frequency Resolution (p. 396) for information about how the resolution

of a frequency measurement can be different depending on whether the
measurement is made with the PulseCount() or TimerIO() instruction.

395

396

Section 8. Operation

P Terminals
e Maximum input frequency = 250 kHz
e CRBasic instructions: PulseCount()

High-frequency pulse inputs are routed to an inverting CMOS input buffer with
input hysteresis. The CMOS input buffer is at output 0 level with inputs > 2.2 V
and at output 1 level with inputs < 0.9 V. An internal 100 kQ resistor is
automatically connected to the terminal to pull it up to 5 Vdc. This pull-up resistor
accommodates open-collector (open-drain) output devices.

C Terminals
e Maximum input frequency = <1 kHz

e CRBasic instructions: PulseCount(), TimerIO()

8.1.3.3.1 Frequency Resolution

Resolution of a frequency measurement made with the PulseCount() instruction
is calculated as

L
FR=3

where

FR = resolution of the frequency measurement (Hz)
S =scan interval of CRBasic program

Resolution of a frequency measurement made with theTimerIO() instruction is

R/E

R P RE)

where

FR = frequency resolution of the measurement (Hz)

R = timing resolution of the TimerIO() measurement = 540 ns

P = period of input signal (seconds). For example, P=1/1000 Hz=0.001
s

E =Number of rising edges per scan or 1, whichever is greater.

TABLE 90: Example: E for a 10 Hz input signal
Scan Rising Edge / Scan E
5.0 50 50
0.5 5 5
0.05 0.5 1

Section 8. Operation

TimerIO() instruction measures frequencies of < 1 kHz with higher frequency
resolution over short (sub-second) intervals. In contrast, sub-second frequency
measurement with PulseCount() produce measurements of lower resolution.
Consider a 1 kHz input. Table Frequency Resolution Comparison . 397) lists
frequency resolutions to be expected for a 1 kHz signal measured by TimerIO()
and PulseCount() at 0.5 s and 5.0 s scan intervals.

Increasing a measurement interval from 1 s to 10 s, either by increasing the scan
interval (when using PulseCount()) or by averaging (when using PulseCount()
or TimerIO()), improves the resulting frequency resolution from 1 Hz to 0.1 Hz.
Averaging can be accomplished by the Average(), AvgRun(), and AvgSpa()
instructions. Also, PulseCount() has the option of entering a number greater than
1 in the POption parameter. Doing so enters an averaging interval in
milliseconds for a direct running-average computation. However, use caution
when averaging. Averaging of any measurement reduces the certainty that the
result truly represents a real aspect of the phenomenon being measured.

TABLE 91: Frequency Resolution Comparison

0.5 s Scan 5.0 s Scan
PulseCount(), POption=1 FR =2 Hz FR=0.2 Hz
TimerIO(), Function=2 FR=0.0011 Hz FR=0.00011 Hz

8.1.3.3.2 Frequency Measurement Q & A

Q: When more than one pulse is in a scan interval, what does TimerIO() return
when configured for a frequency measurement? Does it average the measured
periods and compute the frequency from that (f=1/T)? For example,

Scan(50,mSec,10,0)
TimerIO(WindSpd(),11111111,00022000,60,Sec)

A: In the background, a 32-bit-timer counter is saved each time the signal
transitions as programmed (rising or falling). This counter is running at a fixed
high frequency. A count is also incremented for each transition. When the
TimerIO() instruction executes, it uses the difference of time between the edge
prior to the last execution and the edge prior to this execution as the time
difference. The number of transitions that occur between these two times divided
by the time difference gives the calculated frequency. For multiple edges
occurring between execution intervals, this calculation does assume that the
frequency is not varying over the execution interval. The calculation returns the
average regardless of how the signal is changing.

8.1.3.4 Switch Closure and Open-Collector Measurements

Switch closure and open-collector signals can be measured on P or C terminals.
Mechanical-switch closures have a tendency to bounce before solidly closing.
Unless filtered, bounces can cause multiple counts per event. The CR1000
automatically filters bounce. Because of the filtering, the maximum switch

397

Section 8. Operation

closure frequency is less than the maximum high-frequency measurement
frequency. Sensors that commonly output a switch closure or open-collector
signal include:
e Tipping-bucket rain gages
e Switch closure anemometers
e Flow meters
Data output options include counts, frequency (Hz), and running average.
P Terminals
An internal 100 kQ pull-up resistor pulls an input to 5 Vdc with the switch open,
whereas a switch closure to ground pulls the input to 0 V. An internal hardware
debounce filter has a 3.3 ms time-constant. Connection configurations are
illustrated in table.
e Maximum input frequency = 90 Hz
CRBasic instruction: PulseCount()
An internal 100 kQ pull-up resistor pulls an input to 5 Vdc with the switch open,
whereas a switch closure to ground pulls the input to 0 V. An internal hardware
debounce filter has a 3.3 ms time-constant. Connection configurations are
illustrated in table.
e Maximum input frequency = 90 Hz
e CRBasic instruction: PulseCount()
C Terminals
Switch closure mode is a special case edge-count function that measures
dry-contact-switch closures or open collectors. The operating system filters
bounces. Connection configurations are illustrated in table Switch Closures and
Open Collectors (p. 400).

e Maximum input frequency = 150 Hz

e CRBasic instruction: PulseCount()

8.1.3.5 Edge Timing

Edge time and period can be measured on P or C terminals. Applications for edge
timing include:

e Measurements for feedback control using pulse-width or pulse-duration
modulation (PWM/PDM).

398

Section 8. Operation

Measurements include time between edges expressed as frequency (Hz) or period
(ps).

C Terminals
e Maximum input frequency <1 kHz
e CRBasic instruction: TimerIO()
e Rising or falling edges of a square-wave signal are detected:
o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.
o Falling edge — transition from >3.5 Vdc to <1.5 Vdec.

e Edge-timing resolution is approximately 540 ns.

8.1.3.6 Edge Counting
Edge counts can be measured on C terminals.
C Terminals
e Maximum input frequency 400 kHz
e CRBasic instruction: TimerIO()
e Rising or falling edges of a square-wave signal are detected:
o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.

o Falling edge — transition from >3.5 Vdc to <1.5 Vdc.

8.1.3.7 Timer Input on I/O NAN Conditions

e NAN is the result of a TimerIO() measurement if one of the following
occurs:

o Timeout expires

o The signal frequency is too fast (> 3 KHz). When a C terminal
experiences a too fast frequency, the CR1000 operating system
disables the interrupt that is capturing the precise time until the next
scan is serviced. This is done so that the CR1000 processor does
not get occupied by excessive interrupts. A small RC filter
retrofitted to the sensor switch should fix the problem.

8.1.3.8 Pulse Measurement Tips

Basic connection of pulse-output sensors is illustrated in table Switch Closures
and Open Collectors (p. 400, p. 400).

399

Section 8. Operation

400

The PulseCount() instruction, whether measuring pulse inputs on P or C
terminals, uses dedicated 24-bit counters to accumulate all counts over the
programmed scan interval. The resolution of pulse counters is one count or 1 Hz.
Counters are read at the beginning of each scan and then cleared. Counters will
overflow if accumulated counts exceed 16,777,216, resulting in erroneous
measurements.

e Counts are the preferred PulseCount() output option when measuring
the number of tips from a tipping-bucket rain gage or the number of
times a door opens. Many pulse-output sensors, such as anemometers
and flow meters, are calibrated in terms of frequency (Hz (. 528) so are
usually measured using the PulseCount() frequency-output option.

e Accuracy of PulseCount() is limited by a small scan-interval error of
+(3 ppm of scan interval + 10 ps), plus the measurement resolution error
of +1 / (scan interval). The sum is essentially +1 / (scan interval).

o Use the LLAC4 (p. 59090 module to convert non-TTL-level signals,
including low-level ac signals, to TTL levels for input into C terminals.

e As shown in the table Switch Closures and Open Collectors (p. 400), C
terminals, with regard to the 6.2 V Zener diode, have an input resistance
of 100 kQ with input voltages < 6.2 Vdc. For input voltages > 6.2 Vdc, C
terminals have an input resistance of only 220 Q.

TABLE 92: Switch Closures and Open Collectors on P Terminals

Switch Closure on P Terminal

Datalogger
Terminals

P pulse-input
Switch-
Closure
Sensor

o |
— round

=

Open Collector on on P Terminal

Datalogger
Terminals
v
output
Open
Collector
Scnsor

i ground

TABLE 93: Switch Closures and Open Collectors

Switch Closure on C Terminal:
No Pull-Up

Datalogger

Terminals

5V

power

Switch-
Closure
Sensor

cO ‘terminal confignred

for switch-closure

Section 8. Operation

TABLE 93: Switch Closures and Open Collectors

Switch Closure on C Terminal:

5 Vdc Pull-Up

5 Vdc Pull-Up

Datalogger Datalogger
Terminals Terminals
5VO—z 5V
R pull up R pull up
1kQto 20kQ 1kQto 20kQ
C control C control
Switch Open
Closure Collector
Sensor Sensor
—

- ground

Quiescent current drain < 50 pA

- ground

Quiescent current drain < 50 pA

Open Collector on C Terminal:

Switch Closure on C Terminal:
12 Vdc Pull-Up

Open Collector on C Terminal:
12 Vdc pull-up

Datalogger Datalogger
Terminals Terminals
12V - 12V
power
R pull up R pull up
100kQ to 150 kQ 100kQ to 150 kQ
C control C

Switch Open
Closure Collector
Sensor

—~—o0——

- ground

Quiescent current drain < 60 pA

Sensor

- ground

Quiescent current drain < 60 pA

Internal CR1000 circuitry that supports open-collector
and switch-closure measurements (FYI)

‘Wiring Panel
Terminals
5 or 12 Vde 12V or 5V terminal
Control —_— Connection points
N N 220 Q for switch-closure
Cerult % W/\ 2 o and open-collector
L o terminal configured type sensors that
high > 3.8 Vdc gas for control require a pull-uj
low < 1.2 Vdc 100 pf i ¥ . e
P! discharge voltage.
100kQ capacitor 62V tube N
j— Zener
| diode

O

ground

—+

8.1.3.8.1 Pay Attention to Specifications

Pay attention to specifications. Take time to understand the signal to be
measured and compatible input terminals and CRBasic instructions. TABLE:
Three Specifications Differing Between P and C Terminals (p. 402 compares

401

402

Section 8.

specifications for pulse input terminals to emphasize the need for matching the
proper device to the application.

TABLE 94: Three Specifications Differing Between P and C Terminals

P Terminal C Terminal
High-Frequency 250 kHz 400 kHz
Maximum
Input Voltage 20 Vdc 16 Vdc
Maximum
State Transition Count ul};);lniranSItlon Count UI;;)(I:HET Ao
Thresholds <0.9 Vdc to >2.2 Vdc <1.2 Vdc to >3.8 Vdc

8.1.3.8.2 Input Filters and Signal Attenuation

P and C terminals configured for pulse input have internal filters that reduce
electronic noise, which can cause false counts. However, input filters attenuate
(reduce) the amplitude (voltage) of the signal. Attenuation is a function of the
frequency of the signal. Higher-frequency signals are attenuated more. If a signal
is attenuated enough, it may not pass the detection thresholds required by the
pulse count circuitry.

The metric for filter effectiveness is 7, the filter time constant. The higher the 1
value, the less noise that gets through the filter. But, the higher the t value, the
lower the signal frequency must be to pass the detection thresholds.

Detection thresholds, t values, and low-level ac pulse input ranges are listed in
TABLE: Time Constants (p. 402)

A deduction from the specifications is that while a C terminal measured with the
TimerIO() frequency measurement may be superior for clean signals, a P
terminal filter (much higher 1) may be required to get a measurement on an
electronically noisy signal.

SPEC For example, increasing voltage is required for low-level ac inputs to
overcome filter attenuation on P terminals configured for low-level ac: 8.5 ms
time constant filter (19 Hz 3 dB frequency) for low-amplitude signals; 1 ms time
constant (159 Hz 3 dB frequency) for larger (> 0.7 V) amplitude signals.

For example, the amplitude reduction that results from t in high-frequency pulse
input mode is illustrated in figure FIGURE: Amplitude Reduction of Pulse Count
Waveform (p. 403).

Section 8. Operation

TABLE 95: Time Constants (1)

Measurement

T

P terminal low-level ac mode

TABLE: Low-Level Ac Amplitude and Maximum
Measured Frequency (p. 403)

P terminal high-frequency mode

1.2

P terminal switch closure mode

3300

C terminal high-frequency mode

0.025

C terminal switch closure mode

0.025

TABLE 96: Low-Level Ac Pules Input Ranges

Sine Wave Input

Maximum Frequency

(mV RMS) (Hz)
20 20
200 200
2000 10,000
5000 20,000

FIGURE 92: Amplitude reduction of pulse count waveform (before and

after 1 us us time-constant filter)

5 —
¢ "
4 ," i P ¢
It
4' I, 'l 1
! ' I' I\
l' 1 .)
7] 4 [
’] o '
h ‘| / | 4
1
3 . 3 ; 4 S,
] 1 1 ’
Before ; . H \ /
') ,' ‘I ll
/ \ Ny \ '
L
Aﬂer " “ 5 \‘ 'l
—————— : “ : 1 [
] [} ' ¥ '
| [} [\ f ¥ !
t 1y I ‘\ !
[. |) |]
¥ N + ’ Y !
\\ i Ad) “ t
\ ' * 1] v :
1 Y. N AN ,,' DN q
.
.. e
-0.1
0
-6 —6 -6 -6 -5
0 2410 4-10 6+10 8410 1410
time

403

Section 8. Operation

8.1.4 Vibrating Wire Measurements — Details

Related Topics:

» Vibrating Wire Measurements — Specifications
» Vibrating Wire Measurements — Overview (p. 74)
» Vibrating Wire Measurements — Details (p. 404)

The CR1000 can measure vibrating wire or vibrating-strip sensors, including
strain gages, pressure transducers, piezometers, tilt meters, crack meters, and load
cells. These sensors are used in structural, hydrological, and geotechnical
applications because of their stability, accuracy, and durability. The CR1000 can
measure vibrating wire sensors through specialized interface modules. More
sensors can be measured by using multiplexers (see Analog Input Modules — List
(. 590)).

The figure Vibrating Wire Sensor (. 404) illustrates how a basic sensor is put
together. To make a measurement, plucking and pickup coils are excited with a
swept frequency (p. 544. The ideal behavior then is that all non-resonant frequencies
quickly decay, and the resonant frequency continues. As the resonant frequency
cuts the lines of flux in the pickup coil, the same frequency is induced on the
signal wires in the cable connecting the sensor to the CR1000 or interface.

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic
spectral-analysis techniques (VSPECT (p. 548) that produce superior noise
rejection, higher resolution, diagnostic data, and, in the case of dynamic VSPECT,
measurements up to 333.3 Hz.

A resistive-thermometer device (thermistor or RTD), which is included in most
vibrating wire sensor housings, can be measured to compensate for temperature

errors in the measurement.

FIGURE 93: Vibrating Wire Sensor

. Wibrating Plucking
Dmphragm/ Wire Pickup Coil

8.1.4.1 Time-Domain Measurement

Although obsolete in many applications, time-domain period-averaging vibrating
wire measurements can be made on H L terminals. The VibratingWire()
instruction makes the measurement. Measurements can be made directly on
these terminals, but usually are made through a vibrating wire interface that
amplifies and conditions the vibrating wire signal and provides inputs for
embedded thermistors or RTDs. Interfaces of this type are no longer available
from Campbell Scientific.

404

Section 8. Operation

For most applications, the advanced techniques of static and dynamic VSPECT
measurements are preferred.

8.1.5 Period Averaging — Details

Related Topics:

» Period Average Measurements — Specifications
» Period Average Measurements — Qverview (p. 74)
» Period Average Measurements — Details (p. 405)

The CR1000 can measure the period of a signal on a SE terminal. The specified
number of cycles is timed with a resolution of 136 ns, making the resolution of
the period measurement 136 ns divided by the number of cycles chosen.

The measurement is performed as follows: low-level signals are amplified prior to
a voltage comparator. The internal voltage comparator is referenced to the
programmed threshold. The threshold parameter allows referencing the internal
voltage comparator to voltages other than 0 V. For example, a threshold of 2500
mV allows a 0 to 5 Vdc digital signal to be sensed by the internal comparator
without the need for additional input conditioning circuitry. The threshold allows
direct connection of standard digital signals, but it is not recommended for
small-amplitude sensor signals.

For sensor amplitudes less than 20 mV peak-to-peak, a dc blocking capacitor is
recommended to center the signal at CR1000 ground (threshold = 0). Figure
Input Conditioning Circuit for Period Averaging (. 406) shows an example circuit.

A threshold other than zero results in offset voltage drift, limited accuracy
(=£10 mV), and limited resolution (=1.2 mV).

The minimum pulse-width requirements increase (maximum frequency decreases)
with increasing gain. Signals larger than the specified maximum for a range will
saturate the gain stages and prevent operation up to the maximum specified
frequency. As shown in the schematics, back-to-back diodes are recommended
to limit large amplitude signals to within the input signal ranges.

Caution Noisy signals with slow transitions through the voltage threshold
have the potential for extra counts around the comparator switch point. A
voltage comparator with 20 mV of hysteresis follows the voltage gain
stages. The effective input-referred hysteresis equals 20 mV divided by
the selected voltage gain. The effective input referred hysteresis on the +
25 mV range is 2 mV; consequently, 2 mV of noise on the input signal
could cause extraneous counts. For best results, select the largest input
range (smallest gain) that meets the minimum input signal requirements.

405

406

Section 8. Operation

FIGURE 94: Input Conditioning Circuit for Period Averaging

C TpF

1 To Single-Ended Input
L 4 1 L O
Sensor With
DC Offset
A D1 ' D2 R 10kQ
Vv,

Silicon diodes
such as TN4001

To Ground

DC Offset
(misl)

8.1.6 Reading Smart Sensors — Details

Related Topics:
* Reading Smart Sensors — Overview (p. 75)
* Reading Smart Sensors — Details (p. 406)

8.1.6.1 RS-232 and TTL — Details

Related Topics:
* RS-232 and TTL — Details (p. 406)
» Serial I/O (p. 289)

The CR1000 can receive and record most TTL (0 to 5 Vdc) and true RS-232 data
from devices such as smart sensors. See the table CR1000 Terminal Definitions
(- 58 for those terminals and serial ports configurable for either TTL or true
RS-232 communications. Use of the CS 1/0O port for true RS-232
communications requires use of an interface device. See Hardware,
Single-Connection Comms Devices — List (p. 598. 1f additional serial inputs are
required, serial input expansion modules can be connected. See Serial I/O
Modules — List (p. 591). Serial data are usually captured as text strings, which are
then parsed (split up) as defined in the CRBasic program.

Note When connecting serial sensors to a C terminal configured as Rx,
the sensor power consumption may increase by a few milliamps due to
voltage clamps in the CR1000. An external resistor may need to be added
in series to the Rx line to limit the current drain, although this is not
advisable at very high baud rates. See figure Circuit to Limit C Terminal
Input to 5 Volts Dc (p. 407).

Section 8. Operation

Note C terminals configured as Tx transmit only 0 to 5 Vdc logic.
However, C terminals configured as Rx read most true RS-232 signals.
When connecting serial sensors to a C terminal configured as Rx, the
sensor power consumption may increase by a few milliamps due to
voltage clamps in the CR1000. An external resistor may need to be added
in series to the Rx line to limit the current drain, although this is not
advisable at very high baud rates. See Circuit to Limit C Terminal Input to

5 Volts (p. 407).

FIGURE 95: Circuit to Limit C Terminal Input to 5 Vdc

Datalogger
Terminals

i 1kQ
TX C Wv sensor signal

TTL RS-232

1N4688

4.7V zener diode

power ground sensor ground

8.1.6.2 SDI-12 Sensor Support — Details

Related Topics:

» SDI-12 Sensor Support — Overview (p. 75)

» SDI-12 Sensor Support — Details (p. 407)

» Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 250)

SDI-12 is a communication protocol developed to transmit digital data from smart
sensors to data-acquisition units. It is a simple protocol, requiring only a single
communication wire. Typically, the data-acquisition unit also supplies power (12
Vdc and ground) to the SDI-12 sensor. SDI12Recorder() instruction
communicates with SDI-12 sensors on terminals configured for SDI-12 input.

See the table CR1000 Terminal Definitions (p. 58 to determine those terminals
configurable for SDI-12 communications.

8.1.7 Field Calibration — Overview

Related Topics:
* Field Calibration — Overview (p. 77)
» Field Calibration — Details (p. 223)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR1000 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement without modifying
or recompiling the CRBasic program.

407

Section 8. Operation

408

8.1.8 Cabling Effects — Details

Related Topics:
» Cabling Effects — Overview (p. 77)
» Cabling Effects — Details (p. 408)

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than
Campbell Scientific. Campbell Scientific sensors are engineered for optimal
performance with factory-installed cables.

8.1.8.1 Analog Sensor Cabling

Cable length in analog sensors is most likely to affect the signal settling time. For
more information, see Signal Settling Time (p. 328).

8.1.8.2 Pulse Sensor Cabling

Because of the long interval between switch closures in tipping-bucket rain gages,
appreciable capacitance can build up between wires in long cables. A built-up
charge can cause arcing when the switch closes and so shorten switch life. As
shown in figure Current-Limiting Resistor in a Rain Gage Circuit (p. 408), a 100 Q
resistor is connected in series at the switch to prevent arcing. This resistor is
installed on all rain gages currently sold by Campbell Scientific.

FIGURE 96: Current-Limiting Resistor in a Rain Gage

Circuit
Datalogger
Terminals
PR T PR ./
PorCO switch-closure ¥ B ' v
1 L
') ' '
' s N '
—4— C " L) " L]
_ signal ground) ’) ’
L A . v/ 10002
1 O—/
—_ shield

8.1.8.3 RS-232 Sensor Cabling

RS-232 sensor cable lengths should be limited to 50 feet.

8.1.8.4 SDI-12 Sensor Cabling

The SDI-12 standard allows cable lengths of up to 200 feet. Campbell Scientific
does not recommend SDI-12 sensor lead lengths greater than 200 feet; however,
longer lead lengths can sometimes be accommodated by increasing the wire gage
or powering the sensor with a second 12 Vdc power supply placed near the
Sensor.

Section 8. Operation

8.1.9 Synchronizing Measurements — Details

Related Topics:
» Synchronizing Measurements — Overview (p. 77)
» Synchronizing Measurements — Details (p. 409)

8.1.9.1 Synchronizing Measurement in the CR1000 — Details

Measurements are sychnronized in the CR1000 by the task sequencer. See
Execution and Task Priority (p. 153).

8.1.9.2 Synchronizing Measurements in a Datalogger Network — Details

Large numbers of sensors, cable length restrictions, or long distances between
measurement sites may require use of multiple CR1000s.

Techniques outlined below enable network administrators to synchronize CR1000
clocks and measurements in a CR1000 network.

Care should be taken when a clock-change operation is planned. Any time the
CR1000 clock is changed, the deviation of the new time from the old time may be
sufficient to cause a skipped record in data tables. Any command used to
synchronize clocks should be executed after any CallTable() instructions and
timed so as to execute well clear of data output intervals.

Techniques to synchronize measurements across a network include:

1. LoggerNet (p. 89 — when reliable comms are common to all CR1000s in a
network, the LoggerNet automated clock check provides a simple time
synchronization function. Accuracy is limited by the system clock on the PC
running the LoggerNet server. Precision is limited by network transmission
latencies. LoggerNet compensates for latencies in many comms systems and
can achieve synchronies of <100 ms deviation. Errors of 2 to 3 second may be
seen on very busy RF connections or long distance internet connections.

Note Common PC clocks are notoriously inaccurate. Information
available at http://lwww.nist.gov/pml/div688/grp40/its.cfm gives some
good pointers on keeping PC clocks accurate.

2. Digital trigger — a digital trigger, rather than a clock, can provide the
synchronization signal. When cabling can be run from CR1000 to CR1000,
each CR1000 can catch the rising edge of a digital pulse from the master
CR1000 and synchronize measurements or other functions, using the
WaitDigTrig() instructions, independent of CR1000 clocks or data time
stamps. When programs are running in pipeline mode, measurements can be
synchronized to within a few microseconds. See WaitDigTrig Scans (p. 161).

3. PakBus (p. 79 commands — the CR1000 is a PakBus device, so it is capable of
being a node in a PakBus network. Node clocks in a PakBus network are
synchronized using the SendGetVariable(), ClockReport(), or
PakBusClock() commands. The CR1000 clock has a resolution of 10 ms,

409

410

Section 8. Operation

which is the resolution used by PakBus clock-sync functions. In networks
without routers, repeaters, or retries, the communication time will cause an
additional error (typically a few 10s of milliseconds). PakBus clock
commands set the time at the end of a scan to minimize the chance of skipping
a record to a data table. This is not the same clock check process used by
LoggerNet as it does not use average round trip calculations to try to account
for network connection latency.

. Radios — A PakBus enabled radio network has an advantage over Ethernet in

that ClockReport() can be broadcast to all dataloggers in the network
simultaneously. Each will set its clock with a single PakBus broadcast from
the master. Each datalogger in the network must be programmed with a
PakBusClock() instruction.

Note Use of PakBus clock functions re-synchronizes the Scan()
instruction. Use should not exceed once per minute. CR1000 clocks drift
at a slow enough rate that a ClockReport() once per minute should be
sufficient to keep clocks within 30 ms of each other.

With any synchronization method, care should be taken as to when and
how things are executed. Nudging the clock can cause skipped scans or
skipped records if the change is made at the wrong time or changed by
too much.

5. GPS — clocks in CR1000s can be synchronized to within about 10 ms of each

other using the GPS() instruction. CR1000s built since October of 2008 (serial
numbers > [20409]) can be synchronized within a few microseconds of each
other and within =200 us of UTC. While a GPS signal is available, the
CR1000 essentially uses the GPS as its continuous clock source, so the
chances of jumps in system time and skipped records are minimized.

. Ethernet — any CR1000 with a network connection (internet, GPRS, private

network) can synchronize its clock relative to Coordinated Universal Time
(UTC) using the NetworkTimeProtocol() instruction. Precisions are usually
maintained to within 10 ms. The NTP server could be another logger or any
NTP server (such as an email server or nist.gov). Try to use a local server —
something where communication latency is low, or, at least, consistent. Also,
try not to execute the NetworkTimeProtocol() at the top of a scan; try to ask
for the server time between even seconds.

8.2 Switched-Voltage Output — Details

Related Topics:

Switched Voltage Output — Specifications
Switched Voltage Output — Overview (p. 60)
Switched Voltage Output — Details (p. 410)
Current Source and Sink Limits (p. 411)

PLC Control — Overview (p. 89)

PLC Control Modules — Overview (p. 416)
PLC Control Modules — Lists (p. 593)

Section 8. Operation

8.2.1

The CR1000 wiring panel is a convenient power distribution device for powering
sensors and peripherals that require a 5 Vdc, or 12 Vdc source. It has two
continuous 12 Vdc terminals (12V), one program-controlled, switched, 12 Vdc
terminal (SW12), and one continuous 5 Vdc terminal (5V). SW12, 12V, and 5V
terminals limit current internally for protection against accidental short circuits.
Voltage on the 12V and SW12 terminals can vary widely and will fluctuate with
the dc supply used to power the CR1000, so be careful to match the datalogger
power supply to the requirements of the sensors. The 5V terminal is internally
regulated to within £4%, which is good regulation as a power source, but typically
not adequate for bridge sensor excitation. TABLE: Current Sourcing Limits (p. 411)
lists the current limits of 12V and 5V terminals. Greatly reduced output
voltages on these terminals may occur if the current limits are exceeded. See
Terminals Configured for Control (p. 414 for more information.

TABLE 97: Current Source and Sink Limits

Terminal Limit

VX or EX (voltage excitation)? +25 mA maximum

SW-12° <900 mA @ 20°C
<630 mA @ 50°C
<450 mA @ 70°C
<360 mA @ 85°C

12V + SW-12 (combined)* <1.85 A @ 20°C
<133 A @ 50°C
<1.00 A @ 70°C
<0.74 A @ 85°C

5V + CS /O (combined)’ <200 mA

! Source is positive amperage (+); sink is negative amperage (-).

2 Exceeding current limits will cause voltage output to become unstable. Voltage should stabilize
once current is again reduced to within stated limits.

3 A polyfuse is used to limit power. Result of overload is a voltage drop. To reset, disconnect and
allow circuit to cool.
4 Polyfuse protected. See footnote 3.

3 Current is limited by a current limiting circuit, which holds the current at the maximum by
dropping the voltage when the load is too great.

Switched-Voltage Excitation

Three switched, analog-output (excitation) terminals (VX1 to VX3) operate under
program control to provide £2500 mV dc excitation. Check the accuracy
specification of terminals configured for exctitation in Specifications (p. 935) to
understand their limitations. Specifications are applicable only for loads not
exceeding £25 mA.

411

412

Section 8. Operation

CRBasic instructions that control voltage excitation include the following:
e BrFull()
e BrFulléW()
e BrHalf()
e BrHalf3W()
e BrHalf4W()

e ExciteV()

Note Square-wave ac excitation for use with polarizing bridge sensors is
configured with the RevEx parameter of the bridge instructions.

8.2.2 Continuous-Regulated (5V Terminal)

The SV terminal is regulated and remains near 5 Vdc (+4%) so long as the
CR1000 supply voltage remains above 9.6 Vdc. It is intended for power sensors
or devices requiring a 5 Vdc power supply. It is not intended as an excitation
source for bridge measurements. However, measurement of the 5V terminal
output, by means of jumpering to an analog input on the same CR1000), will
facilitate an accurate bridge measurement if 5V must be used.

Note Table Current Source and Sink Limits (p. 411) has more information
on excitation load capacity.

8.2.3 Continuous-Unregulated Voltage (12V Terminal)

Use 12V terminals to continuously power devices that require 12 Vdc. Voltage
on the 12V terminals will change with CR1000 supply voltage.

Caution Voltage levels at the 12V and switched SW12 terminals, and pin
8 on the CS /0 port, are tied closely to the voltage levels of the main
power supply. For example, if the power received at the POWER IN 12V
and G terminals is 16 Vdc, the 12V and SW12 terminals, and pin 8 on
the CS /O port, will supply 16 Vdc to a connected peripheral. If the
connected peripheral or sensor is not designed for that voltage level, it
may be damaged.

8.2.4 Switched-Unregulated Voltage (SW12 Terminal)

The SW12 terminal is often used to power devices such as sensors that require 12
Vdc during measurement. Current sourcing must be limited to 900 mA or less at
20 °C. Voltage on a SW12 terminal will change with CR1000 supply voltage.
CRBasic instruction SW12() controls the SW12 terminal. Configure SW12() as
a measurement or processing task in the instruction. Use it as a processing task

Section 8. Operation

when controlling power to SDI-12 and serial sensors that use SDI12Recorder()
or Serialln() instructions respectively. CRBasic programming using IF THEN
constructs to control SW12, such as when used for cell phone control, should also
use the SW12() instruction. See Execution and Task Priority (p. 153).

A 12 Vdc switching circuit designed to be driven by a C terminal is available
from Campbell Scientific. It is listed in Relay Drivers — List (p. 594).

8.3 PLC Control — Details

Related Topics:

* PLC Control — Overview (p. 89)

* PLC Control Modules — Overview (p. 416)

» PLC Control Modules — Lists (p. 593)

+ Switched Voltage Output — Specifications
» Switched Voltage Output — Overview (p. 60)
» Switched Voltage Output — Details (p. 410)

» Current Source and Sink Limits (p. 411)

The CR1000 can control instruments and devices such as the following:
e Wireless cellular modem to conserve power.
e GPS receiver to conserve power.
e Trigger a water sampler to collect a sample.
e Trigger a camera to take a picture.
e Activate an audio or visual alarm.
e Move a head gate to regulate water flows in a canal system.
e Control pH dosing and aeration for water quality purposes.
e Control a gas analyzer to stop operation when temperature is too low.
e Control irrigation scheduling.

Controlled devices can be physically connected to C terminals, usually through an
external relay driver, or the SW12V (p. 412) terminal. C terminals can be set low (0
Vdc) or high (5 Vdc) using PortSet() or WritelO() instructions. Control modules
are available to expand and augment CR1000 control capacity. On / off and
proportional control modules are available. See appendix PLC Control Modules
— List (p. 593).

Tips for writing a control program:
e Short Cut programming wizard has provisions for simple on/off control.

e PID control can be done with the CR1000.

413

414

Section 8. Operation

Control decisions can be based on time, an event, or a measured condition.
Example:

In the case of a cell modem, control is based on time. The modem requires 12 Vdc
power, so connect its power wire to the CR1000 SW12V terminal. The following
code snip turns the modem on for ten minutes at the top of the hour using the
TimelIntolInterval() instruction embedded in an If/Then logic statement:

If TimeIntoInterval(0,60,Min) Then PortSet(9,1) 'Port “9” is the
SW12V Port. Turn phone on.

If TimeIntoInterval(10,60,Min) Then PortSet(9,0) 'Turn phone
off.

TimelsBetween() returns TRUE if the CR1000 real-time clock falls within the
specified range; otherwise, the function returns FALSE. Like
TimelntoInterval(), TimelsBetween() is often embedded in an If/Then logic
statement, as shown in the following code snip.

If TimeIsBetween(0,10,60,Min) Then
SW12(1) 'Turn phone on.

Else
SW12(0) 'Turn phone off.

EndIf

TimelsBetween() returns TRUE for the entire interval specified whereas
TimelntolInterval() returns TRUE only for the one scan that matches the interval
specified.

For example, using the preceding code snips, if the CRBasic program is sent to
the datalogger at one minute past the hour, the TimeIsBetween() instruction will
evaluate as TRUE on its first scan. The TimeIntoInterval() instruction will
evaluate as TRUE at the top of the next hour (59 minutes later).

e Note START is inclusive and STOP is exclusive in the range of time
that will return a TRUE result. For example:
TimelsBetween(0,10,60,Min) will return TRUE at 8:00:00.00 and
FALSE at 08:10:00.00.

8.3.1 Terminals Configured for Control

C terminals can be configured as output ports to set low (0 Vdc, turn off) or high
(5 Vdc, turn on) using the PortSet() or WritelO() instructions. Ports C4, CS,
and C7 can be configured for pulse width modulation with maximum periods of
36.45,9.1s,and 2.27 s, respectively. A terminal configured for digital I/O is
normally used to operate an external relay-driver circuit because the port itself has
limited drive capacity.Current sourcing for drive capcitiy is determined by the 5
Vdc supply and a 330 Q output resistance. It is expressed as:

Vo=49V-(330Q-1,)

Section 8. Operation

Where V, is the drive limit, and I, is the current required by the external device.
Figure Current Sourcing from C Terminals Configured for Control (. 415) plots the
relationship.

FIGURE 97: Current sourcing from C terminals configured for control

50 \
45 ‘\
40 \\\
Ei 35 ‘\\\
v
o N
g > 25 ‘\
5, AN
2 ™~
15
o N
10 \\\
05 ‘\
0.0 AN

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
IO
Output Current (mA)

8.4 Measurement and Control Peripherals — Details

Related Topics:

* Measurement and Control Peripherals — Overview (p. 84)
» Measurement and Control Peripherals — Details (p. 415)

* Measurement and Control Peripherals — Lists (p. 590)

Peripheral devices expand the CR1000 input and output capacities. Some
peripherals are designed as SDM (synchronous devices for measurement) or
CDM (CPI devices for measurement). SDM and CDM devices are intelligent
peripherals that receive instruction from, and send data to, the CR1000 using
proprietary communication protocols through SDM terminals and CPI interfaces.
The following sections discuss peripherals according to measurement types.

8.4.1 Analog Input Modules

Read More For more information see appendix Analog Input Modules —
List (p. 590).

Mechanical and solid-state multiplexers are available to expand the number of
analog sensor inputs. Multiplexers are designed for single-ended, differential,
bridge-resistance, or thermocouple inputs.

415

416

Section 8. Operation

8.4.2 Analog Output Modules

Read More For more information see appendix Continuous Analog
Output (CAO) Modules — List (p. 594).

The CR1000 can scale measured or processed values and transfer these values in
digital form to an analog output device. The analog output device performs a
digital-to-analog conversion to output an analog voltage or current. The output
level is maintained until updated by the CR1000.

8.4.3 PLC Control Modules — Overview

Related Topics:

* PLC Control — Overview (p. 89)

* PLC Control Modules — Overview (p. 416)

» PLC Control Modules — Lists (p. 593)

+ Switched Voltage Output — Specifications
» Switched Voltage Output — Overview (p. 60)
» Switched Voltage Output — Details (p. 410)

» Current Source and Sink Limits (p. 411)

Controlling power to an external device is a common function of the CR1000.
On-board control terminals and peripheral devices are available for binary (on /
off) or analog (variable) control. A switched, 12 Vdc terminal (SW12V) is also
available. See Switched-Unregulated (Nominal 12 Volt) . 412).

8.4.3.1 Relays and Relay Drivers

Read More See Relay Drivers Modules — List (p. 594).

Several relay drivers are manufactured by Campbell Scientific. Compatible,
inexpensive, and reliable single-channel relay drivers for a wide range of loads are

also available from electronic vendors such as Crydom, Newark, and Mouser (p.
551).

8.4.3.2 Component-Built Relays

Figure Relay Driver Circuit with Relay (. 417) shows a typical relay driver circuit
in conjunction with a coil driven relay, which may be used to switch external
power to a device. In this example, when the terminal configured for control is set
high, 12 Vdc from the datalogger passes through the relay coil, closing the relay
which completes the power circuit and turns on the fan.

In other applications, it may be desirable to simply switch power to a device
without going through a relay. Figure Power Switching without Relay (p. 417)
illustrates this. If the device to be powered draws in excess of 75 mA at room
temperature (limit of the 2N2907A medium power transistor), the use of a relay is
required.

Section 8. Operation

FIGURE 98: Relay Driver Circuit with Relay

N4148 /N

Datalogger
Terminals

voOL5kQ
C 2N2222A
1
— O

Supply: 40 Vdc maximum

% .

12 Vde —
battery —

Maximum current
to coil:

75mA @ 25 °C
40 mA @-50 °C

FIGURE 99: Power Switching without Relay

10kQ

2kQ

Datalogger
Terminals

2N2222A

@ Supply: 40 Vdc Maximum

2N2907A

Peripheral Maximum current
to peripheral is:

to be 75 mA @ 25°C

powered 40 mA @-50 °C.

-1

8.4.4 Pulse Input Modules

Read More For more information see Pulse Input Modules — List (p. 590).

Pulse input expansion modules are available for switch-closure, state, pulse count
and frequency measurements, and interval timing.

8.4.41 Low-Level Ac Input Modules — Overview

Related Topics:

* Pulse Input Modules — List (p. 590)

Low-Level Ac Input Modules — Overview (p. 417)
Low-Level Ac Measurements — Details (p. 394

417

Section 8. Operation

Low-level ac input modules increase the number of low-level ac signals a
CR1000 can monitor by converting low-level ac to high-frequency pulse.

8.4.5 Serial /0 Modules — Details

Read More For more information see appendix Serial I/O Modules List (p.
591).

Capturing input from intelligent serial-output devices can be challenging. Several
Campbell Scientific serial I/O modules are designed to facilitate reading and
parsing serial data.

8.4.6 Terminal-Input Modules

Read More See Passive Signal Conditioners — List (p. 591).

Terminal Input Modules (TIMs) are devices that provide simple
measurement-support circuits in a convenient package. TIMs include voltage
dividers for cutting the output voltage of sensors to voltage levels compatible with
the CR1000, modules for completion of resistive bridges, and shunt modules for
measurement of analog-current sensors.

8.4.7 Vibrating Wire Modules

Read More For complete information, see Vibrating Wire Modules — List
(p. 591).

Vibrating wire modules interface vibrating wire transducers to the CR1000.

8.5 Datalogger Support Software — Details

Related Topics:

» Datalogger Support Software — Quickstart (p. 39)
» Datalogger Support Software — Overview (p. 89)
 Datalogger Support Software — Details (p. 418

» Datalogger Support Software — Lists (p. 600)

Datalogger support software facilitates program generation, editing, data retrieval,
and real-time data monitoring.

e PC200W Starter Software is available at no charge at
www.campbellsci.com/downloads. 1t supports a transparent RS-232
connection between PC and CR1000, and includes Short Cut for creating
CR1000 programs. Tools for setting the datalogger clock, sending
programs, monitoring sensors, and on-site viewing and collection of data
are also included.

e LoggerLink Mobile Apps are simple yet powerful tools that allow an iOS
or Android device to communicate with [P-enabled CR1000s. The apps

418

Section 8. Operation

support field maintenance tasks such as viewing and collecting data,
setting the clock, and downloading programs.

e PC400 Datalogger Support Software supports a variety of comms
options, manual data collection, and data monitoring displays. Short Cut
and CRBasic Editor are included for creating CR1000 programs. PC400
does not support complex communication options, such as phone-to-RF,
PakBus® routing, or scheduled data collection.

e LoggerNet Datalogger Support Software supports combined comms
options, customized data-monitoring displays, and scheduled data
collection. It includes Short Cut and CRBasic Editor for creating
CR1000 programs. It also includes tools for configuring,
trouble-shooting, and managing datalogger networks. LoggerNet Admin
and LoggerNet Remote are available for more demanding applications.

e LNLINUX Linux-based LoggerNet Server with LoggerNet Remote
provides a solution for those who want to run the LoggerNet server in a
Linux environment. The package includes a Linux version of the
LoggerNet server and a Windows version of LoggerNet Remote. The
Windows-based client applications in LoggerNet Remote are run on a
separate computer, and are used to manage the LoggerNet Linux server.

o VISUALWEATHER Weather Station Software supports Campbell
Scientific weather stations. Version 3.0 or higher supports custom
weather stations or the ET107, ET106, and MetDatal pre-configured
weather stations. The software allows you to initialize the setup,
interrogate the station, display data, and generate reports from one or
more weather stations.

Note More information about software available from Campbell Scientific
can be found at www.campbellsci.com.

8.6 Program and OS File Compression Q and A
Q: What is Gzip?

A: Gzip is the GNU zip archive file format. This file format and the algorithms
used to create it are open source and free to use for any purpose. Files with the .gz
extension have been passed through these data compression algorithms to make
them smaller. For more information, go to www.gnu.org.

Q: Is there a difference between Gzip and zip?
A: While similar, Gzip and zip use different file compression formats and

algorithms. Only program files and OSs compressed with Gzip are compatible
with the CR1000.

Q: Why compress a program or operating system before sending it to a CR1000
datalogger?

419

Section 8. Operation

A: Compressing a file has the potential of significantly reducing its size. Actual
reduction depends primarily on the number and proximity of redundant blocks of
information in the file. A reduction in file size means fewer bytes are transferred
when sending a file to a datalogger. Compression can reduce transfer times
significantly over slow or high-latency links, and can reduce line charges when
using pay-by-the-byte data plans. Compression is of particular benefit when
transmitting programs or OSs over low-baud rate terrestrial radio, satellite, or
restricted cellular-data plans.

Q: Does my CR1000 support Gzip?

A: Version 25 of the standard CR1000 operating system supports receipt of Gzip
compressed program files and OSs.

Q: How do I Gzip a program or operating system?

A: Many utilities are available for the creation of a Gzip file. This document
specifically addresses the use of 7-Zip File Manager. 7-Zip is a free, open source,

software utility compatible with Windows®. Download and installation
Once 7-Zip is installed,

instructions are available at http://www.7-zip.org/.
creating a Gzip file is as four-step process:

a) Open 7-Zip.

b) Drag and drop the program or operating system you wish to compress onto the
open window.

¢) When prompted, set the archive format to “Gzip”.

® 9 EEICTT

Burn » A==

File Edit Tools

4 =

Add Extract Test

Favorites

W = X i

Copy Move Delete Info

View Help

Organize =

. ChCampbellscitLib\OperatingSystemns\,

* Name ¥

- Favorites

420

Bl Desktop
&4 Downloads
. Dropbox

=] Recent Places

4 Libraries
3 Documents
J“. Music
=/ Pictures

B videos

*& Homegroup

CR1000.5td.25.0bj

OBJ File

Size
1719932
1753976
1827 686
1792882

906 306
1750950
1326 476

837602

256

MName

|| CR1000.5td....
CR1000.5td

|| CRB00.5td.25.0hj
|| CR1000.5td.24.0bj
|| CR1000.5td.25.0bj
|| CR3000.5td.24.0bj
|| CR3000.5td.25.0bj
|| CR5000.5td.06.0bj
|| CRO000X.5td.06.0bj

| intermediate.chj

|| CR5000.5td....
|| CRB00.5td.2...
|| CRB000X.5td...
|| intermediate...

| readmetxt | readme.tit

< [.

Modified

2011-12-1910:56
2012-06-22 08:36
2011-12-19 08:57
2012-06-22 08:37
2011-12-1514:17
2012-06-22 08:35
2011-12-1514:17
2009-05-26 08:11
2012-03-0113:15

Created

2011-12-27 10:38
2012-07-15 22:49
2012-03-18 15:23
2012-07-15 22:49
2012-12-06 23:56
2012-07-15 22:48
2012-12-06 23:56
2012-12-06 23:56
2012-12-06 23:56

Accessed

2011-12-27 10:38
2012-07-15 22:49
2012-03-18 15:23
2012-07-15 22:49
2012-12-06 23:56
2012-07-15 22:48
2012-12-06 23:56
2012-12-06 23:56
2012-12-06 23:56

1 ohject(s) selected 906 306

2011-12-1514:17

Section 8. Operation

¢) When prompted, set the archive format to “Gzip”.

ovonens o -
o Archive i ’ &

Archive:
CR1000.5td.25.0bj gz - D
Archive format: [gzip -] Update mode:

?2_ [Add and replace files v]
Compression level:

Options

Compression method: wim Create SFX archive
Dictionary size: || Compress shared files
Word size: Encrypton
Solid Block size:
Number of CPU threads: /4
Memory usage for Compressing 3IMB
Memory usage for Decompressing: 2MB Show Password

Split to volumes, bytes:

Parameters:

oK] [Cancel] [Help

d) Select OK.

The resultant file names will be of the type “myProgram.crl.gz” and
“CR1000.Std.25.0bj.gz”. Note that the file names end with “.gz”. The ".gz”
extension must be preceded with the original file extension (.crl, .obj) as shown.

Q: How do I send a compressed file to the CR1000?

A: A Gzip compressed file can be sent to a CR1000 datalogger by clicking the
Send Program command in the datalogger support software p. 89. Compressed
programs can also be sent using HTTP PUT to the CR1000 web server. The
CR1000 will not automatically decompress and use compressed files sent with
File Control, FTP, or a low-level OS download; however, these files can be
manually decompressed by marking as Run Now using File Control,
FileManage(), and HTTP.

Note Compression has little effect on an encrypted program (see
FileEncrypt() in the CRBasic Editor Help), since the encryption process
does not produce a large number of repeatable byte patterns. Gzip has
little effect on files that already employ compression such as JPEG or
MPEG-4.

421

422

Section 8. Operation

TABLE 98: Typical Gzip File Compression Results
File Original Size Bytes | Compressed Size Bytes
Scyige?ﬁo operating 1,753,976 671,626
Small program 2,600 1,113
Large program 32,157 7,085

8.7 Security — Details

Related Topics:
» Security — Overview (p. 86)
» Security — Details (p. 422)

The CR1000 is supplied void of active security measures. By default, RS-232,
Telnet, FTP and HTTP services, all of which give high level access to CR1000
data and CRBasic programs, are enabled without password protection.

You may wish to secure your CR1000 from mistakes or tampering. The following
may be reasons to concern yourself with datalogger security:

e Collection of sensitive data

e Operation of critical systems

e Networks accessible by many individuals

Some options to secure your datalogger from mistakes or tampering include:

e Sending the latest operating system to the datalogger.

e Disabling unused services and securing those that are used. This includes
disabling HTTP, FTP, Telnet, and Ping network services (Device
Configuration Utility | Settings Editor | Network Services tab). These
services can be used to discover your datalogger on an IP network.

e Setting security codes (see section Pass-Code Lockout (p. 424)).

e Setting a PakBus/TCP password. The PakBus TCP password controls
access to PakBus communication over a TCP/IP link. PakBusTCP

passwords can be set in Device Configuration Utility.

e Disabling FTP or setting an FTP username and password in Device
Configuration Utility.

e Setting a PakBus encryption (AES-128) key in Device Configuration
Utility. This forces PakBus data to be encrypted during transmission.

e Disabling HTTP or creating a .csipasswd file to secure HTTP/HTTPS
(see section .csipasswd (p. 425) for more information).

Section 8. Operation

e Tracking Operating System, Run, and Program signatures.
e Encrypting program files if they contain sensitive information (see
CRBasic help FileEncrypt() instruction or use the CRBasic Editor File

menu, Save and Encrypt option).

e Hiding program files for extra protection (see CRBasic help
FileManage() instruction).

e Securing the physical datalogger and power supply under lock and key.

e Monitoring your datalogger for changes by tracking program and
operating system signatures, as well as CPU and USR file contents.

Warning All security features can be subverted through physical access
to the datalogger. If absolute security is a requirement, the physical
datalogger must be kept in a secure location.

8.7.1 \Vulnerabilities

While "security through obscurity" may have provided sufficient protection in the
past, Campbell Scientific dataloggers increasingly are deployed in sensitive
applications. Devising measures to counter malicious attacks, or innocent
tinkering, requires an understanding of where systems can be compromised and
how to counter the potential threat.

Note Older CR1000 operating systems are more vulnerable to attack
than recent updates. Updates can be obtained free of charge at
www.campbellsci.com.

The following bullet points outline vulnerabilities:
e LoggerNet

o All datalogger functions and data are easily accessed via RS-232
and Ethernet using Campbell Scientific datalogger support software.

e Telnet
o Watch IP traffic in detail. P traffic can reveal potentially sensitive
information such as FTP login usernames and passwords, and server

connection details including IP addresses and port numbers.

o Watch serial traffic with other dataloggers and devices. A Modbus
capable power meter is an example.

o View data in the Public and Status tables.
o View the datalogger program, which may contain sensitive

intellectual property, security codes, usernames, passwords,
connection information, and detailed or revealing code comments.

423

424

Section 8. Operation

e FTP

o Send and change datalogger programs.

o Send data that have been written to a file.
e HTTP

o Send datalogger programs.

o View table data.

o Get historical records or other files present on the datalogger drive
spaces.

o More access is given when a .csipasswd is in place, so ensure that
users with administrative rights have strong log-in credentials.

8.7.2 Pass-Code Lockout

Pass-code lockouts (historically known in Campbell Scientific dataloggers simply
as "security codes") are the oldest method of securing a datalogger. Pass-code
lockouts can effectively lock out innocent tinkering and discourage wannabe
hackers on all communication links. However, any serious hacker with physical
access to the datalogger or to the communication hardware can, with only
minimal trouble, overcome the five-digit pass-codes.

Up to three levels of lockout can be set. Valid pass codes are 1 through 65535 (0
confers no security).

Note Although a pass code can be set to a negative value, a positive
code must be entered to unlock the CR1000. That positive code will
equal 65536 + (negative security code). For example, a security code of
-1111 must be entered as 64425 to unlock the CR1000.

Methods of enabling pass-code lockout security include the following:

e Settings — Security(1) . 5735, Security(2) and Security(3) registers are
writable variables in the Status table wherein the pass codes for security
levels 1 through 3 are written, respectively.

e CRI1000KD Keyboard/Display settings

o Device Configuration Utility (DevConfig) — Security passwords 1
through 3 are set on the Deployment tab.

e SetSecurity() instruction — SetSecurity() is only executed at program
compile time. It may be placed between the BeginProg and Scan()
instructions.

Section 8. Operation

Note Deleting SetSecurity() from a CRBasic program is not equivalent
to SetSecurity(0,0,0). Settings persist when a new program is
downloaded that has no SetSecurity() instruction.

Level 1 must be set before Level 2. Level 2 must be set before Level 3. If a level
is set to 0, any level greater than it will be set to 0. For example, if level 2 is 0
then level 3 is automatically set to 0. Levels are unlocked in reverse order: level
3 before level 2, level 2 before level 1. When a level is unlocked, any level
greater than it will also be unlocked, so unlocking level 1 (entering the Level 1
security code) also unlocks levels 2 and 3.

Functions affected by each level of security are:

e Level 1 — Collecting data, setting the clock, and setting variables in the
Public table are unrestricted, requiring no security code. If Securityl
code is entered, read/write values in the Status table can be changed, and
the datalogger program can be changed or retrieved.

e Level 2 — Data collection is unrestricted, requiring no security code. If
the user enters the Security2 code, the datalogger clock can be changed
and variables in the Public table can be changed.

o Level 3 — When this level is set, all communication with the datalogger
is prohibited if no security code is entered. If Security3 code is entered,
data can be viewed and collected from the datalogger (except data
suppressed by the TableHide() instruction in the CRBasic program). If
Security2 code is entered, data can be collected, public variables can be
set, and the clock can be set. If Securityl code is entered, all functions
are unrestricted.

8.7.3 Passwords

Passwords are used to secure IP based communications. They are set in various
comms schemes with the .csipasswd file, CRBasic PakBus instructions, CRBasic
TCP/IP instructions, and in CR1000 settings.

8.7.3.1 .csipasswd

The .csipasswd file is a file created and edited through DevConfig . 107), and
which resides on the CPU: drive of the CR1000. It contains credentials
(usernames and passwords) required to access datalogger functions over IP
comms. See CRBasic Editor Help subject Web Service API for details
concerning the .csipasswd file.

8.7.3.2 PakBus Instructions

The following CRBasic PakBus instructions have provisions for password
protection:

e ModemCallBack()

425

426

Section 8. Operation

8.7.3.3

8.7.3.4

8.7.4

e SendVariable()

e SendGetVariables()
e SendFile()

e GetVariables()

e GetFile()

e GetDataRecord()

TCP/IP Instructions

The following CRBasic instructions that service CR1000 IP capabilities have
provisions for password protection:

e EMailRecv()
e EMailSend()

e FTPClient()

Settings — Passwords

Settings, which are accessible with DevConfig (p. 107), enable the entry of the
following passwords:

e PPP Password

e PakBus/TCP Password

e FTP Password

e TLS Password (Transport Layer Security (TLS) Enabled)

e TLS Private Key Password

e AES-128 Encrypted PakBus Communication Encryption (. 427) Key

See the section Status, Settings, and DTI (Registers (. 111)) for more information.

File Encryption

Encryption is available for CRBasic program files and provides a means of
securing proprietary code or making a program tamper resistant. .CR<X> files,
or files specified by the Include() instruction, can be encrypted. The CR1000
decrypts program files on the fly. While other file types can be encrypted, no
tool is provided for decryption.

Section 8. Operation

8.7.5

8.7.6

8.7.7

8.7.8

The CRBasic Editor encryption facility (Menus | File | Save and Encrypt)
creates an encrypted copy of the original file in PC memory. The encrypted file
is named after the original, but the name is appended with " _enc". The original
file remains intact. The FileEncrypt() instruction encrypts files already in
CR1000 memory. The encrypted file overwrites and takes the name of the
original. The Encryption() instruction encrypts the contents of a file with
AES128 encryption, and decrypts a file created with encryption provide the
correct encryption key is entered.

One use of file encryption may be to secure proprietary code but make it available
for copying.

Communication Encryption

PakBus is the CR1000 root communication protocol. By encrypting certain
portions of PakBus communications, a high level of security is achieved.

Hiding Files

The option to hide CRBasic program files provides a means, apart from or in
conjunction with file encryption, of securing proprietary code, preventing it from
being copied, or making it tamper resistant. .CR<X> files, or files specified by
the Include() instruction, can be hidden using the FileHide() instruction. The
CR1000 can locate and use hidden files on the fly, but a listing of the file or the
file name are not available for viewing. See File Management in CR1000
Memory . 442).

Signatures

Recording and monitoring system and program signatures are important
components of a security scheme. Read more about use of signatures in
Programming to Use Signatures (p. 174) and Signatures: Example Programs (p. 185).

Read Only Variables

The following example of variable declaration demonstrates how to display a
value in numeric display (Connect or RTMC) or on a CR1000KD but not allow
the person viewing it to make changes:

e Var can be viewed and changed

o Reg() and Coil() can only be viewed

e The CRBasic program can read from and write to all variables

PubTlic Var
Public Reg(4), Coil(4) as Boolean
ReadOnly Reg, Coil

427

428

Section 8. Operation

8.8 Memory — Details

Related Topics:

* Memory — Overview (p. 91)

* Memory — Details (p. 428)

» Data Storage Devices — List (p. 599)

» TABLE: Info Tables and Settings: Memory (p. 561)

8.8.1 Storage Media

CR1000 memory consists of four non-volatile storage media:
e Internal battery-backed SRAM
e Internal flash
e Internal serial flash
e External flash (optional flash USB: drive)

e External CompactFlash optional CF card and module (CRD: drive) .
599)

Table CR1000 Memory Allocation (p. 428) and table CR1000 SRAM Memory (p. 429,
http://www.) illustrate the structure of CR1000 memory around these media. The
CR1000 uses and maintains most memory features automatically. However,
users should periodically review areas of memory wherein data files, CRBasic
program files, and image files reside. See section File Management in CR1000
Memory (p. 442) for more information.

By default, final-storage memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The
DataTable() instruction, however, has an option to set a data table to Fill and

Stop.

TABLE 99: CR1000 Memory Allocation

Memory
Sector

Main
Battery-Backed SRAM1

Status.MemorySize (p. 571)
Status.MemoryFree (p. 571)

Operating System
Flash Memory?

Comments

e OS variables
e Sece following table CR1000 SRAM Memory (p. 429, http://www.) for detail.

e Operating system
e Serial number

e Board revision

e Boot code

e Erased when loading new OS. Boot code erased only if changed.

http://www./
http://www./

Section 8. Operation

TABLE 99: CR1000 Memory Allocation

Memory
Sector

Internal
Serial Flash3
Status. CPUDriveFree (p. 565)

External Flash
(Optional)

USB: drive

External
CompactFlash (p. 518
(Optional)

Comments

e Device settings — PakBus address and settings, station name. Rebuilt

when a setting changes.

CPU:drive — program files, field calibration files, other files not
frequently overwritten. When a program is compiled and run, it is copied
here automatically for loading on subsequent power-ups. Files accumulate
until deleted with File Control (. 525) or the FilesManage() instruction.
Use USR: drive to store other file types.

FAT32 file system
Limited write cycles (100,000)
Slow serial access

USB: drive (p. 5999— SC115: connects to CR1000 by CS I/O, connects
to PC by USB port. FAT32. See appendix External Memory — List (.
599). Holds program files. Holds a copy of requested final-memory table
data as files when TableFile() instruction is used. USB: data can be
retrieved from the storage device with Windows Explorer. USB: drive
can facilitate the use of Powerup.ini (p. 446).

CRD: drive (p. 5999— FAT32 recommended. Holds program files. Holds
a copy of final-storage table data as files when TableFile() instruction
with Option 64 (. 212) is used (replaces CardOut()). When data are
requested by a PC, data first are provided from SRAM. If the requested
records have been overwritten in SRAM, data are sent from CRD:.
Alternatively, CRD: data can be retrieved in a binary format using
datalogger support software File Control (. 442). Binary files are
converted using CardConvert software. 10% of card memory
(whichever is smaller) is reserved for program storage. Memory card
can facilitate the use of Powerup.ini (p. 446).

'See TABLE: CR1000 SRAM Memory (. 429, http://www.)

2 Flash is rated for > 1 million overwrites.

3 Serial flash is rated for 100,000 overwrites (50,000 overwrites on 128 kB units). CRBasic program
functions that overwrite memory should use the CRD: or USR: drives to minimize wear of the CPU: drive.

TABLE 100: CR1000 SRAM Memory

Use

Comments

Static Memory

Operational memory used by the operating system. Rebuilt at power-up,
program re-compile, and watchdog events.

429

http://www./

Section 8. Operation

TABLE 100: CR1000 SRAM Memory

Use

Operating Settings and
Properties

CRBasic Program
Operating Memory

Variables & Constants

Final-Storage Memory

Communication Memory 1

Communication Memory 2

USR: drive

<3.6 MB (4 MB Mem)
<1.5 MB (2 MB Mem)

Comments

"Keep" (p. 530 memory. Stores settings such as PakBus address, station
name, beacon intervals, neighbor lists, etc. Also stores dynamic properties
such as the routing table, communication timeouts, etc.

Stores the currently compiled and running user program. This sector is
rebuilt on power-up, recompile, and watchdog events.

Stores variables used by the CRBasic program. These values may persist
through power-up, recompile, and watchdog events if the
PreserveVariables instruction is in the running program.

Stores data. Fills memory remaining after all other demands are satisfied.
Configurable as ring or fill-and-stop memory. Compile error occurs if
insufficient memory is available for user-allocated data tables. Given
lowest priority in SRAM memory allocation.

Construction and temporary storage of PakBus packets.

Constructed Routing Table: list of known nodes and routes to nodes.
Routers use more space than leaf nodes because routes to neighbors must
be remembered. Increasing the PakBusNodes field in the Status table will
increase this allocation.

Optionally allocated. Holds image files. Holds a copy of final-storage
memory when TableFile() . 212 instruction used. Provides memory for
FileRead() and FileWrite() operations. Managed in File Control p. 442).
Status reported in Status table fields USRDriveSize (. 578 and
USRDriveFree . 578).

TABLE 101: CR1000 Memory Drives

Drive Recommended File Types
CPU:! crl, .CAL

USR:! crl, .CAL, images
USB: .DAT

Section 8. Operation

Principal use is to expand
final-storage memory (p. 526), but it is
also used to store .JPG, crl, and .DAT
files.

CRD:?

!The CPU: and USR: drives use the FAT32 file system. There is no limit,
beyond practicality and available memory, to the number of files that can be
stored. While a FAT file system is subject to fragmentation, performance
degradation is not likely to be noticed since the drive has a relatively small
amount of solid state RAM and so is accessed very quickly.

>The CRD: drive is a CompactFlash card attached to the CR1000 by use of a
CF card storage module (p. 599. Cards should be formatted as FAT32 for
optimal performance.

8.8.1.1 Memory Drives — On-Board

Data-storage drives are listed in table CR1000 Memory Drives (p. 430. Data-table
SRAM and the CPU: drive are automatically partitioned for use in the CR1000.
The USR: drive can be partitioned as needed. The USB: drive is automatically
partitioned when a Campbell Scientific mass-storage device (p. 599 is connected.
The CRD: drive is automatically partitioned when a memory card is installed.

8.8.1.1.1 Data Table SRAM

Primary storage for measurement data are those areas in SRAM allocated to data
tables as detailed in table CR1000 SRAM Memory (p. 429, hitp://www.).
Measurement data can be also be stored as discrete files on USR: or USB: by
using TableFile() instruction.

The CR1000 can be programmed to store each measurement or, more commonly,
to store processed values such as averages, maxima, minima, histograms, FFTs,
etc. Data are stored periodically or conditionally in data tables in SRAM as
directed by the CRBasic program (see Program Structure (p. 124)). The
DataTable() instruction allows the size of a data table to be programmed.
Discrete data files are normally created only on a PC when data are retrieved
using datalogger support software (p. 89.

Data are usually erased from this area when a program is sent to the CR1000.
However, when using support software File Control menu Send (. 525) command
or CRBasic Editor Compile, Save and Send (. 529 command, options are
available to preserve data when downloading programs.

8.8.1.1.2 CPU: Drive

CPU: is the default drive on which programs and calibration files are stored. It is
formatted as FAT32. Do not store data on CPU: or premature failure of memory
will probably result.

431

http://www./

432

Section 8. Operation

8.8.1.1.3 USR: Drive

SRAM can be partitioned to create a FAT32 USR: drive, analogous to partitioning
a second drive on a PC hard disk. Certain types of files are stored to USR: to
reserve limited CPU: memory for datalogger programs and calibration files.
Partitioning also helps prevent interference from data table SRAM. USR: is
configured using DevConfig settings or SetStatus() instruction in a CRBasic
program. Partition USR: drive to at least 11264 bytes in 512-byte increments. If
the value entered is not a multiple of 512 bytes, the size is rounded up. Maximum
size of USR: 2990000 bytes.

USR: is not affected by program recompilation or formatting of other drives. It
will only be reset if the USR: drive is formatted, a new operating system is
loaded, or the size of USR: is changed. USR: size is changed manually by
accessing it in the Status table or by loading a CRBasic program with a different
USR: drive size entered in a SetStatus() or SetSetting() instruction. See
CRBasic Program — Setup Tools . 112).

Measurement data can be stored on USR: as discrete files by using the
TableFile() instruction. Table TableFile() Instruction Data File Formats (p. 435)
describes available data-file formats.

Note Placing an optional USR: size setting in the CRBasic program
over-rides manual changes to USR: size. When USR: size is changed
manually, the CRBasic program restarts and the programmed size for
USR: takes immediate effect.

The USR: drive holds any file type within the constraints of the size of the drive
and the limitations on filenames. Files typically stored include image files from
cameras (see Cameras — List (p. 596)), certain configuration files, files written for
FTP retrieval, HTML files for viewing with web access, and files created with the
TableFile() instruction. Files on USR: can be collected using datalogger support
software (p. 89) Retrieve (p. 525) command, or automatically using the datalogger
support software Setup File Retrieval tab functions.

Monitor use of available USR: memory to ensure adequate space to store new
files. FileManage() command can be used in the CRBasic program to remove
files. Files also can be removed using datalogger support software Delete (p. 525
command.

Two Status table fields monitor use and size of the USR: drive. Bytes remaining
are indicated in field USRDriveFree. Total size is indicated in field
USRDriveSize. Memory allocated to USR: drive, less overhead for directory
use, is shown in datalogger support software File Control . 525 window.

8.8.1.1.4 USB: Drive

USB: drive uses Flash (. 526 memory on a Campbell Scientific mass storage
device. See Mass Storage Devices — List (p. 599. Its primary purpose is the
storage of ASCII data files. Measurement data can be stored on USB: as discrete
files by using the TableFile() instruction. See Table: TableFile() Instruction Data
File Formats (p. 435).

Section 8. Operation

Caution Only remove mass-storage devices when the LED is not
flashing or lit.

Do the following when using Campbell Scientific mass-storage devices:
e Format as FAT32
e Connect to the CR1000 CS I/0 port

e Remove only when inactive or data corruption may result

8.8.1.2 Memory Card (CRD: Drive)

Related Topics:

* Memory Card (CRD: Drive) — Overview (p. 78)

* Memory Card (CRD: Drive) — Details (p. 433)

* Memory Cards and Record Numbers (p. 439

» Data Output: Writing High-Frequency Data to Memory Cards (p. 211)
» File System Errors (p. 451)

» Data Storage Devices — List (p. 599)

» Data File Format Examples (p. 437)

» Data Storage Drives Table (p. 430)

The CRD: drive uses CompactFlash (CF) card memory cards exclusively. Its
primary purpose is the storage of data files in a compact binary format. The
CR1000 requires addition of a peripheral card slot. See appendix Data Storage
Devices — List (p. 599. Purchasing industrial grade memory cards from Campbell
Scientific is recommended. Use of consumer grade cards substantially increases
the risk of data loss.

Caution Use care when inserting or removing memory cards. Alway
turn off CR1000 power before installing or removing card modules.
Removing a card from the module while it is being written to can cause
data corruption or damage the card. Before removing the card, press the
eject button and wait for the LED to indicate that the card is disabled. You
then have 15 seconds to pull the card before normal operations resume.
To prevent losing data, collect data from the memory card before sending
a program to the datalogger. When a program is sent to the datalogger
all data on the memory card may be erased.

Campbell Scientific CF card modules connect to the CR1000 peripheral port.
Each has a slot for Type I or Type II CF cards .A maximum of 30 data tables can
be created on a memory card.

Note CardConvert software, included with mid- and top-level datalogger
support software (p. 600), converts binary card data to the standard
Campbell Scientific data format.

When a data table is sent to a memory card, a data table of the same name in
SRAM is used as a buffer for transferring data to the card. When the card is

433

434

Section 8. Operation

present, the Status table will show the size of the table on the card. If the card is
removed, the size of the table in SRAM is shown.

When a new program is compiled that sends data to the memory card, the CR1000
checks if a card is present and if the card has adequate space for the data tables. If
no card is present, or if space is inadequate, the CR1000 will warn that the card is

not being used. However, the CRBasic program runs anyway and data are stored
to SRAM. When a card is inserted later, data accumulated in the SRAM table are
copied to the card.

Formatting Memory Cards

The CR1000 accepts memory cards formatted as FAT16 or FAT32; however,
FAT32 is recommended. Otherwise, some functionality, such as the ability to
manage large numbers of files (>254) is lost. Older CR1000 operating systems
formatted cards as FAT16 or FAT32. Newer operating systems always format
cards as FAT32.

Because of the way the FAT32 card format works, you can avoid long CR1000
compile times with a freshly formatted card by first formatting the new card on a
PC, then copy a small file to the card from the PC, and then delete the file with
the PC. When the small file is copied to the card, the PC updates a sector on the
card that which allows the CR1000 program to compile faster. This only needs to
be done once when the card is formatted. If you have the CR1000 update the card
sector, the first CR1000 program compile with the card can take as long as 30
minutes. After that, compile times will be normal.

Section 8. Operation

TABLE 102: Memory Card States

CardStatus CardBytesFree | CompileResults LED Status
Card OK >0 Formatted card inserted, powered up.
>0 Sl s e A0S Card still inserted, but removal button has been
pressed.
1 CFM100/NL115 removed while logger is
running (do not do this).
~0 Program contains CardOut() or TableFile()
with Option 64. Card inserted before power up.
No Card Present -1 Powered up, no card present.
-1 Card ejected / physically removed
-1 Logger started without CFM100 / NL115.
e No Card
Present S/I(Z)rgglae c;ﬁiash Program contains CardOut() or TableFile()
-1 with Option 64. CFM100/NL115 not attached
e Card Not detected: CardOut
. at power up.
Being Used not used.
. Program contains CardOut() or TableFile()
1 Sollil o with Option 64. Card not present at power up.
Program contains CardOut() or TableFile()
Tnitializing Table Dim / fast flashing with thton 64. Card not present at power up.
. Card inserted after power up. If all goes well,
Files! orange

CardStatus will change to Card OK and
CardBytesFree (. 564 will be >0.

8.8.2 Data File Formats

Data file format options are available with the TableFile() instruction.
Time-series data have an option to include header, time stamp and record number.
See the table TableFile() Instruction Data File Formats . 435. For a format to be
compatible with datalogger support software (p. 89) graphing and reporting tools,
header, time stamps, and record numbers are usually required. Fully compatible
formats are indicated with an asterisk. A more detailed discussion of data-file
formats is available in the Campbell Scientific publication LoggerNet Instruction
Manual, which is available at www.campbellsci.com.

435

Section 8. Operation

TABLE 103: TableFile() Instruction Data File Formats

Elements Included
TableFile() Base
Z?g:ﬂ Fg,’: at Heade(Time Record
Information Stamp Number
0' TOBI v v v
1 TOBI1 v v
2 TOBI1 v v
3 TOBI1 v
4 TOBI1 v v
5 TOBI1 v
6 TOBI1 v
7 TOBI1
8! TOAS v v v
9 TOAS v v
10 TOAS v v
11 TOAS v
12 TOAS v v
13 TOAS v
14 TOAS v
15 TOAS
16' CSIXML v v v
17 CSIXML v v
18 CSIXML v v
19 CSIXML v
32! CSLJSON v v v
33 CSIJSON v v
34 CSIJSON v v
35 CSIJSON v
64> TOB3

"Formats compatible with datalogger support software (p. 89 data-viewing and
graphing utilities

2See Writing High-Frequency Data to Memory Cards . 211) for more
information on using option 64.

436

Section 8. Operation

Data File Format Examples
TOB1

TOBI files may contain an ASCII header and binary data. The last line in
the example contains cryptic text which represents binary data.

Example:

"TOB1","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","61449","Test"
"SECONDS", "NANOSECONDS", "RECORD", "battfivoltfiMin", "PTemp"
"SECONDS", "NANOSECONDS™, "RN","",""

wa e g g

"ULONG", "ULONG", "ULONG","FP2","FP2"

}Yp' E1HEYp' E1H>Yp' E1H3Yp' E1H'Yp' E1H
TOA5

TOAS files contain ASCII . 516) header and comma-separated data.

Example:

"TOA5","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","26243","Test"
"TIMESTAMP","RECORD", "battfivoltfiMin","PTemp"

"TSY,URNT, T,

Tt "Min", " Smp™

"2010-12-20 11:31:30",7,13.29,20.77
"2010-12-20 11:31:45",8,13.26,20.77
"2010-12-20 11:32:00",9,13.29,20.8

CSIXML
CSIXML files contain header information and data in an XML . 549) format.

Example:

<?xml version="1.0" standalone="yes"?>
<csixml version="1.0">
<head>
<environment>
<station-name>11467</station-name>
<tabTle-name>Test</table-name>
<mode1>CR1000</mode1>
<serial-no>11467</serial-no>
<os-version>CR1000.Std.20</os-version>
<dld-name>CPU:file format.CR1l</d1d-name>
</environment>
<fields>
<field name="battfivoltfiMin" type="xsd:float" process="Min"/>
<field name="PTemp" type="xsd:float" process="Smp"/>
</fields>
</head>
<data>
<r time="2010-12-20T11:37:45" no="10"><v1>13.29</v1><v2>21.04</v2></r>
<r time="2010-12-20T11:38:00" no="11"><v1>13.29</v1><v2>21.04</v2></r>
<r time="2010-12-20T11:38:15" no="12"><v1>13.29</v1><v2>21.04</v2></r>
</data>
</csixml>

437

Section 8. Operation

CSIJSON
CSIJSON files contain header information and data in a JSON . 530) format.
Example:
"signature": 38611,"environment": {"stationfiname": "11467","tablefiname": "Test","model":
"CR1000","serialfino": "11467",
"osfiversion": "CR1000.Std.21.03","progfiname": "CPU:file format.CR1"},"fields": [{"name":
"battfivoltfiMin","type": "xsd:float",
"process": "Min"},{"name": "PTemp","type": 'xsd:float","process": "Smp"}]1},
"data": [{"time": "2011-01-06T15:04:15","no": 0,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:04:30","no": 1,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:04:45","no": 2,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:05:00","no": 3,"vals": [13.28,21.29]}1}

Data File Format Elements
Header

File headers provide metadata that describe the data in the file. A TOAS
header contains the metadata described below. Other data formats contain
similar information unless a non-header format option is selected in the
TableFile() instruction in the CR1000 CRBasic program.

Line 1 — Data Origins

Includes the following metadata series: file type, station name, CR1000
model name, CR1000 serial number, OS version, CRBasic program name,
program signature, data-table name.

Line 2 — Data Field Names

Lists the name of individual data fields. If the field is an element of an array,
the name will be followed by a comma-separated list of subscripts within
parentheses that identifies the array index. For example, a variable named
“values” that is declared as a two-by-two array, i.e.,

Public Values(2,2)
will be represented by four field names: “values(1,1)”, “values(1,2)”,
“values(2,1)”, and “values(2,2)”. Scalar (non-array) variables will not have
subscripts.
Line 3 — Data Units
Includes the units associated with each field in the record. If no units are

programmed in the CR1000 CRBasic program, an empty string is entered for
that field.

438

Section 8. Operation

Line 4 — Data-Processing Descriptors

Entries describe what type of processing was performed in the CR1000 to
produce corresponding data, e.g., Smp indicates samples, Min indicates
minima. If there is no recognized processing for a field, it is assigned an
empty string. There will be one descriptor for each field name given on
Header Line 2.

Record Element 1 — Timestamp

Data without timestamps are usually meaningless. Nevertheless, the
TableFile() instruction optionally includes timestamps in some formats.

Record Element 2 — Record Number

Record numbers are optionally provided in some formats as a means to
ensure data integrity and provide an up-count data field for graphing
operations. The maximum record number is &hffffffff (a 32-bit number),
then the record number sequence restarts at zero. The CR1000 reports back
to the datalogger support software 31 bits, or a maximum of &h7{ffffff, then
it restarts at 0. For example, if the record number increments once a second,
restart at zero will occur about once every 68 years (yes, years).

8.8.3 Memory Cards and Record Numbers

Related Topics:

Memory Card (CRD: Drive) — Overview (p. 78)

Memory Card (CRD: Drive) — Details (p. 433)

Memory Cards and Record Numbers (p. 439

Data Output: Writing High-Frequency Data to Memory Cards (p. 211)
File System Errors (p. 451)

Data Storage Devices — List (p. 599)

Data File Format Examples (p. 437)

Data Storage Drives Table (p. 430)

The number of records in a data table when CardOut() or TableFile() with
Option 64 is used in a data-table declaration is governed by these rules:

1.

Memory cards (CRD: drive) and internal memory (CPU) keep copies of data
tables in binary TOB3 format. Collectible numbers of records for both CRD:
and CPU are reported in DataRecordSize entries in the Status table.

In the table definitions advertised to datalogger support software (p. 89), the
CR1000 advertises the greater of the number of records recorded in the Status
table, if the tables are not fill-and-stop.

If either data area is flagged for fill-and-stop, then whichever area stops first
causes all final-data storage to stop, even if there is more space allocated in the
non-stopped area, and so limiting the number of records to the minimum of the
two areas if both are set for fill-and-stop.

When CardOut() or TableFile() with Option 64 is present, whether or not a
card is installed, the CPU data-table space is allocated a minimum of about 5

439

Section 8. Operation

KB so that there is at least a minimum buffer space for storing the data to
CRD: (which occurs in the background when the CR1000 has a chance to
copy data onto the card). So, for example, a data table consisting of one
four-byte sample, not interval driven, 20 bytes per record, including the 16
byte TOB3 header/footer, 258 records are allocated for the internal memory
for any program that specifies less than 258 records (again only in the case
that CardOut() or TableFile() with Option 64 is present). Programs that
specify more than 258 records report what the user specified with no
minimum.

5. When CardOut() or TableFile() with Option 64 is used but the card is not
present, zero bytes are reported in the Status table.

6. In both the internal memory and memory card data-table spaces, about 2 KB
of extra space is allocated (about 100 extra records in the above example) so
that for the ring memory the possibility is minimized that new data will
overwrite the oldest data when datalogger support software tries to collect the
oldest data at the same time. These extra records are not reported in the
Status table and are not reported to the datalogger support software and
therefore cannot be collected.

7. If the CardOut() or TableFile() with Option 64 instruction is set for
fill-and-stop, all the space reserved for records on the card is recorded before
the writing of final-data to memory stops, including the extra 2 kB allocated to
alleviate the conflict of storing the newest data while reading the oldest when
the area is not fill-and-stop, or is ringing around. Therefore, if the CPU does
not stop earlier, or is ring and not fill-and-stop, then more records will be
stored on the card than originally allocated, i.e., about 2 KB worth of records,
assuming no lapses. At the point the writing of final-data stops, the CR1000
recalculates the number of records, displays them in the Status table, and
advertises a new table definition to the datalogger support software. Further,
if the table is storing relatively fast, there might be some additional records
already stored in the CPU buffer before final-data storage stops altogether,
resulting in a few more records than advertised able to be collected. For
example — on a CR1000 storing a four-byte value at a 10 ms rate, the CPU
not set to fill-and-stop, CRD: set to fill-and-stop after 500 records — after
final-data storage stopped, CRD: had 603 records advertised in the Status
table (an extra 103 due to the extra 2 KB allocated for ring buffering), but 608
records could be collected since it took 50 ms, or 5 records, to stop the CPU
from storing its 5 records beyond when the card was stopped.

8. Note that only the CRD: drive will keep storing until all its records are filled;
the CPU: drive will stop when the programmed number of records are stored.

9. Note that the O command in the terminal mode helps to visualize more

precisely what CPU: drive and the CRD: drive are doing, actual size allocated,
where they are at the present, etc.

8.8.4 Resetting the CR1000

A reset is referred to as a "memory reset." Be sure to backup the current CR1000
configuration before a reset in case you need to revert to the old settings.

440

Section 8. Operation

The following features are available for complete or selective reset of CR1000
memory:

e Full memory reset
e Program send reset
e Manual data-table reset

e Formatting memory drives

8.8.4.1 Full Memory Reset

Full memory reset occurs when an operating system is sent to the CR1000 using
DevConfig or when entering 98765 in the Status table field FullMemReset (. 567).
A full memory reset does the following:

e C(Clears and formats CPU: drive (all program files erased)
e C(Clears SRAM data tables

e C(Clears Status-table elements

e Restores settings to default

e [Initializes system variables

e C(Clears communication memory

Full memory reset does not affect the CRD: drive directly. Subsequent user
program uploads, however, can erase CRD:.

Operating systems can also be sent using the program Send feature in datalogger
support software . 89.. A full reset does not occur in this case. Beginning with
CR1000 operating system v.16, settings and fields in the Status table are
preserved when sending a subsequent operating system by this method; data
tables are erased. Rely on this feature only with an abundance of caution when
sending an OS to CR1000s in remote, expensive to get to, or difficult-to-access
locations.

8.8.4.2 Program Send Reset

Final-storage (p. 526) data are erased when user programs are uploaded, unless
preserve / erase data options are used. Preserve / erase data options are presented
when sending programs using File Control Send ¢. 525 command and CRBasic
Editor Compile, Save and Send (. 520. See Preserving Data at Program Send (p.
175) for a more-detailed discussion of preserve / erase data at program send.

441

442

Section 8. Operation

8.8.4.3 Manual Data-Table Reset

Data-table memory is selectively reset from

e Support software Station Status (. 543 command

e CRI1000KD Keyboard/Display: Data | Reset Data Tables

8.8.4.4 Formatting Drives

CPU:, USR:, USB:, and CRD: drives can be formatted individually. Formatting
a drive erases all files on that drive. If the currently running user program is
found on the drive to be formatted, the program will cease running and any
SRAM data associated with the program are erased. Drive formatting is
performed through datalogger support software Format (. 525) command.

8.8.5 File Management in CR1000 Memory

As summarized in table File Control Functions (p. 442), files in CR1000 memory
(program, data, CAL, image) can be managed or controlled with datalogger
support software (p. 89, the CR1000KD keyboard/display (see Keyboard Display
— Details (p. 469), Web API (p. 462, p. 462), or CoraScript . 519. Use of CoraScript is
described in the LoggerNet software manual, which is available at
www.campbellsci.com. More information on file attributes that enhance
datalogger security, see the Security — Overview (p. 86) section.

TABLE 104: File Control Functions

File Control Functions

Accessed Through

Sending programs to the CR1000

Program Send', File Control Send”, DevConfig®,
CR1000KD keyboard/display, or powerup.ini with a
Campbell Scientific mass storage device or memory
card®®, web API . 46 HTTPPut (Sending a File to a
Datalogger)

Setting program file attributes. See File Attributes (p. 444)

File Control?; power-up with Campbell Scientific mass
storage device or memory card’, FileManage()
instruction®, web API FileControl

Sending an OS to the CR1000. Reset CR1000 settings.

DevConfig® Send OS tab; DevConfig® File Control tab;
Campbell Scientific mass storage device or memory
card’

Sending an OS to the CR1000. Preserve CR1000
settings.

Send'; DevConfig® File Control tab; power-up with
Campbell Scientific mass storage device or memory
card with default.crl file’, web AP HTTPPut
(Sending a File to a Datalogger)

Formatting CR1000 memory drives

File Control®, power-up with Campbell Scientific mass
storage device or memory card’, web API FileControl

Section 8. Operation

TABLE 104: File Control Functions

File Control Functions

Accessed Through

Retrieving programs from the CR1000

Retrieve’, File Control®, keyboard with Campbell

Scientific mass storage device or memory card*, web
API NewestFile

Prescribes the disposition (preserve or delete) of old
data files on Campbell Scientific mass storage device or
memory card

File Control®, power-up with Campbell Scientific mass
storage device or memory card’, web API (. 462)
FileControl

Deleting files from memory drives

File Control®, power-up with Campbell Scientific mass
storage device or memory card’, web API FileControl

Stopping program execution

File Control?>, web API FileControl

Renaming a file

FileRename()*

Time-stamping a file

FileTime()°

List files

File Control’, FileList()®, web API ListFiles

Create a data file from a data table

TableFile()’, Keyboard/display: Data | Final Storage
Data | Copy Data To CRD:?

CR1000KD Keyboard/Display, LoggerNet |

JPEG files manager PakBusGraph, web API NewestFile
Hiding files Web API FileControl
Encrypting files Web API FileControl

Editing programs

CR1000KD Keyboard/Display

Abort program on power-up

Hold DEL down on datalogger keypad

! Datalogger support software (p. 39 Program Send (. 537 command

2 Datalogger support software File Control (. 525) utility
3 Device Configuration Utility (DevConfig) (. 107) software

Manual with Campbell Scientific mass storage device or memory card. See Data Storage (. 431)

5 Automatic with Campbell Scientific mass storage device or memory card and Powerup.ini. See Power-up (p. 446)
® CRBasic instructions (commands). See data table declarations, File Management (p. 442, and CRBasic Editor
Help

"Datalogger support software Retrieve (. 525 command

8 Not intended to copy tables already written to the card. Allow the copy of all other tables to either SC115 or
card. A simple data copy, no format choice, number or records choice etc. Format will be TOAS with _toa5
appended to table name upon successful transfer. You can copy individual files or select the All Tables option
(again, this is all tables not already written to the card, so no CardQOut() tables or tables that have already been
written via TableFile()). Keep in mind toa5 can take a bit to transfer if there is a large amount of data. It is
important not to remove the card or the SC115 until the red LED that indicates file writing has stopped flashing.
Once the LED has stopped flashing, you can use File Control or remove the card/SC115 to look for the
appropriate files with _toa5.

443

Section 8. Operation

8.8.5.1 File Attributes

A feature of program files is the file attribute. Table CR1000 File Attributes (p. 444)
lists available file attributes, their functions, and when attributes are typically
used. For example, a program file sent with the support software Program Send
(- 537 command, runs a) immediately ("run now"), and b) when power is cycled
on the CR1000 ("run on power-up'). This functionality is invoked because
Program Send sets two CR1000 file attributes on the program file, i.e., Run Now
and Run on Power-up. When together, Run Now and Run on Power-up are
tagged as Run Always.

Note Activation of the run-on-power-up file can be prevented by holding
down the Del key on the CR1000KD Keyboard/Display while the CR1000

is powering up.

TABLE 105: CR1000 File Attributes

Attribute

Function

Program Send Option
that Sets the Attribute

Run Always
(run on
power-up + run
Nnow)

Runs now and
on power-up.

a) Send (. 525 !

b) File Control® with Run Now and Run
on Power-up selected.

¢) Campbell Scientific mass storage
device or memory card power-up® using
powerup.ini commands 1 and 13 (see table
Powerup.ini Commands (p. 448)).

Run on
Power-up

Runs only on
power-up

a) File Control’ with Run on Power-up
selected.

b) Campbell Scientific mass storage
device or memory card power-up® using
powerup.ini command 2 (see table
Powerup.ini Commands (p. 448)).

Run Now

Runs only
when file sent
to CR1000

a) File Control® with Run Now checked.
b) Campbell Scientific mass storage
device or memory card power-up® using
powerup.ini commands 6 & 14 (see table
Powerup.ini Commands (p. 448)). However,
if the external-storage device remains
connected, the program loads again from
the external-storage device.

ISupport software program Send (. 525) command. See software Help.

2Support software File Control (. 525. See software Help & Preserving Data at
Program Send . 175).
3 Automatic on power-up of CR1000 with Campbell Scientific mass storage
device or memory card and Powerup.ini. See Power-up (p. 446).

Section 8. Operation

8.8.5.2 Files Manager

FilesManager

name-prefix
number_files

pakbus-address := number. ; 0 < number < 4095
:= string.

:= { "(" pakbus-address name-prefix number-files ™" }.

:= number. ; 0 <= number < 10000000

This setting specifies the numbers of files of a designated type that are saved
when received from a specified node. There can be up to four such settings. The
files are renamed by using the specified file name optionally altered by a serial
number inserted before the file type. This serial number is used by the datalogger
to know which file to delete after the serial number exceeds the specified number
of files to retain. If the number of files is 0, the serial number is not inserted. A
special node PakBus address of 3210 can be used if the files are sent with FTP
protocol, or 3211 if the files are written with CRBasic.

Note This setting will operate only on a file whose name is not a null
string.

Example:

(129,CPU:NorthWest.JPG,2)
(130,CRD:SouthEast.JPG,20)
(130,CPU:Message.TXT,0)

In the example above, *.JPG files from node 129 are named
CPU:NorthWestnnn.JPG and two files are retained , and *.JPG files from node
130 are named CRD:SouthEastnnn.JPG, while 20 files are retained. The nnn
serial number starts at 1 and will advance beyond nine digits. In this example, all
* TXT files from node 130 are stored with the name CPU:Message.Txt, with no
serial number inserted.

A second instance of a setting can be configured using the same node PakBus
address and same file type, in which case two files will be written according to
each of the two settings. For example,

(55,USR:photo.JPG,100)
(55:USR:NewestPhoto.JPG,0)

will store two files each time a JPG file is received from node 55. They will be
named USR:photonnn.JPG and USR:NewestPhoto.JPG. This feature is used
when a number of files are to be retained, but a copy of one file whose name
never changes is also needed. The second instance of the file can also be
serialized and used when a number of files are to be saved to different drives.

Entering 3212 as the PakBus address activates storing IP trace information to a
file. The "number of files" parameter specifies the size of the file. The file is a
ring file, so the newest tracing is kept. The boundary between newest and oldest
is found by looking at the time stamps of the tracing. Logged information may
be out of sequence.

445

446

Section 8. Operation

Example:
(3212, USR:IPTrace.txt, 5000)

This syntax will create a file on the USR: drive called IPTrace.txt that will grow
to approximately 5 KB in size, and then new data will begin overwriting old data.

8.8.5.3 Data Preservation

Associated with file attributes is the option to preserve data in CR1000 memory
when a program is sent. This option applies to final-storage data SRAM, memory
cards, and datalogger support software (p. 89) cache data (p. 521). Depending on the
application, retention of data files when a program is downloaded may be
desirable. When sending a program to the CR1000 with datalogger support
software Send command, data are always deleted before the program runs. When
the program is sent using support software File Control Send (. 525 command or
CRBasic Editor Compile, Save and Send (. 52090 command, options to preserve
(not erase) or not preserve (erase) data are presented. The logic in the following
example summarizes the disposition of CR1000 data depending on the data
preservation option selected.

if "Preserve data if no table changed"
keep CF data from overwritten program
if current program = overwritten program
keep CPU data
keep cache data
else
erase CPU data
erase cache data
end if
end if

if "erase CF data"
erase CF data from overwritten program
erase CPU data
erase cache data

end if

8.8.5.4 Powerup.ini File — Details

Uploading a CR1000 OS (. 539 file or user-program file in the field can be
challenging, particularly during weather extremes. Heat, cold, snow, rain,
altitude, blowing sand, and distance to hike influence how easily programming
with a laptop or palm PC may be. An alternative is to carry the file to the field
on a light-weight, external-memory device such as a USB: (. 599 or CRD: (p. 599
drive. Steps to download the new OS or CRBasic program from an
external-memory drive are:

1. Place a text file named powerup.ini, with appropriate commands entered in
the file, on the external-memory device along with the new OS or CRBasic
program file.

2. Connect the external device to the CR1000 and then cycle power to the
datalogger.

Section 8. Operation

This simple process results in the file uploading to the CR1000 with optional run
attributes, such as Run Now, Run on Power Up, or Run Always set for
individual files. Simply copying a file to a specified drive with no run attributes,
or to format a memory drive, is also possible. Command options for
powerup.ini options also allow final-storage memory management on memory
cards comparable to the datalogger support software (p. 89) File Control feature.

Options for powerup.ini also allow final-storage memory management
comparable File Control (. 525. Note that the CRD: drive has priority over the
USB: drive.

Caution Test the powerup.ini file and procedures in the lab before
going to the field. Always carry a laptop or mobile device (with datalogger
support software) into difficult- or expensive-to-access places as backup.

Powerup.ini commands include the following functions:

e Sending programs to the CR1000.

e Optionally setting run attributes of CR1000 program files.

e Sending an OS to the CR1000.

e Formatting memory drives.

e Deleting data files associated with the previously running program.
When power is connected to the CR1000, it searches for powerup.ini and
executes the command(s) prior to compiling a program. Powerup.ini performs
three operations:

1. Copies the program file to a memory drive

2. Optionally sets a file run attribute (Run Now, Run on Power Up, or Run
Always) for the program file.

3. Optionally deletes data files stored from the overwritten (just previous)
program.

4. Formats a specified drive.

Execution of powerup.ini takes precedence during CR1000 power-up. Although
powerup.ini sets file attributes for the uploaded programs, its presence on a drive
does not allow those file attributes to control the power-up process. To avoid

confusion, either remove the external drive on which powerup.ini resides or
delete the file after the power-up operation is complete.

8.8.5.4.1 Creating and Editing Powerup.ini

Powerup.ini is created with a text editor on a PC, then saved on a memory drive
of the CR1000. The file is saved to the memory drive, along with the operating

447

Section 8. Operation

448

Syntax

system or user program file, using the datalogger support software . 601) File
Control | Send (p. 525 command.

Note Some text editors (such as MicroSoft® WordPad®) will attach
header information to the powerup.ini file causing it to abort. Check the
text of a powerup.ini file in the CR1000 with the CR1000KD
Keyboard/Display to see what the CR1000 actually sees.

Comments can be added to the file by preceding them with a single-quote
character ('). All text after the comment mark on the same line is ignored.

Syntax for powerup.ini is:
Command, File,Device
where,

e Command is one of the numeric commands in TABLE: Powerup.ini
Script Commands and Application (p. 448).

e File is the accompanying operating system or user program file. File
name can be up to 22 characters long.

e Device is the CR1000 memory drive to which the accompanying
operating system or user program file is copied (usually CPU:). If left
blank or with an invalid option, default device will be CPU:. Use the
same drive designation as the transporting external device if the
preference is to not copy the file.

Section 8. Operation

TABLE 106: Powerup.ini Script Commands and Applications

Powerup.ini
Script Command

Description

Applications

11

Run always, preserve data

Copies a program file to a drive and
sets the run attribute to Run Always.
Data on a CF card from the
previously running program will be
preserved if table structures have not
changed. See Preserving Data at
Program Send (p. 175).

Run on power-up

Copies a program file to a drive and
sets the run attribute to Run Always
unless command 6 or 14 is used to
set a separate Run Now program.
See Preserving Data at Program
Send . 17).

Format

Formats a drive.

61

Run now, preserve data

Copies a program file to a drive and
sets the run attribute to Run Now.
Data on a CF card from the
previously running program will be
preserved if table structures have not
changed.

Copy support files

Copies support files, such as Include
(- 528) or program support files, to the
CPU: drive before copying the
program file with run attributes set
to Run always, erase data.

Load OS (File = .obj)

Loads a .obj file to the CPU: drive
and then loads the .obj file as the
new CR1000 operating system.

13

Run always, erase data

Copies a program to a drive and sets
the run attribute to Run Always.
Data on a CF card from the
previously running program will be
erased.

14

Run now, erase files

Copies a program to a drive and sets
the run attribute to Run Now. Data
on a CF card from the previously
running program will be erased.

! Use PreserveVariables() instruction in the CRBasic program in conjunction with powerup.ini script commands

1 and 6 to preserve data and variables.

449

Section 8. Operation

Example Power-up.ini Files

'"Code format and syntax

'Command = numeric power-up command
'File = file associated with the action
'Device = device to which File is copied. Defaults to CPU:

"Command, File,Device
13,Write2CRD_2.crl,cpu:

"Run Program on Power-up
"Copy program file pwrup.crl from the external drive to CPU:
'"File will run only when CR1000 powered-up later.

2,pwrup.crl,cpu:

'"Format the USR: drive
5,,uUsr:

'Send 0S on Power-up
"Load an operating system (.obj) file into FLASH as the new OS.

9,CR1000.S5td.28.0bj

'"Run Program from USB: Drive

'A program file is carried on an external USB: drive.
'Do not copy program file from USB:

'"Run program always, erase data.

13, toobigforcpu.crl,usb:

'Run a program file always, erase data.
13,pwrup_l.crl,cpu:

'Run a program file now, erase data now.
14,run.crl,cpu:

Power-up.ini Execution

After powerup.ini is processed, the following rules determine what CR1000
program to run:

e [fthe run-now program is changed, then it is the program that runs.

e Ifno change is made to run-now program, but run-on-power-up program
is changed, the new run-on-power-up program runs.

e If neither run-on-power-up nor run-now programs are changed, the
previous run-on-power-up program runs.

8.8.5.5 File Management Q & A

Q: How do I hide a program file on the CR1000 without using the CRBasic
FileManage() instruction?

450

Section 8. Operation

A: Use the CoraScript (p. 519 File-Control command, or the Web API (p. 462, p.
462) FileControl command.

8.8.6 File Names

The maximum size of the file name that can be stored, run as a program, or FTP
transferred in the CR1000 is 59 characters. If the name is longer than 59
characters, an Invalid Filename error is displayed. If several files are stored, each
with a long filename, memory allocated to the root directory can be exceeded
before the actual memory of storing files is exceeded. When this occurs, an
"insufficient resources or memory full" error is displayed.

8.8.7 File System Errors

Table File System Error Codes (p. 451 lists error codes associated with the CR1000
file system. Errors can occur when attempting to access files on any of the
available drives. All occurrences are rare, but they are most likely to occur when
using the CRD: drive.

TABLE 107: File System Error Codes

Error Code Description
1 Invalid format
2 Device capabilities error
3 Unable to allocate memory for file operation
4 Max number of available files exceeded
5 No file entry exists in directory
6 Disk change occurred
7 Part of the path (subdirectory) was not found
8 File at EOF
9 Bad cluster encountered
10 No file buffer available
11 Filename too long or has bad chars
12 File in path is not a directory
13 Access permission, opening DIR or LABEL as file, or trying
to open file as DIR or mkdir existing file
14 Opening read-only file for write
15 Disk full (can't allocate new cluster)
16 Root directory is full
17 Bad file ptr (pointer) or device not initialized
18 Device does not support this operation

451

Section 8. Operation

TABLE 107: File System Error Codes

Error Code Description
19 Bad function argument supplied
20 Seek out-of-file bounds
21 Trying to mkdir an existing dir
22 Bad partition sector signature
23 Unexpected system ID byte in partition entry
24 Path already open
25 Access to uninitialized ram drive
26 Attempted rename across devices
27 Subdirectory is not empty
31 Attempted write to Write Protected disk
32 No response from drive (Door possibly open)
33 Address mark or sector not found
34 Bad sector encountered
35 DMA memory boundary crossing error
36 Miscellaneous 1/O error
37 Pipe size of 0 requested
38 Memory-release error (relmem)
39 FAT sectors unreadable (all copies)
40 Bad BPB sector
41 Time-out waiting for filesystem available
42 Controller failure error
43 Pathname exceeds MAX PATHNAME

8.8.8 Memory Q & A

Q: Can a user create a program too large to fit on the CPU: drive (>100k) and
have it run from the CRD: drive (memory card)?

A: The program does not run from the memory card. However, a very large
program (too large to fit on the CPU: drive) can be compiled into CR1000 main
memory from the card if the binary form of the compiled program does not
exceed the available main memory (. 428).

452

Section 8. Operation

8.9 Data Retrieval and Comms — Details

Related Topics:

» Data Retrieval and Comms — Quickstart (p. 38)

» Data Retrieval and Comms — Overview (p. 77)

» Data Retrieval and Comms — Details (p. 453)

» Data Retrieval and Comms Peripherals — Lists (p. 597)

Commis, in the context of CR1000 operation, is the movement of information
between the CR1000 and another computing device, usually a PC. The
information can be data, program, files, or control commands.

8.9.1 Protocols

The CR1000 communicates with datalogger support software (p. 89 and other
Campbell Scientific dataloggers (. 589 using the PakBus (p. 535 protocol. See
Alternate Comms Protocols (p. 454 for information on other supported protocols,
such as TCP/IP, Modbus, etc.

8.9.2 Conserving Bandwidth

Some comms services, such as satellite networks, can be expensive to send and
receive information. Best practices for reducing expense include:

e Declare Public only those variables that need to be public.

e Be conservative with use of string variables and string variable sizes.
Make string variables as big as they need to be and no more; remember
the minimum is actually 24 bytes. Declare string variables Public and
sample string variables into data tables only as needed.

e When using GetVariables() / SendVariables() to send values between
dataloggers, put the data in an array and use one command to get the
multiple values. Using one command to get 10 values from an array and
swath of 10 is much more efficient (requires only 1 transaction) than
using 10 commands to get 10 single values (requires 10 transactions).

e Set the CR1000 to be a PakBus router only as needed. When the
CR1000 is a router, and it connects to another router like LoggerNet, it
exchanges routing information with that router and, possibly (depending
on your settings), with other routers in the network.

e Set PakBus beacons and verify intervals properly. For example, there is
no need to verify routes every five minutes if communications are
expected only every 6 hours.

8.9.3 Initiating Comms (Callback)

Comms sessions are usually initiated by a PC. Once comms are established, the
PC issues commands to send programs, set clocks, collect data, etc. Because data

453

454

Section 8. Operation

retrieval is managed by the PC, several PCs can have access to a CR1000 without
disrupting the continuity of data. PakBus® allows multiple PCs to communicate
with the CR1000 simultaneously when proper comms networks are installed.

Typically, the PC initiates comms with the CR1000 with datalogger support
software (p. 601. However, some applications require the CR1000 to call back the
PC (initiate comms). This feature is called 'Callback'. Special LoggerNet . 601)
features enable the PC to receive calls from the CR1000.

For example, if a fruit grower wants a frost alarm, the CR1000 can contact him by
calling a PC, sending an email, text message, or page, or calling him with
synthesized-voice over telephone. Callback has been used in applications
including Ethernet, land-line telephone, digital cellular, and direct connection.
Callback with telephone is well documented in CRBasic Editor Help (search term
"callback"). For more information on other available Callback features, manuals
for various comms hardware may discuss Callback options.

Caution When using the ComME com port with non-PakBus protocols,
incoming characters can be corrupted by concurrent use of the CS I/O for
SDC comms. PakBus comms use a low-level protocol (pause / finish /
ready sequence) to stop incoming data while SDC occurs.

Non-PakBus comms include TCP/IP protocols, ModBus, DNP3, and
generic, CRBasic-driven use of CS I/O.

Though usually unnoticed, a short burst of SDC comms occurs at
power-up and other times when the datalogger is reset, such as when
compiling a program or changing settings that require recompiling. This
activity is the datalogger querying to see if the CR1000KD
Keyboard/Display is available.

When DevConfig and PakBus Graph retrieve settings, the CR1000
queries to determine what SDC devices are connected. Results of the
query can be seen in the DevConfig and PakBusGraph settings tables.
SDC queries occur whether or not an SDC device is attached.

8.10 Alternate Comms Protocols

Related Topics:
» Alternate Comms Protocols — Overview (p. 80)
» Alternate Comms Protocols — Details (p. 454)

The CR1000 communicates with datalogger support software (p. 89 and other
Campbell Scientific dataloggers (. 589 using the PakBus (p. 535 protocol.

Modbus, DNP3, TCP/IP, and several industry-specific protocols are also
supported. CAN bus is supported when using the Campbell Scientific SDM-CAN
(». 597 communication module.

Section 8. Operation

8.10.1 TCP/IP — Details

Related Topics:

» TCP/IP — Overview

» TCP/IP — Details (p. 455)

» TCP/IP Links — List (p. 598)

The following TCP/IP protocols are supported by the CR1000 when using
network links (. 598) that use the resident IP stack or when using a cell modem with
the PPP/IP key enabled. The following sections include information on some of
these protocols:

e DHCP e Ping

e DNS e POP3

e FTP e SMTP

e HTML e SNMP

e HTTP e Telnet

e Micro-serial server e Web API
e Modbus TCP/IP e XML

e NTCIP e UDP

e NTP e IPv4

e PakBus over TCP/IP IPv6

The most up-to-date information on implementing these protocols is contained in
CRBasic Editor Help.

Note Specific information concerning the use of digital-cellular modems
for TCP/IP can be found in Campbell Scientific manuals for those
modems. For information on available TCP/IP/PPP devices, refer to the
appendix Network Links (p. 598) for model numbers. Detailed information
on use of TCP/IP/PPP devices is found in their respective manuals
(available at www.campbellsci.com) and CRBasic Editor Help.

8.10.1.1 FYls — 0S2; 0S28
e TCP/IP info no longer in status table — get from datalogger settings.
e CR1000 now adopts auto IP address of 169.254.67.85 (if available) if
DHCEP server not available or static IP address is not set. This makes it

easier for PC to CR1000 ad hoc connections.

e Added limited DNS server capability — CR1000 intercepts / respond to
cr1000.com

455

Section 8. Operation

e Added a default public/internet DNS server if none is assigned. This
should result in less "why isn't my EmailSend to email.server.com not
working?"

e Apologies to those who have figured out how to read our IPTrace
information — it has changed quite a bit.

e Network Time Protocol server not enabled by default. This requires
inclusion of NetworkTimeProtocol() instruction in the program.

8.10.1.2DHCP

When connected to a server with a list of IP addresses available for assignment,
the CR1000 will automatically request and obtain an IP address through the
Dynamic Host Configuration Protocol (DHCP). Once the address is assigned, use
DevConfig, PakBusGraph, Connect, or the CR1000KD Keyboard/Display to look
in the CR1000 Status table to see the assigned IP address. This is shown under
the field name IPInfo.

8.10.1.3DNS

The CR1000 provides a Domain Name Server (DNS) client that can query a DNS
server to determine if an IP address has been mapped to a hostname. If it has, then
the hostname can be used interchangeably with the IP address in some datalogger
instructions.

8.10.1.4FTP Server

The CR1000 automatically runs an FTP server. This allows Windows Explorer to
access the CR1000 file system with FTP, with drives on the CR1000 being
mapped into directories or folders. The root directory on the CR1000 can be any
drive, but the USR: drive is usually preferred. USR: is a drive created by
allocating memory in the USR: Drive Size box on the Deployment | Advanced
tab of the CR1000 service in DevConfig. Files can be copied / pasted between
drives. Files can be deleted through FTP.

8.10.1.5FTP Client

The CR1000 can act as an FTP client to send a file or get a file from an FTP
server, such as another datalogger or web camera. This is done using the
CRBasic FTPClient() instruction. Refer to a manual for a Campbell Scientific
network link (see TCP/IP Links — List (p. 598)), available at www.campbellsci.com,
or CRBasic Editor Help for details and sample programs.

8.10.1.6 HTTP Web Server
8.10.1.6.1 Default HTTP Web Server

The CR1000 has a default home page built into the operating system. The home
page can be accessed using the following URL:

456

Section 8. Operation

8.10.1.6.2

http:\\ipaddress:80

Note Port 80 is implied if the port is not otherwise specified.

As shown in figure Preconfigured HTML Home Page (p. 457), this page provides
links to the newest record in all tables, including the Status table, Public table,
and data tables. Links are also provided for the last 24 records in each data table.
If fewer than 24 records have been stored in a data table, the link will display all
data in that table.

Newest-Record links refresh automatically every 10 seconds. Last 24-Records
link must be manually refreshed to see new data. Links will also be created
automatically for any HTML, XML, and JPEG files found on the CR1000 drives.
To copy files to these drives, choose File Control from the datalogger support
software (p. 521) menu.

FIGURE 100: Preconfigured HTML Home Page

£ H:\SampleDataloggerHomePage\CR HomePagehtm v |[¥4 | X [l /2 Search Google

File Edit View Favorites Tools Help

7¢ Favorites Ecr Home Page) v B v [@ v Pagev Safetyv Toolsv @~

CR = Datalogger Home Page
o Newest Record from Status
I o Newest Record from GVR

o Display Last 24 Records from DataTable GVR

o Newest Record from Public

€ Internet | Protected Mode: Off fa v ®|100% ~

Custom HTTP Web Server

Although the default home page cannot be accessed for editing, it can be replaced
with the HTML code of a customized web page. To replace the default home
page, save the new home page under the name default. html and copy it to the
datalogger. It can be copied to a CR1000 drive with File Control. Deleting
default.html will cause the CR1000 to use the original, default home page.

The CR1000 can be programmed to generate HTML or XML code that can be
viewed by a web browser. CRBasic example HTML (p. 459 shows how to use the
CRBasic instructions WebPageBegin() / WebPageEnd and HTTPOut() to
create HTML code. Note that for HTML code requiring the use of quotation
marks, CHR(34) is used, while regular quotation marks are used to define the
beginning and end of alphanumeric strings inside the parentheses of the
HTTPOut() instruction. For additional information, see the CRBasic Editor Help.

457

Section 8. Operation

In this example program, the default home page is replaced by using
WebPageBegin to create a file called default.html. The new default home page
created by the program appears as shown in the figure Home Page Created using
WebPageBegin() Instruction (p. 458).

The Campbell Scientific logo in the web page comes from a file called
SHIELDWEB22.JPG that must be transferred from the PC to the CR1000 CPU:
drive using File Control in the datalogger support software.

A second web page, shown in figure Customized Numeric-Monitor Web Page (p.
459) called "monitor.html" was created by the example program that contains links
to the CR1000 data tables.

FIGURE 101: Home Page Created Using WebPageBegin() Instruction

V& Compbell Scientiic CRA= - Je=to

£ H:\SampleDataloggerHomePage\CR#* Home Page WebPac v | 43 | X B)/ Search Google P~

File Edit View Favorites Tools Help

{¢ Favorites @ Campbell Scientific CR# Datalogger M- v [i v Pagev Safetyv Tooks~ @~ 0

| Welcome to the Campbell Scientific CR®% Web Site

\
CAMPBELL "
SCIENTIFIC, INC. -
WAWW CAMPO(LLSCICOM E

Current Data:
Time: 15:59:30

Temperature: 22.90
Links:

Monitor

Done @ Internet | Protected Mode: Off A~ R10% ~
| — =

458

Section 8. Operation

FIGURE 102: Customized Numeric-Monitor Web Page

& H\CR Data Table Linkshtml - Windows Intemet Explorer b

K)T & HACR = Data Table Linkshtmi ~ | 45 | x Il 20 Search Google

File Edit View Favorites Tools Help

ﬁFavorites gH;\CR: DataTabIeLi...\ ﬁ v v [FEB v Pagev Safetyv Toolsv

CR "w& Data Table Links

Display Last 10 Records from DataTable CR T

Current Record from CR Temp Table
Current Record from Public Table
Current Record from Status Table

Back to the Home Page

Done W Computer | Protected Mode: Off v ®100% ~

CRBasic EXAMPLE 72: Custom Web Page HTML

'"This program example demonstrates the creation of a custom web page that resides in the
"WebPageBegin to CR1000. In this example program, the default home page is replaced by
'using create a file called default.html. The graphic in the web page (in this case, the
"Campbell Scientific logo) comes from a file called SHIELDWEB2.JPG. The graphic file
'must be copied to the CR1000 CPU: drive using File Control in the datalogger

"support software. A second web page is created that contains links to the CR1000
"data tables.

'NOTE: The "_" character used at the end of some lines allows a code statement to be
'wrapped to the next Tine.

Dim Commands As String * 200
Public Time(9), RefTemp,
Public Minutes As String, Seconds As String, Temperature As String

DataTable(CRTemp,True,-1)
DatalInterval(0,1,Min,10)
Sample(1,RefTemp, FP2)
Average(1,RefTemp, FP2,False)

EndTable

'Default HTML Page

WebPageBegin("default.htm1",Commands)
HTTPOut("<html>")
HTTPOut ("<style>body {background-color: oldlace}</style>")
HTTPOut ("<body><title>Campbell Scientific CR1000 Datalogger</title>")
HTTPOut("<h2>Welcome To the Campbell Scientific CR1000 Web Site!</h2>™)
HTTPOut ("<tr><td style=" + CHR(34) +"width: 290px" + CHR(34) + ">")

HTTPOut("")

HTTPOut("<img src="+ CHR(34) +"/CPU/SHIELDWEB2.jpg"+ CHR(34) + "width=" + _
CHR(34) +"128"+CHR(34)+"height="+CHR(34)+"155"+ CHR(34) + "class=" + _
CHR(34) +"stylel"+ CHR(34) +"/></td>")

HTTPOut ("<p><h2> Current Data:</h2></p>")

HTTPOut("<p>Time: " + time(4) + ":" + minutes + ":" + seconds + "</p>")

459

Section 8. Operation

460

HTTPOut ("<p>Temperature: + Temperature + "</p>")
HTTPOut ("<p><h2> Links:</h2></p>")
HTTPOut("<p>Monitor</p>")
HTTPOut ("</body>")
HTTPOut("</html>")
WebPageEnd

'Monitor Web Page
WebPageBegin("monitor.html1",Commands)
HTTPOut ("<html>")
HTTPOut ("<style>body {background-color: oldlace}</style>")
HTTPOut ("<body>")
HTTPOut("<titTle>Monitor CR1000 Datalogger Tables</title>")
HTTPOut ("<p><h2>CR1000 Data Table Links</h2></p>")
HTTPOut("<p><a href="+ CHR(34) + "command=TableDisplay&table=CRTemp&records=10" + _
CHR(34)+">Display Last 10 Records from DataTable CR1Temp</p>")
HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=CRTemp"+ CHR(34) + _
">Current Record from CRTemp Table</p>")
HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Public"+ CHR(34) + _
">Current Record from Public Table</p>")
HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Status" + CHR(34) + _
">Current Record from Status Table</p>")
HTTPOut ("
<p>Back to the Home Page _
</p>")
HTTPOut ("</body>")
HTTPOut("</html>")
WebPageEnd

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp,250)
RealTime(Time())
Minutes = FormatFloat(Time(5),"%02.0f")
Seconds = FormatFloat(Time(6),"%02.0f")
Temperature = FormatFloat(RefTemp, "%02.02f™")
CallTable(CRTemp)
NextScan
EndProg

8.10.1.7 Micro-Serial Server

The CR1000 can be configured to allow serial communication over a TCP/IP port.
This is useful when communicating with a serial sensor over Ethernet with
micro-serial server (third-party serial to Ethernet interface) to which the serial
sensor is connected. See the network-link manual and the CRBasic Editor Help
for the TCPOpen() instruction for more information.

8.10.1.8 Modbus TCP/IP

The CR1000 can perform Modbus communication over TCP/IP using the Modbus
TCP/IP interface. To set up Modbus TCP/IP, specify port 502 as the ComPort in
the ModBusMaster() and ModBusSlave() instructions. See the CRBasic Editor
Help for more information. See Modbus — Details (p. 463).

Section 8. Operation

8.10.1.9 PakBus Over TCP/IP and Callback

Once the hardware has been configured, basic PakBus communication over
TCP/IP is possible. These functions include the following:

e Sending programs

e Retrieving programs

e Setting the CR1000 clock

e Collecting data

e Displaying the current record in a data table
Data callback and datalogger-to-datalogger communications are also possible over
TCP/IP. For details and example programs for callback and

datalogger-to-datalogger communications, see the network-link manual. A listing
of network-link model numbers is found in Network Links — List (p. 598).

8.10.1.10 Ping (IP)

Ping can be used to verify that the IP address for the network device connected to
the CR1000 is reachable. To use the Ping tool, open a command prompt on a
computer connected to the network and type in:

ping XXX.XXX.XXX.xxXx <Enter>

where xxx.xxx.xxx.xxx 1s the IP address of the network device connected to the
CR1000.

8.10.1.11 SNMP

Simple Network Management Protocol (SNMP) is a part of the IP suite used by
NTCIP and RWIS for monitoring road conditions. The CR1000 supports SNMP
when a network device is attached.

8.10.1.12 Telnet

Telnet is used to access the same commands that are available through the support
software terminal emulator (p. 545). Start a Telnet session by opening a DOS
command prompt and type in:

TeTnet XXX.XXX.XXX.Xxx <Enter>

where xxx.xxx.xxx.xxx 1s the IP address of the network device connected to the
CR1000.

461

462

Section 8. Operation

8.10.1.13 SMTP

Simple Mail Transfer Protocol (SMTP) is the standard for e-mail transmissions.
The CR1000 can be programmed to send e-mail messages on a regular schedule
or based on the occurrence of an event.

8.10.1.14 Web API

The CR1000 has a web API. See CRBasic Editor Help for details.

8.10.1.15 Web APl — Details

The CR1000 web API (Application Programming Interface) is a series of URL (.
546) commands that manage CR1000 resources. The API facilitates the following
functions:

e Data Management
— Collect data

e Control — CRBasic program language logic can allow remote access to
many control functions by means of changing the value of a variable.

— Set variables / flags / ports

e Clock Functions — Clock functions allow a web client to monitor and
set the host CR1000 real time clock. Read the Time Syntax section for
more information.

— Set CR1000 clock

e File Management — Web API commands allow a web client to manage
files on host CR1000 memory drives. Camera image files are examples
of collections often needing frequent management.

— Send programs
— Send files
— Collect files

API commands are also used with Campbell Scientific’s RTMC web server
datalogger support software p. 89. Look for the API commands in CRBasic
Editor Help.

8.10.2 DNP3 — Details

Related Topics:
 DNP3 — Overview (p. 81)
* DNP3 — Details (p. 462

See the technical paper DNP3 with Campbell Scientific Datalogger, which is
available at https://www.campbellsci.com/app-notes.

Section 8. Operation

8.10.3 Modbus — Details

The CR1000 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR1000 communicates with Modbus over RS-232, (with a RS-232 to
RS-485 such as an MD485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The CR1000 supports RTU and ASCII communication modes
on RS-232 and RS485 connections. It exclusively uses the TCP mode on IP
connections.

Field instruments can be queried by the CR1000. Because Modbus has a set
command structure, programming the CR1000 to get data from field instruments
is much simpler than from serial sensors. Because Modbus uses a common bus
and addresses each node, field instruments are effectively multiplexed to a
CR1000 without additional hardware.

A CR1000 goes into sleep mode after 40 seconds of communication inactivity.
Once asleep, two packets are required before the CR1000 will respond. The first
packet awakens the CR1000; the second packet is received as data. This would
make a Modbus master fail to poll the CR1000, if not using retries. The CR1000,
through DevConfig or the Status table (see Info Tables and Settings (p. 553), can be
set to keep communication ports open and awake, but at higher power usage.

8.10.3.1 Modbus Terminology

Table Modbus to Campbell Scientific Equivalents (. 463) lists terminology
equivalents to aid in understanding how CR1000s fit into a SCADA system.

TABLE 108: Modbus to Campbell Scientific Equivalents

Campbell Scientific
Modbus Domain Data Form Domain

Coils Single bit Sgrrit:l’)gzgs’ T G
Digital registers 16 bit word Floating point variables
Input registers 16 bit word Floating point variables
Holding registers 16 bit word Floating point variables
RTU /PLC CR1000
Master Usually a computer
Slave Usually a CR1000
Field instrument Sensor

463

464

Section 8. Operation

8.10.3.1.1 Glossary of Modbus Terms
Term: coils (00001 to 09999)

Originally, "coils" referred to relay coils. In CR1000s, coils are exclusively
terminals configured for control, software flags, or a Boolean-variable array.
Terminal configured for control are inferred if parameter 5 of the
ModbusSlave() instruction is set to 0. Coils are assigned to Modbus
registers 00001 to 09999.

Term: digital registers 10001 to 19999

Hold values resulting from a digital measurement. Digital registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public-variable array (read / write).

Term: input registers 30001 to 39999

Hold values resulting from an analog measurement. Input registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public- variable array (read / write).

Term: holding registers 40001 to 49999

Hold values resulting from a programming action. Holding registers in the
Modbus domain are read / write. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim or Public variable array (read / write).

Term: RTU /PLC

Remote Telemetry Units (RTUs) and Programmable Logic Controllers
(PLCs) were at one time used in exclusive applications. As technology
increases, however, the distinction between RTUs and PLCs becomes more
blurred. A CR1000 fits both RTU and PLC definitions.

8.10.3.2 Programming for Modbus
8.10.3.2.1 Declarations (Modbus Programming)

Table Modbus Registers: CRBasic Port, Flag, and Variable Equivalents (p. 463
shows the linkage between terminals configured for control, flags and Boolean
variables and Modbus registers. Modbus does not distinguish between terminals
configured for control, flags, or Boolean variables. By declaring only terminals
configured for control, or flags, or Boolean variables, the declared feature is

Section 8. Operation

addressed by default. A typical CRBasic program for a Modbus application
declares variables and ports, or variables and flags, or variables and Boolean
variables.

TABLE 109: Modbus Registers: CRBasic Port, Flag, and Variable

Equivalents
CRBasic Port, Example CRBasic Equivalent Example
Flag, or Variable Declaration Modbus Register
(© tzrmnionl Gomiiie Public Port(8) 00001 to 00008
for control
Flag Public Flag(17) 00001 to 00017
Boolean variable Public ArrayB(36) as 00001 to 00056
Boolean
. 40001 to 40040'
\Y 1 i !
ariable Public ArrayV(20) 30001 to 30040'

! Because of byte-number differences, each CR1000 domain variable
translates to two Modbus domain input / holding registers.

8.10.3.2.2 CRBasic Instructions (Modbus)

Complete descriptions and options of commands are available in CRBasic Editor
Help.

ModbusMaster()

Sets up a CR1000 as a Modbus master to send or retrieve data from a Modbus
slave.

Syntax

ModbusMaster (ResultCode, ComPort, BaudRate, ModbusAddr,
Function, Variable, Start, Length, Tries, TimeOut)

ModbusSlave()
Sets up a CR1000 as a Modbus slave device.

Syntax

ModbusSTave(ComPort, BaudRate, ModbusAddr, DataVariable,
BooleanVariable)

MoveBytes()

Moves binary bytes of data into a different memory location when translating
big-endian to little-endian data. See the appendix Endianness (p. 587).

465

Section 8. Operation

Syntax
MoveBytes(Dest, DestOffset, Source, SourceOffset, NumBytes)
ReadOnly()
Set a variable to read only.
Syntax

ReadOnly ()

8.10.3.2.3 Addressing (ModbusAddr)

Modbus devices have a unique address in each network. Addresses range from 1
to 247. Address 0 is reserved for universal broadcasts. When using a network
of dataloggers in a Modbus over Pakbus configuration, use the same number for
both the Modbus address and the PakBus address.

If a slave is to echo back requests to the master, enter the address of the slave as a
negative number in ModbusMaster().

8.10.3.2.4 Supported Modbus Function Codes

Modbus protocol has many function codes. CR1000 commands support the
following.

TABLE 110: Supported Modbus Function Codes

Code Name Description

01 |Read coil/port status Reads the on/off status of discrete
output(s) in the ModBusSlave

02 |Read input status Reads the on/off status of discrete
input(s) in the ModBusSlave

03 |Read holding registers Reads the binary contents of holding
register(s) in the ModBusSlave

04 | Read input registers Reads the binary contents of input
register(s) in the ModBusSlave

05 |Force single coil/port Forces a single coil/port in the
ModBusSlave to either on or off

06 | Write single register Writes a value into a holding register in
the ModBusSlave

15 |Force multiple coils/ports | Forces multiple coils/ports in the
ModBusSlave to either on or off

16 | Write multiple registers Writes values into a series of holding
registers in the ModBusSlave

466

Section 8. Operation

8.10.3.2.5 Reading Inverse Format Modbus Registers

Some Modbus devices require reverse byte order words (CDAB vs. ABCD).
This can be true for either floating point, or integer formats. Since a slave
CR1000 uses the ABCD format, either the master has to make an adjustment,
which is sometimes possible, or the CR1000 needs to output reverse-byte order
words. To reverse the byte order in the CR1000, use the MoveBytes()
instruction as shown in the sample code below.

for i =1 to k
MoveBytes(InverseFloat(i),2,Float(i),0,2)
MoveBytes(InverseFloat(i),0,Float(i),2,2)

next

In the example above, InverseFloat(i) is the array holding the inverse-byte
ordered word (CDAB). Array Float(i) holds the obverse-byte ordered word
(ABCD).

See Endianness (p. 587).

8.10.3.2.6 Timing

The timeout is a critical parameter of Modbus communication. The response time
of devices is usually not specified by the manufacturer and can range from 100 ms
to more than 5 seconds. When the CR1000 is acting as a slave device, it typically
responds very quickly. The default timeout in a master device polling the CR1000
will typically not need adjustment from the default. When the CR1000 is acting as
a master, the response time of a slave needs particular attention. The best practice
is to monitor the communication between the CR1000 and the slave device with
the comms sniffer (terminal mode (p. 509 W command). The comms sniffer allows
you to see the actual response time of the slave device. The TimeQut parameter of
ModbusMaster() can then be adjusted accordingly.

8.10.3.3 Troubleshooting (Modbus)

Test Modbus functions on the CR1000 with third party Modbus software.
Further information is available at the following links:

e www.simplyModbus.ca/FAQ.htm
e www.Modbus.org/tech.php

e www.lammertbies.nl/comm/info/modbus.html

8.10.3.4 Modbus over IP
When the CR1000 acts as the Modbus master, a TCPOpen() instruction must
precede the ModbusMaster() instruction. The connection handle returned by
TCPOpen() is used for the Com Port parameter.
In the case of ModbusSlave(), no TCPOpen() instruction is needed. Simply use
502 for the ComPort parameter.

467

468

Section 8. Operation

8.10.3.5 Modbus Security

Q: What security options does the CR1000 offer for Modbus?

A: The Modbus protocol itself does not include security features, so the CR1000
does not offer security on ModbusMaster() or ModbusSlave(). Following are
security issues that come up:

e MAC and IP filtering

e Function code filtering

e Privilege mapping rules by client (by port, IP, etc)
e VPN tunneling

There are some third party Modbus security devices available that can be placed
between the CR1000 and the rest of the Modbus network. For example, see
tofinosecurity.com/products.

Q: Can I make some registers read-only and other registers writable?

A: Yes. By default all registers mapped to ModbusSlave() are writable. You may
make individual registers read-only with the ReadOnly() instruction in the
CR1000 CRBasic program.

The following example demonstrates how to report data by Modbus but not allow
a Modbus client to change register or coil values in the Modbus host:

e Var can be viewed and changed
e Reg() and Coil() can only be viewed

e The CRBasic program can read from and write to all variables

PubTlic Var
Public Reg(4), Coil(4) as Boolean
ReadOnly Reg, Coil

BeginProg
'setup modbus tcp/ip slave

"readonly instruction above makes reg and coil read only / not
writable

ModbusSlave(502,0,1,Reg,Coil,2)

Scan(5,Sec,0,0)
var = var + 1 ' increment var
MBReg() = MBReg() + 0.1 'increment all the registers
MBCoiT() = (NOT MBCoil()) 'toggle all the coils
NextScan
EndProg

8.10.3.6 Modbus Over RS-232 7/E/1

Q: Can Modbus be used over an RS-232 link, 7 data bits, even parity, one stop
bit?

Section 8. Operation

A: Yes. Precede ModBusMaster() / ModBusSlave() with SerialOpen() and set
the numeric format of the COM port with any of the available formats, including
the option of 7 data bits, even parity. SerialOpen() and ModBusMaster() can
be used once and placed before Scan().

8.10.3.7 Converting Modbus 16-Bit to 32-Bit Longs

Concatenation of two Modbus long 16-bit variables to one Modbus long 32

bit number is shown in the following example:

CRBasic EXAMPLE 73: Concatenating Modbus Long Variables

'"This program example demonstrates concatenation (splicing) of Long data type variables

"for Modbus operations.

r

'"NOTE: The CR1000 uses big-endian word order.

'Declarations
Pub1lic Combo As Long
Public Register(2) As Long

PubTic Result

'Aliases used for clarification
Alias Register(l) = Register_LSW
Alias Register(2) = Register_MSW

BeginProg

"Variable to hold the combined 32-bit
'Array holds two 16-bit ModBus Tong
'variables

'Register(1l) = Least Significant Word
'Register(2) = Most Significant Word
'Holds the result of the ModBus master
"query

'"Least significant word.
'"Most significant word.

'"If you use the numbers below (un-comment them first)

"Combo is read as 131073 decimal

'"Register_LSW=&h0001 'Least significant word.
'"Register_MSW=&h0002 ' Most significant word.

Scan(1,Sec,0,0)

"In the case of the CR1000 being the ModBus master then the
'ModbusMaster instruction would be used (instead of fixing

"the variables as shown between the BeginProg and SCAN instructions).
ModbusMaster(Result,COMRS232,-115200,5,3,Register(),-1,2,3,100)

'MoveBytes (DestVariable,DestOffset, SourceVariable, SourceOffSet,

'"NumberOfBytes)

MoveBytes(Combo,2, Register_LSW,2,2)
MoveBytes(Combo,0, Register_MSW,2,2)

NextScan
EndProg

8.11 Keyboard/Display — Details

Related Topics:

Keyboard/Display — Overview (p. 82)
» Keyboard/Display — Details (p. 469)
» Keyboard/Display — List (p. 597)

Custom Menus — Overview (p. 83)

469

470

Section 8. Operation

Note See Data Displays: Custom Menus — Details (p. 21s).

A keyboard is available for use with the CR1000. See Keyboard/Display — List .
597) for information on available keyboard/displays. This section illustrates the use
of the keyboard/display using default menus. Some keys have special functions as
outlined below.

Note Although the keyboard/display is not required to operate the
CR1000, it is a useful diagnostic and debugging tool.

8.11.1 Character Set

The keyboard display character set is accessed using one of the following three
procedures:

The 16 keys defaultto A, ¥, <, », Home, PgUp, End, PgDn, Del,
and Ins.

To enter numbers, first press Num Lock. Num Lock stays set until
pressed again.

Above all keys, except Num Lock and Shift, are characters printed in
blue. To enter one of these characters, press Shift one to three times to
select the position of the character as shown above the key, then press the
key. For example, to enter Y, press Shift Shift Shift PgDn.

To insert a space (Spc) or change case (Cap), press Shift one to two
times for the position, then press BkSpc.

To insert a character not printed on the keyboard, enter Ins , scroll down
to Character, press Enter, then press A, ¥, <, P to scroll to the
desired character in the list that is presented, then press Enter.

TABLE 111: Special Keyboard/Display Key Functions

Key Special Function
2] and [8] Navigate up and down through the menu list one line at
a time
[Enter] Selects the line or toggles the option of the line the
cursor is on
[Esc] Back up one level in the menu
[Home] Move cursor to top of the list
[End] Move cursor to bottom of the list
[Pg Up] Move cursor up one screen
[Pg Dn] Move cursor down one screen

Section 8. Operation

TABLE 111: Special Keyboard/Display Key Functions

Key Special Function
[BkSpc] Delete character to the left
[Shift] Change alpha character selected
[Num Lock] Change to numeric entry
e Delete
e When pressed during power up, Del changes the
[Del] PPP interface to inactive (only if set as RS232).
This allows you to get into RS232 for PakBus if
PPP is keeping you out.
[Ins] Insert/change graph configuration
[Graph] Graph

FIGURE 103: CR1000KD: Navigation

-
Comriell)
‘.j Sodentific
turns on display
turns off display CRE Ilo.:r,ctlnaaer;
BLAER 201600921 30.5
CRUsMeatherBZ.oré
A foggles backlight Furnmirs.
\ y,
B adjusts contrast
!
« View data
* Manage memory
- Manage programs Tiata)
fi -
- Manage files -.I?JH.'._p‘t-DF“ Froaram
ile
- Manage memory card (if present) FCCord
Forts arnd Status
* Manage C terminal control function Confioures Settinas
- View status tables T) o
* Manage keyboard display)

« Manage datalogger settings
« Manage telecomms settings

471

Section 8. Operation

8.11.2 Data Display
FIGURE 104: CR1000KD: Displaying Data

(»Iiota h
FurdfStor Prosrom
File
FCCord
Forts arnd Stotus
Confiaurs: Setiinss

List of data tables created by active program.
See the following RealTime Tables and Graphs.

List of user-selected variables (blank if not set up).
- - ~ See the following Real Time Custom
Feal Time Tobles
Feal Time Custom —/ List of data tables created by the active program.
Firml Storose Doto See the following Final Storage Data

Reset Data Tables B Al tables (and liist of active tables)

Groarh Setur
\ Graph Type Roll or Scope
Scaler Manual or Auto*
Upper: 0.000000
_ y Lower: 0.000000

Display Val On/Off
Display Max On/Off
Display Min On/Off

* Scope requires manual scalar

472

Section 8. Operation

8.11.2.1 Real-Time Tables and Graphs

FIGURE 105: CR1000KD Real-Time Tables and Graphs.

List of Data Tables created by the
active program. For example,

Public
Table1
TempS

Move the cursor
to the desired table
and press [Enter]

Y

E—

Tref :23.0234
TCTemp(1) :19.6243
TCTemp(2) :19.3429
TCTemp(3) H421.2003
Flag(1) :-1.00000
Flag(2) : 0.000000
Flag(3) : 0.000000
Flag(4) 1 0.000000

Press [Num Lock]

[Graph] for graph

of selected field
30.0 22.35
20.0

New values are displayed as they are

stored.

8.11.2.2 Real-Time Custom

Public Table Values
can be changed.

Move the cursor
to value and press
[Enter] to edit
value.

Edit Field: Num
TCTemp(3)
Current Value:
21.2003
NewValue:

Move the cursor to setting and press
[Enter] to change

Press [Ins] for
Graph Setup

Scaler Manual/Auto
Upper: 30.000000
Lower: 20.000000
Display Val On/Off
Disiplay Max On/Off
Display Min On/Off
Graph Type Roll/Scope

The CR1000KD Keyboard/Display can be configured with a customized real-time
display. The CR1000 will keep the setup as long as the defining program is

running.

Read More Custom menus can also be programmed. See Displaying
Data: Custom Menus — Details (p. 216).

473

Section 8. Operation

FIGURE 106: CR1000KD Real-Time Custom

List of User-
Selected Variables

Position cursor and
List of Data Tables Created by | Press [Enter]
active program. For example,

Public
Table1
Temps

Move the cursor to
desired table and

press [Enter] v

Tref
TCTemp(1)

TCTemp(2 To add a value, move the cursor to
ﬁa— the position for the value and press

[Enter]

Move the cursor to
desired field and
press [Enter]

TCTemp(3) - 24.9496

New values are displayed as they are stored.

To delete a field, move the cursor to that
field and press [DEL]

474

Section 8. Operation

8.11.2.3 Final-Storage Data
FIGURE 107: CR1000KD: Final Storage Data

e ~
Feal Tims Tobles
Feal Time Custom
pFinnl Stoross Doto
Reset Dota Tobles
Grarh Setus
\ J

Enter
-«
-
P Lot Wiew

Corg Doto To CRED:

AW Skipped with CR800,

or if memory card is
not used.

. J

Enter
i

e - DAY tome |foroldest]
L 1
P TenFs
d
> LA
_ J
= Alv
r — — — N e A
5 P2E1E-EE-20 1545008 G to Record:
Botth _fuea PTemr Do fies 1&
Fress Ins o sdit
_) .
Tobls Size:
1868
Current Eecords:
_ J . = J
Graph
]
() <)
TELA 24,97 pirarh Tere: Foll
Sraler: Mornual
Upper: SHEE.HE
______ — 3 Lower: B.00
— e Tizplaw Yal On
——— Dizrplow Mox On
Tizplow Min On
28,8 \ J

. J
IV e

475

Section 8. Operation

8.11.3 Run/Stop Program
FIGURE 108: CR1000KD: Run/Stop Program

(~
ot
»EundStor Prosrom
File
FLCard
Fortzs and Stotus
Confiaures Setiinas
) y,

Enter
<!

e .
CPiU: Prosramboms ; Select option
£ Furnndns (or) Is Stopped ' S
REun oon Powsr Ue
Stors Retoin Doto 3. Select Execute
> Stors: Delete Doto Entor
Festorts Eetoin Doto -«
Eestorts Delete Dato .
Exaciihe for list of programs
L =

Esc in memory

to close

Esc

-
CPUe ene; | [0 SElEct a program

List of program files on CPU: <

to close

—

No program
running.

476

Section 8. Operation

8.11.4 File Management
FIGURE 109: CR1000KD: File Management

r
Tata)
RurndStor Proarom
P> Fils
FCCard
Fortz and Stotus
Conmfisures Settines
\ J
Enter
» Create a program
« Edit program file
\
« Create copy of program file
» Delete program file
« Set program run options Fun Options
— 5 Directors
« Direction of selected drive
Format
» Format selected drive (e. g. format J

a memory card)

8.11.4.1 File Edit

The CRBasic Editor is recommended for writing and editing datalogger programs.
When making minor changes with the CR1000KD Keyboard/Display, restart the
program to activate the changes, but be aware that, unless programmed for
otherwise, all variables, etc. will be reset. Remember that the only copy of
changes is in the CR1000 until the program is retrieved using datalogger support
software or removable memory.

477

Section 8. Operation

FIGURE 110: CR1000KD: File Edit

rHe-w)
» it
CoEg
lzlete
Fun OFtions
Directory
Format
_ J
-
<!
e 1 4
LR
P Eroarantamnel
Prosrambomns2 Sove Chomses?
NG
P o
\ y, \
-
<!
e ™ 4
CRiGEG Esc IHSERT
i Proarombomel Instruction
Function
Public TREF: TC{Z3s FlogiSh Blank Line
0 Block
WotaTable (Temesls 1066 ——— Inszert OFF
Samele (LTREFIEEE4:
Somele (ZaTCOWIEEES:) L

Enter directly or ...,
(_l

Edit instruction

SomplelZs TOOIEEE
ErmwdTokle

BeainPros
SBrartlssecsSa 80

r) r
EMTER DotaTable
P Edit Imstruction »| TableMams

Blonk Lines TemFs
Crente Blook TrigVor
i
Size
1666
\ J .

1. Move cursor

Block Commonds

to highlight o
block Rl
. gt
Enter
-« Dzlete

To insert a block, move cursor to desired place in

program and press

0

Section 8. Operation

8.11.5 PCCard (Memory Card) Management
FIGURE 111: CR1000KD: PCCard (Memory Card) Management

4 A
Tiota

FurndStor Prosrom

Fil
> F'li" If ard <€ PCCard appears in Data menu only when using
e a memory card

Forts and Stotlus
Confisures Settinas

Y ()
Active Tables List of Data Tables on card used by active
Formot Cord program

/

\) L)
(il Cord Dot)
Will be Lost!
Frocesd 7
ez
-II:I
\- y

8.11.6 Port Status and Status Table

Read More See Info Tables and Settings (p. 553).

479

Section 8. Operation

480

FIGURE 112: CR1000KD:

(Ports
Stotus Table

8.11.7 Settings
FIGURE 113: CR1000KD: Settings

e

Set Timef/Dote
Tizplow
Dotolosser
Comports
Etherret
CE L
FFRE

Wi-Fi (CRE onle when presents

REF4ET? (CRe only when pPresents <
EF4317Y (CRE only wehn Fresent
Metuwork Services

TLE

S~

Port Status and Status Table

(FortStatuscls: OFF A
FortStotusoZs OFF
FortStotusoEn OFF
FortStotusddn OFF

\ y,

To toggle on/off:

1. Configure port as output in CRBasic program
2. Select port

to toggle

Enter

<!

N\

-
List of Status table registers.

. J

(eE/ELzeE, 1529010)

Year 2E1E

fMoith =

T =1

Hiowur 15

Minute 25

Set

Concel
. Y,
e ~

J

. to scroll between screens.

Turrn OFf Disrlow
Bocklisht

Cortrost Addust
Tizrplow Timsout Yes
Timmout Cmines 9

Section 8. Operation

8.11.7.1 CR1000KD: Set Time / Date

Move the cursor to time element and press Enter to change it. Then move the
cursor to Set and press Enter to apply the change.

8.11.7.2 CR1000KD: PakBus Settings

In the Settings menu, move the cursor to the PakBus® element and press Enter
to change it. After modifying, press Enter to apply the change.

8.11.8 Configure Display
FIGURE 114: CR1000KD: Configure Display

Enter
<!

(Set Time/Date A
Settinas
P lizFlog
. y,
Ent i
Press 4”_9" to turn off display

(o 07 Diariae——————
»

Bocklisht
Comtrast Addust Light Dark
(] ar
Rl . -
Enter display timeout in minutes (max = 60)

. . \
Dizrlod Timeout Yes ﬁ
Timeout Cmini: 4

8.12 CPI Port and CDM Devices — Details

Related Topics:
* CPI Port and CDM Devices — Overview (p. 64)
* CPI Port and CDM Devices — Details (p. 481)

See Appendix C in CDM-VW300 Dynamic Vibrating Wire Analyzers instruction
manual, which is available at www.campbellsci.com/manuals.

CPI has the following power levels:
e Off — not used

e High power — fully active

481

Section 8. Operation

e Low-power standby — whenever possible

e Low-power bus — sets bus and modules to low power

482

9. Maintenance — Details

Related Topics:
» Maintenance — QOverview (p. 87)
* Maintenance — Details (p. 483)

e Protect the CR1000 from humidity and moisture.
e Replace the internal lithium battery periodically.

e Send to Campbell Scientific for factory calibration every three years.

9.1 Protection from Moisture — Details

Protection from Moisture — Overview (p. 87)
Protection from Moisture — Details (p. 106)
Protection from Moisture — Products (p. 609)

When humidity levels reach the dew point, condensation occurs and damage to
CR1000 electronics can result. Effective humidity control is the responsibility of
the user. The CR1000 module is protected by a packet of silica gel desiccant,
which is installed at the factory. This packet is replaced whenever the CR1000 is
repaired at Campbell Scientific. The module should not normally be opened
except to replace the internal lithium battery.

Adequate desiccant should be placed in the instrumentation enclosure to provide
added protection.

9.2 Internal Battery — Details

CAUTION Fire, explosion, and severe-burn hazard. Misuse or improper
installation of the internal lithium battery can cause severe injury. Do not
recharge, disassemble, heat above 100 °C (212 °F), solder directly to the
cell, incinerate, or expose contents to water. Dispose of spent lithium
batteries properly.

The CR1000 contains a lithium battery that operates the clock and SRAM when
the CR1000 is not powered. The CR1000 does not draw power from the lithium
battery while it is fully powered by a power supply . 85. In a CR1000 stored at
room temperature, the lithium battery should last approximately three years (less
at temperature extremes). In installations where the CR1000 remains powered, the
lithium cell should last much longer.

While powered from an external source, the CR1000 measures the voltage of the
lithium battery ever 24 hours. This voltage is displayed in the Status table (see
Info Tables and Settings (. 553) in the Lithium Battery field. A new battery
supplies approximately 3.6 Vdc. Replace the battery when voltage is
approximately 2.7 Vdc.

483

Section 9. Maintenance — Details

e When the lithium battery is removed (or is allowed to become depleted
below 2.7 Vdc and CR1000 primary power is removed), the CRBasic
program and most settings are maintained, but the following are lost:

o Run-now and run-on power-up settings.

o Routing and communication logs (relearned without user
intervention).

o Time. Clock will need resetting when the battery is replaced.
o Final-memory data tables.
A replacement lithium battery can be purchased from Campbell Scientific or

another supplier. Table Internal Lithium Battery Specifications (p. 484 lists battery
part numbers and key specifications.

TABLE 112: Internal Lithium Battery Specifications

Manufacturer Tadiran
Tadiran Model Number TL-5902/S
Campbell Scientific, Inc. pn 13519
Voltage 3.6V
Capacity 1.2 Ah
Self-discharge rate 1%/year @ 20 °C
Operating temperature range —55t0 85 °C

When reassembling the module to the wiring panel, check that the module is fully
seated or connected to the wiring panel by firmly pressing them together by hand.

484

Section 9. Maintenance — Details

FIGURE 115: Loosen Retention Screws

Fully loosen (only loosen) the two knurled thumbscrews. They will remain
attached to the module.

485

Section 9. Maintenance — Details

FIGURE 116: Pull Edge Away from Panel

Pull one edge of the canister away from the wiring panel to loosen it from three
internal connector seatings.

FIGURE 117: Remove Nuts to Disassemble Canister

486

Section 9. Maintenance — Details

Remove six nuts, then open the clam shell.

FIGURE 118: Remove and Replace Battery

Remove the lithium battery by gently prying it out with a small flat point
screwdriver. Reverse the disassembly procedure to reassemble the CR1000.
Take particular care to ensure the canister is reseated tightly into the three
connectors.

9.3 Factory Calibration or Repair Procedure

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

If sending the CR1000 to Campbell Scientific for calibration or repair, consult
first with a Campbell Scientific support engineer. If the CR1000 is
malfunctioning, be prepared to perform some troubleshooting procedures while
on the phone with the support engineer. Many problems can be resolved with a
telephone conversation. If calibration or repair is needed, the following
procedures should be followed when sending the product:

Products may not be returned without prior authorization. The following contact
information is for US and International customers residing in countries served by
Campbell Scientific, Inc. directly. Affiliate companies handle repairs for
customers within their territories. Please visit www.campbellsci.com to determine
which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-9000. After a support engineer determines

487

488

Section 9. Maintenance — Details

the nature of the problem, an RMA number will be issued. Please write this
number clearly on the outside of the shipping container. Campbell Scientific's
shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and
Decontamination" form and comply with the requirements specified in it. The
form is available from our web site at www.campbellsci.com/repair. A completed
form must be either emailed to repair@campbellsci.com or faxed to
435-227-9106. Campbell Scientific is unable to process any returns until we
receive this form. If the form is not received within three days of product receipt
or is incomplete, the product will be returned to the customer at the customer's
expense. Campbell Scientific reserves the right to refuse service on products that
were exposed to contaminants that may cause health or safety concerns for our
employees.

10. Troubleshooting

If a system is not operating properly, please contact a Campbell Scientific support
engineer for assistance. When using sensors, peripheral devices, or comms
hardware, look to the manuals for those products for additional help.

Note If a Campbell Scientific product needs to be returned for repair or
recalibration, a Return Materials Authorization (p. 5 number is first required.
Please contact a Campbell Scientific support engineer.

10.1 Troubleshooting — Essential Tools

e Multimeter (combination volt meter and resistance meter). Inexpensive
($20.00) meters are useful. The more expensive meters have additional
modes of operation that are useful in some situations.

e (Cell or satellite phone with contact information for Campbell Scientific
support engineers. Establish a current contact at Campbell Scientific
before going to the field. A support engineer may be able to provide
you with information that will better prepare you for the field visit.

e Product documentation in a reliable format and easily readable at the
installation site. Sun glare, dust, and moisture often make electronic
media difficult to use and unreliable.

10.2 Troubleshooting — Basic Procedure

1. Check the voltage of the primary power source at the POWER IN terminals
on the face of the CR1000.

2. Check wires and cables for the following:
o Loose connection points
o Faulty connectors
o Cut wires

o Damaged insulation, which allows water to migrate into the cable.
Water, whether or not it comes in contact with wire, can cause
system failure. Water may increase the dielectric constant of the
cable sufficiently to imped sensor signals, or it may migrate into the
sensor, which will damage sensor electronics.

3. Check the CRBasic program. If the program was written solely with Short
Cut, the program is probably not the source of the problem. If the program was
written or edited with CRBasic Editor, logic and syntax errors could easily
have crept into the code. To troubleshoot, create a stripped down version of
the program, or break it up into multiple smaller units to test individually. For

489

490

Section 10. Troubleshooting

example, if a sensor signal-to-data conversion is faulty, create a program that
only measures that sensor and stores the data, absent from all other inputs and
data. Write these mini-programs before going to the field, if possible.

10.3 Troubleshooting — Error Sources

Data acquisition systems are complex, the possible configurations endless, and
permutations mind boggling. Nevertheless, by using a systematic approach using
the principle of independent verification, the root cause of most errors can be
determined and remedies put into effect.

Errors are indicated by multiple means, a few of which actually communicate
using the word Error. Things that indicate that a closer look should be taken
include:

e Error
e NAN
e INF

e Rapidly changing measurements
e Incorrect measurements
These occur in different forms and in different places.

A key concept in troubleshooting is the concept of independent verification,
which is use of outside references to verify the function of dis-function of a
component of the system. For example, a multimeter is an independent
measurement device that can be used to check sensor signal, sensor resistance,
power supplies, cable continuity, excitation and control outputs, and so forth.

A very good place to start looking for trouble is in the data produced by the
system. At the root, you must be able to look at the data and determine if it falls
within a reasonable range. For example, consider an application measuring
photosynthetic photon flux (PPF). PPF ranges from 0 (dark) to about 2000
umoles m—2 s, If the measured value is less than 0 or greater than 2000, an
error is probably being introduced somewhere in the system. If the measured
value is 1000 at noon under a clear summer sky, an error is probably being

introduced somewhere in the system.
Error sources usually fall into one or more of the following categories:
e CRBasic program

o ifthe program was written completely by Short Cut, errors are very
rare.

o ifthe program was written or edited by a person, errors are much
more common.

Section 10. Troubleshooting

o Channel assignments, input-range codes, and measurement mode
arguments are common sources of error.

e Hardware
o Mis-wired sensors or power sources are common.
o Damaged hardware
o Water, humidity, lightning, voltage transients, EMF
o Visible symptoms
o Self-diagnostics
o Watchdog errors
e Firmware
o Operating system bugs are rare, but possible.
e Datalogger support software
o Bugs are uncommon, but do occur.

e Externally caused errors

10.4 Troubleshooting — Status Table

Information in the Status table lends insight into many problems. [Info Tables
and Settings (p. 553 documents Status table fields and provides some insights as to
how to use the information in troubleshooting.

Review Status Table as Debug Resource (p. 496). Many of these errors match up

with like-sounding errors in the Station Status utility in datalogger support
software.

10.5 Troubleshooting — CRBasic Programs
Analyze data soon after deployment to ensure the CR1000 is measuring and

storing data as intended. Most measurement and data-storage problems are a
result of one or more CRBasic program bugs.

10.5.1 Program Does Not Compile
Although the CRBasic Editor compiler states that a program compiles OK, the
program may not run or even compile in the CR1000. This is rare, but reasons

may include:

e The CR1000 has a different (usually older) operating system that is not
fully compatible with the PC compiler. Check the two versions if in

491

Section 10. Troubleshooting

doubt. The PC compiler version is shown on the first line of the
compile results.

e The program has large memory requirements for data tables or variables
and the CR1000 does not have adequate memory. This normally is
flagged at compile time, in the compile results. If this type of error
occurs, check the following:

o Copies of old programs on the CPU: drive. The CR1000 keeps
copies of all program files unless they are deleted, the drive is

formatted, or a new operating system is loaded with DevConfig (p.
107).

o That the USR: drive, if created, is not too large. The USR: drive
may be using memory needed for the program.

o that a program written for a4 MB CR1000 is being loaded into a 2
MB CR1000.

o that a memory card (CF) is not available when a program is
attempting to access the CRD: drive. This can only be a problem if
a TableFile() or CardOut() instruction is included in the program.

10.5.2 Program Compiles / Does Not Run Correctly

If the program compiles but does not run correctly, timing discrepancies are often
the cause. Neither CRBasic Editor nor the CR1000 compiler attempt to check
whether the CR1000 is fast enough to do all that the program specifies in the time
allocated. If a program is tight on time, look further at the execution times.

Check the measurement and processing times in the Status table (MeasureTime,
ProcessTime, MaxProcTime) for all scans, then try experimenting with the
InstructionTimes() instruction in the program. Analyzing InstructionTimes()
results can be difficult due to the multitasking nature of the logger, but it can be a
useful tool for fine tuning a program.

10.5.3 NAN and zINF

NAN (not-a-number) and £INF (infinite) are data words indicating an exceptional
occurrence in datalogger function or processing. NAN is a constant that can be
used in expressions as shown in the following code snip that sets a CRBasic
control feature (a flag) if the wind direction is NAN:

If WindDir = NAN Then
WDFlag = False

Else
WDFlag = True

EndIf

NAN can also be used in conjunction with the disable variable (DisableVar) in

output processing (data storage) instructions as shown in CRBasic example Using
NAN to Filter Data . 495).

492

Section 10. Troubleshooting

10.5.3.1 Measurements and NAN

A NAN indicates an invalid measurement.

10.5.3.1.1 Voltage Measurements

The CR1000 has the following user-selectable voltage ranges: 5000 mV, £2500
mV, £250 mV, and £25 mV. Input signals that exceed these ranges result in an
over-range indicated by a NAN for the measured result. With auto range to
automatically select the best input range, a NAN indicates that either one or both
of the two measurements in the auto-range sequence over ranged. See
Troubleshooting — Auto Self-Calibration Errors.

A voltage input not connected to a sensor is floating and the resulting measured
voltage often remains near the voltage of the previous measurement. Floating
measurements tend to wander in time, and can mimic a valid measurement. The

C (open input detect/common-mode null) range-code option is used to force a
NAN result for open (floating) inputs.

10.5.3.1.2 SDI-12 Measurements

NAN is loaded into the first SDI12Recorder() variable under the following
conditions:

e CRI1000 is busy with terminal commands
e When the command is an invalid command.
e When the sensor aborts with CR LF and there is no data.

e When 0 is returned for the number of values in response to the M! or C!
command.

10.5.3.2 Floating-Point Math, NAN, and *INF

Related Topics:

» Floating-Point Arithmetic (p. 165)

* Floating-Point Math, NAN, and £INF (p. 493)

* TABLE: Data Types in Variable Memory (p. 132)

Table Math Expressions and CRBasic Results (p. 494 lists math expressions, their
CRBasic form, and IEEE floating point-math result loaded into variables declared
as FLOAT or STRING.

10.5.3.3 Data Types, NAN, and *INF

NAN and £INF are presented differently depending on the declared-variable data
type. Further, they are recorded differently depending on the final-memory data
type chosen compounded with the declared-variable data type used as the source

493

Section 10. Troubleshooting

(TABLE: Variable and FS Data Types with NAN and £INF . 494)). For example,
INF, in a variable declared As LONG, is represented by the integer
—2147483648. When that variable is used as the source, the final-memory word
when sampled as UINT?2 is stored as 0.

TABLE 113: Math Expressions and CRBasic Results

Expression CRBasic Expression Result
0/0 0/0 NAN
00 — 00 @as0-@a/o0o NAN
1= 1A 1/ 0 NAN
0e—o0 0-(¢C1- @/ o NAN

400 / 400 @as0/@/0 NAN
1” 1A@/ 0 NAN
0e 0- @/ 0 NAN
x/0 1/0 INF
x/-0 1/ -0 INF
-x/0 -1/0 -INF
-x /-0 -1/ -0 -INF
oo? (1/0 A0 INF
0* 0A @/ 0 0
0° 0AO0 1

494

Section 10. Troubleshooting

TABLE 114: Variable and Final-Storage Data Types with NAN and £INF

Final-Storage Data Type & Associated Stored Values

Test Public /
Variable | Expressio Dim
Type n Variables | FP2 IEEE4 UINT2 UNIT4 STRING | BOOL | BOOL8 LONG
As 1/0 INF INF1 INF1 655352 | 4294967295 +INF TRUE TRUE 2,147,483,647
FLOAT T
0/0 NAN NAN NAN 0 2147483648 NAN TRUE TRUE -2,147,483,648
L 3; G 1/0 2’147’;‘83’64 7999 | 2.147484E09 | 65535 | 2147483647 | 2147483647 | TRUE TRUE 2,147,483,647
0/0 '2’147;;483 64| 7999 '2‘1479484'30 0 2147483648 | -2147483648 | TRUE TRUE -2,147,483,648
As
1/0 TRUE -1 -1 65535 | 4294967295 -1 TRUE TRUE -1
Boolean
0/0 TRUE -1 -1 65535 | 4294967295 -1 TRUE TRUE -1
As 1/0 +INF INF INF 65535 | 2147483647 +INF TRUE TRUE 2147483647
STRING
0/0 NAN NAN NAN 03 2147483648 NAN TRUE TRUE -2147483648

' Except Average() outputs NAN
2 Except Average() outputs 0
3 65535 in operating systems prior to v. 28

10.5.3.4 Output Processing and NAN

When a measurement or process results in NAN, any output process with
DisableVar = FALSE that includes an NAN measurement. For example,

Average(1l,TC_TempC,FP2,False)
will result in NAN being stored as final-storage data for that interval.

However, if DisableVar is set to TRUE each time a measurement results in NAN,
only non-NAN measurements will be included in the output process. CRBasic
example Using NAN to Filter Data (p. 495 demonstrates the use of conditional
statements to set DisableVar to TRUE as needed to filter NAN from output
processes.

Note If all measurements result in NAN, NAN will be stored as
final-storage data regardless of the use of DisableVar.

495

496

Section 10. Troubleshooting

CRBasic EXAMPLE 74: Using NAN to Filter Data

'This program example demonstrates the use of NAN to filter what data are used in output processing
functions such as

'averages, maxima, and minima.

'Declare Variables and Units
Public TC_RefC

PubTic TC_TempC

PubTic DisVar As Boolean

'Define Data Tables
DataTable(TempC_Data,True,-1)

DataInterval(0,30,Sec,10)

Average(1,TC_TempC,FP2,DisVar) "Output process
EndTable

'Main Program
BeginProg
Scan(1,Sec,1,0)

'Measure Thermocouple Reference Temperature
PanelTemp (TC_RefC,250)

'Measure Thermocouple Temperature
TCDiff(TC_TempC,1,mvV2_5,1,TypeT,TC_RefC,True,0,250,1.0,0)

'DisVar Filter

If TC_TempC = NAN Then
DisVar = True

Else
DisVar = False

EndIf

"Call Data Tables and Store Data
CallTable(TempC_Data)

NextScan

EndProg

10.5.4 Status Table as Debug Resource

Related Topics:

» Info Tables and Settings (p. 553)

* Common Uses of the Status Table (p. 555)
» Status Table as Debug Resource (p. 496)

Consult the CR1000 Status table when developing a program or when a problem
with a program is suspected. Critical Status table fields to review include
CompileResults, SkippedScan, SkippedSlowScan, SkippedRecord,
ProgErrors, MemoryFree, VarOutOfBounds, WatchdogErrors and
Calibration.

Section 10. Troubleshooting

10.5.4.1 CompileResults

CompileResults reports messages generated by the CR1000 at program upload
and compile-time. Messages may also added as the program runs. Error
messages may not be obvious because the display is limited. Much of this
information is more easily accessed through the datalogger support software (p. 89
station status report. The message reports the following:

e program compiled OK

e warnings about possible problems

e run-time errors

e variables that caused out-of-bounds conditions
e watchdog information

° memory errors

Warning messages are posted by the CRBasic compiler to advise that some
expected feature may not work. Warnings are different from error messages in
that the program will still operate when a warning condition is identified.

A rare error is indicated by mem3 fail type messages. These messages can be
caused by random internal memory corruption. When seen on a regular basis with
a given program, an operating system error is indicated. Mem3 fail messages are
not caused by user error, and only rarely by a hardware fault. Report any
occurrence of this error to a Campbell Scientific support engineer, especially if
the problem is reproducible. Any program generating these errors is unlikely to be
running correctly.

Examples of some of the more common warning messages are listed in table
Warning Message Examples (p. 497).

TABLE 115: Warning Message Examples

Message

Meaning

e CPU:DEFAULT.CRI1 --
Compiled in PipelineMode.

e Error(s) in
CPU:NewProg.CR1:

e line 13: Undeclared variable
Battvolt.

A new program sent to the datalogger failed to compile, and the datalogger
reverted to running DEFAULT.crl.

Warning: Cannot open include
file CPU: Filename.cr1

The filename in the Include instruction does not match any file found on
the specified drive. Since it was not found, the portion of code referenced
by Include will not be executed.

Warning: Cannot open voice.txt

voice.txt, a file required for use with a COM310 voice phone modem, was
not found on the CPU: drive.

Warning: COM310 word list

The Phrases parameter of the VoicePhrases() instruction was assigned a
variable name instead of the required string of comma-separated words

497

498

Section 10. Troubleshooting

TABLE 115: Warning Message Examples

Message

Meaning

cannot be a variable.

from the Voice. TXT file.

Warning: Compact Flash
Module not detected: CardOut not
used.

CardOut() instructions in the program will be ignored because no memory
card was detected when the program compiled.

Warning: EndIf never reached at
runtime.

Program will never execute the EndIf instruction. In this case, the cause is
a Scan() with a Count parameter of 0, which creates an infinite loop within
the program logic.

Warning: Internal Data Storage
Memory was re-initialized.

Sending a new program has caused final-memory to be re-allocated.
Previous data are no longer accessible.

Warning: Machine
self-calibration failed.

Indicates a problem with the analog measurement hardware during the auto
self-calibration. An invalid external sensor signal applying a voltage
beyond the internal £8 Vdc supplies on a voltage input can induce this
error. Removing the offending signal and powering up the logger will
initiate a new auto self-calibration. If the error does not occur on power-up,
the problem is corrected. If no invalid external signals are present and / or
auto self-calibration fails again on power-up, the CR1000 should be
repaired by a qualified technician.

Warning: Slow Seq 1, Scan 1,
will skip scans if running with
Scan 1

SlowSequence scan rate is <= main scan rate. This will cause skipped
scans on the SlowSequence.

Warning: Table [tablename] is
declared but never called.

No data will be stored in [tablename] because there is no CallTable()
instruction in the program that references that table.

Warning: Units:
a_units_name_that_is_more_than
_38 chara... too long will be
truncated to 38 chars.

The label assigned with the Units argument is too long and will be
truncated to the maximum allowed length.

Warning: Voice word TEH is not
in Voice. TXT file

The misspelled word TEH in the VoiceSpeak() instruction is not found in
Voice. TXT file and will not be spoken by the voice modem.

Voltage calibration failure!

Loose wire probably of a bridge sensor such as a wind vane or pressure
transducer

10.5.4.2 SkippedScan

Skipped scans are caused by long programs with short scan intervals, multiple
Scan() / NextScan instructions outside a SubScan() or SlowSequence, frame
errors, or by other operations that occupy the processor at scan start time.
Occasional skipped scans may be acceptable but should be avoided. Skipped
scans may compromise frequency measurements made on terminals configured

for pulse input.

The error occurs because counts from a scan and subsequent

skipped scans are regarded by the CR1000 as having occurred during a single
scan. The measured frequency can be much higher than actual. Be careful that

Section 10. Troubleshooting

scans that store data are not skipped. If any scan skips repeatedly, optimization
of the datalogger program or reduction of on-line processing may be necessary.

Skipped scans in Pipeline Mode indicate an increase in the maximum buffer depth
is needed. Try increasing the number of scan buffers (third parameter of the

Scan() instruction) to a value greater than that shown in the MaxBuffDepth
register in the Status table.

10.5.4.3 SkippedSystemScan

The CR1000 automatically runs a slow sequence to update the calibration table.
When the calibration slow sequence skips, the CR1000 will try to repeat that step
of the calibration process next time around. This simply extends calibration time.

10.5.4.4 SkippedRecord

SkippedRecord is normally incremented when a write-to-data-table event is
skipped, which usually occurs because a scan is skipped. SkippedRecord is not
incremented by all events that leave gaps in data, including cycling power to the
CR1000.

10.5.4.5ProgErrors

Should be 0. If not, investigate.

10.5.4.6 MemoryFree

A number less than 4 kB is too small and may lead to memory-buffer related
errors.

10.5.4.7 VarOutOfBounds

Related Topics:
» Declaring Arrays (p. 139)
» VarOutOfBounds (p. 499)

When programming with variable arrays, care must be taken to match the array
size to the demands of the program. For example, if an operation attempts to
write to 16 elements in array ExArray(), but ExArray() was declared with 15
elements (for example, Public ExArray(15)), the VarOutOfBound runtime error
counter is incremented in the Status table each time the absence of a sixteenth
element is encountered.

The CR1000 attempts to catch VarOutOfBound errors at compile time (not to be
confused with the CRBasic Editor pre-compiler, which does not). When a
VarOutOfBound error is detected at compile time, the CR1000 attempts to
document which variable is out of bounds at the end of the CompileResults
message in the Status table. For example, the CR1000 may detect that
ExArray() is not large enough and write Warning:Variable ExArray out of
bounds to the CompileErrors field.

499

500

Section 10. Troubleshooting

The CR1000 does not catch all out-of-bounds errors, so take care that all arrays
are sized as needed.

10.5.4.8 Watchdog Errors

Watchdog errors indicate the CR1000 has crashed and reset itself. A few
watchdogs indicate the CR1000 is working as designed and are not a concern.

Following are possible root causes sorted in order of most to least probable:
e Transient voltage
e Running the CRBasic program very fast
e Many PortSet() instructions back-to-back with no delay

e High-speed serial data on multiple ports with very large data packets or
bursts of data

If any of the previous are not the apparent cause, contact a Campbell Scientific
support engineer for assistance. Causes that require assistance include the
following:

e Memory corruption. Check for memory failures with M command in
terminal mode . 509).

e Operating-system problem
e Hardware problem

Watchdog errors may cause comms disruptions, which can make diagnosis and
remediation difficult. The CR1000KD Keyboard/Display will often work as a
user interface when comms fail. Information on CR1000 crashes may be found
in three places.

e WatchdogErrors (. 579 field in the Status table

e Watchdog.txt file on the CPU: drive p. 431. Some time may elapse
between when the error occurred and the Watchdog.txt file is created.
Not all errors cause a file to be created. Any time a watchdog.txt file is
created, please consult with a Campbell Scientific support engineer.

e Crash information may be posted at the end of the CompileResults (.
565) register in the Status table.

10.5.4.8.1 Status Table WatchdogErrors

Non-zero indicates the CR1000 has crashed, which can be caused by power or
transient-voltage problems, or an operating-system or hardware problem. If
power or transient problems are ruled out, the CR1000 probably needs an
operating-system update or repair (. 5 by Campbell Scientific.

Section 10. Troubleshooting

10.5.4.8.2 Watchdoginfo.txt File

A Watchdoglnfo.txt file is created on the CPU: drive when the CR1000
experiences a software reset (as opposed to a hardware reset that increment the
WatchdogError field in the Status table). Postings of WatchdoglInfo.txt files
are rare. Please consult with a Campbell Scientific support engineer at any
occurrence.

Debugging beyond identifying the source of the watchdog is quite involved.
Please contact a Campbell Scientific support engineer for assistance. Key things
to look for include the following:

e Are multiple tasks waiting for the same resource? This is always caused
by a software bug.

e In newer operating systems, there is information about the memory
regions. If anything like ColorX: fail is seen, this means that the
memory is corrupted.

e The comms memory information can also be a clue for PakBus and TCP
triggered watchdogs. For example, if COM1 is the source of the
watchdog, knowing exactly what is connected to the port and at what
baud rate and frequency (how often) the port is communicating are
valuable pieces of information.

10.6 Troubleshooting — Operating Systems

Updating the CR1000 operating system will sometimes fix a problem. Operating
systems are available, free of charge, at www.campbellsci.com/downloads.

Operating systems undergo extensive testing prior to release by a professional
team of product testers. However, the function of any new component to a data
acquisition system should be thoroughly examined and tested by the integrator
and end user.

10.7 Troubleshooting — Auto Self-Calibration Errors

Related Topics

» Auto Self-Calibration — Overview (p. 91)

» Auto Self-Calibration — Details (p. 358)

» Auto Self-Calibration — Errors (p. 501)

» Offset Voltage Compensation (p. 333)

» Factory Calibration (p. 88)

» Factory Calibration or Repair Procedure (p. 487)

Auto-calibration errors are rare. When they do occur, the cause is usually an
analog input that exceeds the input limits of the CR1000.

e Check all analog inputs to make sure they are not greater than +5 Vdc by
measuring the voltage between the input and a G terminal. Do this with
a multi-meter (p. 532).

501

502

Section 10. Troubleshooting

e Check for condensation, which can sometimes cause leakage from a 12
Vdc source terminal into other places.

e Check for a lose ground wire on a sensor powered from a 12V or SW12
terminal.

e [Ifa multimeter is not available, disconnect sensors, one at a time, that
require power from 9 to 16 Vdc. If measurements return to normal, you
have found the cause.

10.8 Troubleshooting — Communications

10.8.1 RS-232

With newer system, USB enumeration can be a big problem. For example, if
your PC is supporting three external screens, a keyboard, a mouse, and other USB
connections, such as your datalogger connection, on a USB expansion box, the set
up is rife with potential for enumeration mishaps. The best way to resolve a USB
problem with a datalogger connection is to remove as many USB devices as
possible, completely power down the system (disconnect the system from AC
power and UPS devices, then power the system back up, then connect the
datalogger, check that it is working with the support software, then reconnect all
other devices one by one.

On system using nine-pin serial connections, a simple way to test a PC serial port
is to physically connect pin 2 on the serial port with pin 3. This connects the
transmit to the receive. Using a terminal emulator, you should be able to type a
character on the PC keyboard and have it show up on the terminal emulator
screen. If it does not show up, you either have the wrong com port selected in the
terminal emulator set up, or there may be some other program commandeering the
serial port.

Baud rate mis-match between the CR1000 and datalogger support sofitware . 89)
is often the cause of communication problems. By default, CR1000 baud rate
auto-adjusts to match that of the software. However, settings changed in the
CR1000 to accommodate a specific RS-232 device, such as a smart sensor,
display or modem, may confine the RS-232 port to a single baud rate. If the baud
rate can be guessed at and entered into support software parameters,
communications may be established. Once communications are established,
CR1000 baud rate settings can be changed. Clues as to what the baud rate may
be set at can be found by analyzing current and previous CR1000 programs for
the SerialOpen() instruction, since SerialOpen() specifies a baud rate.
Documentation provided by the manufacturer of the previous RS-232 device may
also hint at the baud rate.

10.8.2 Communicating with Multiple PCs

The CR1000 can communicate with multiple PCs simultaneously. For example,
the CR1000 may be a node of an internet PakBus network communicating with a
distant instance of LoggerNet. An onsite technician can communicate with the

CR1000 using PC200W with a serial connection, so long as the PakBus addresses

Section 10. Troubleshooting

of the host PCs are different. All Campbell Scientific datalogger support
software include an option to change PC PakBus addressing.

See CommMemFree (p. 564).

10.8.3 Comms Memory Errors

The status array CommsMemFree() . 564, p. 565, p. 565) may indicate when a
communication memory error occurs. If any of the three CommsMemFree()
array fields are at or near zero, assistance may be required from Campbell
Scientific.

10.9 Troubleshooting — Power Supplies

Related Topics:

» Power Input Terminals — Specifications

» Power Supplies — Quickstart (p. 37)

* Power Supplies — Overview (p. 85)

* Power Supplies — Details (p. 98)

* Power Supplies — Products (p. 605)

» Power Sources (p. 99

» Troubleshooting — Power Supplies (p. 503)

10.9.1 Troubleshooting Power Supplies — Overview

Power-supply systems may include batteries, charging regulators, and a primary
power source such as solar panels or ac/ac or ac/dc transformers attached to mains
power. All components may need to be checked if the power supply is not
functioning properly.
Check connections. Check polarity of connections.
Base diagnostic: connect the datalogger to a new 12 V battery (a small 12 V
battery carrying a full charge would be a good thing to carry in your
troubleshooting tool kit). Watch the polarity of the connection. + to +, —to —.
If the datalogger powers up and works, troubleshoot the datalogger power supply.
Troubleshooting Power Supplies — Procedures (. 504) includes the following
flowcharts for diagnosing or adjusting power equipment supplied by Campbell
Scientific:

e Battery-voltage test

e Charging-circuit test (when using an unregulated solar panel)

e Charging-circuit test (when using a transformer)

e Adjusting charging circuit

503

Section 10. Troubleshooting

If power supply components are working properly and the system has peripherals
with high current drain, such as a satellite transmitter, verify that the power supply
is designed to provide adequate power. Information on power supplies available
from Campbell Scientific can be obtained at www.campbellsci.com. Basic
information is available in Power Supplies — List (p. 603).

10.9.2 Troubleshooting Power Supplies — Examples

Symptom:

o CRBasic program does not execute.

o Low12VCount of the Status table displays a large number.
Possible affected equipment:

o Batteries

o Charger/regulators

o Solar panels

o Transformers
Likely causes:

o Batteries may need to be replaced or recharged.

o Charger/regulators may need to be fixed or re-calibrated.

o Solar panels or transformers may need to be fixed or replaced.

10.9.3 Troubleshooting Power Supplies — Procedures
Required Equipment:
o Voltmeter
o 5KkQ resistor

o 50 9Q, 1 watt resistor for the charging circuit tests and to adjust the
charging circuit voltage.

10.9.3.1 Battery Test

The procedure outlined in this flow chart tests sealed-rechargeable or alkaline
batteries in the PS100 charging regulator, or a sealed-rechargeable battery
attached to a CH100 charging regulator. If a need for repair is indicated after
following the procedure, see Assistance (. 5) for information on sending items to
Campbell Scientific.

504

Section 10. Troubleshooting

Battery Test
If using a rechargeable power supply,
disconnect the charging source (i.e., solar panel
or ac transformer) from the battery pack. Wait
20 minutes before proceeding with this test.

Test Voltage at Charging Regulator

Set a voltmeter to read dc voltage as high as 15
V. Measure the voltage between a 12V and G
terminal on the charging regulator.

Is the voltage > 11.0 Vdc?

Yes

Test the Battery Under Load
Program the CR1000 to measure battery
voltage using a 0.01-second scan rate. Use the
voltmeter to measure the voltage between a
12V and G terminal on the charging regulator.
Is the voltage > 10.8 Vdc?

Is the battery voltage > 12 Vdc?

Replace battery / batteries*

Battery voltage is adequate for CR1000 operation. However, if the CR1000 is to function for a long
period, Campbell Scientific recommends replacing, or, if using a sealed, rechargeable battery,

No
Is the battery a sealed, rechargeable
battery?
No No
Yes
Is the voltage > 10.5 Vdc?
No
Yes
Recharge battery*
No

Yes

The battery is good.

recharging the battery so the voltage is > 12 Vdc.

*When using a sealed, rechargeable battery that is recharged with primary power provided by solar panel or ac/ac - ac/dc transformer, testing the charging regulator
is recommended. See Charging Regulator with Solar Panel Test (p. 505) or Charging Regulator with Transformer Test (p. 507).

10.9.3.2 Charging Regulator with Solar Panel Test

The procedure outlined in this flow chart tests PS100 and CH100 charging
regulators that use solar panels as the power source. If a need for repair is
indicated after following the procedure, see Assistance (p. 5) for information on

sending items to Campbell Scientific.

505

Section 10. Troubleshooting

Charging Regulator with Solar-Panel Test

Disconnect any wires attached to the 12V and G (ground) terminals on the PS100 or CH100 charging regulator. Unplug any batteries. Connect the solar panel to the two CHG terminals.
Polarity of inputs does not matter. Only the solar panel should be connected. Set the charging-regulator power switch to OFF.

NOTE This test assumes the solar panel has an unregulated output.

Solar Panel Test
Set a voltmeter to measure dc voltage. Measure solar panel output
across the two solar-panel leads by placing a voltmeter lead on one
CHG terminal, and the other lead on the other CHG terminal. Is the
output 17 to 22 Vdc?

No

Remove the solar-panel leads from the
charging circuit. Measure solar-panel
output across the two leads. Is the output
>0 Vdc?

Is the voltage > 17 Vdc?

The solar panel is damaged and should
be repaired or replaced.

5 kQ Load Test

1) Place a 5 kQ resistor between a 12V terminal and a G (ground)
terminal on the charging regulator.

2) Switch the power switch to ON.
3) Measure the dc voltage across the resistor.
Is the measured voltage 13.3 to 14.1 V?

Reconnect the power source (transformer /
solar panel) to the CHG terminals on the
charging regulator. Measure the voltage
between the two CHG terminals. Is the
voltage > 17 Vdc / Vac?

There may not be enough sunlight to
perform the test, or the solar panel is
damaged.

Yes

50 Q Load Test

1) Switch the power switch to OFF.

2) Disconnect the power source (transformer / solar panel).

3) Remove the 5 kQ resistor

4) Place a 50 Q, 1 W resistor between a 12V terminal anda G
(ground) terminal on the charging regulator.

5) Reconnect the power source and then switch the power switch to
ON.

7) Measure the voltage across the ends of the resistor.

Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?

8) Switch the power switch to OFF.
NOTE The resistor will get HOT in just a few seconds. After

measuring the voltage, switch the power switch to OFF and allow the
resistor to cool before removing it.

Measure the voltage between the two pins
in a battery-connection receptacle. Is the
voltage 10.0 to 15.5 Vdc?

No

See Adjusting Charging Voltage (p. 508)
to calibrate the charging regulator, or
return the charging regulator to Campbell
Scientific for calibration.

Test Completed
The charger is functioning
properly. Remove the 50 Q
resistor.

506

No

With the charging regulator still under
load, measure the voltage between the two
CHG terminals. Is the voltage > 15.5
Vdc?

There may not be enough sunlight to
perform the test.

Get Repair Authorization

The charging regulator is damaged and
should be repaired or replaced.

Section 10. Troubleshooting

10.9.3.3 Charging Regulator with Transformer Test

The procedure outlined in this flow chart tests PS100 and CH100 charging
regulators that use ac/ac or ac/dc transformers as power source. If a need for
repair is indicated after following the procedure, see Assistance . 5) for

information on sending items to Campbell Scientific.

Charging Regulator with ac or dc Transformer Test

Disconnect any wires attached to the 12V and G (ground) terminals on the PS100 or CH100 charging regulator. Unplug any batteries. Connect the power input ac or dc transformer to the two
CHG terminals. Polarity of the inputs does not matter. Only the transformer should be connected. Set the charging-regulator power switch to OFF. Connect the transformer to mains power.

Transformer Test

Taking care not to short the

The transformer is damaged and

Get Repair Authorization

The charging regulator is damaged
and should be repaired or replaced.

Determine whether the transformer output is ac or dc voltage (labeling on the transformer lchs, remove the leads should be replaced.
transformer usually identifies the output voltage type). Set a voltmeter to read that from the charging regulator. Measure
type of voltage. Measure transformer output across the two transformer leads by No transformer output across the two No
placing a voltmeter lead on one CHG terminal, and the other lead on the other leads. Is the output 17 to 22 Vac /
CHG terminal. Is the output 17 to 22 volts? Vde?
Yes Yes
Reconnect the power source
(transformer / solar panel) to the
CHG terminals on the charging
regulator. Measure the voltage
between the two CHG terminals. Is | N
the voltage > 17 Vdc / Vac?
Yes
5 kQ Load Test Measure the voltage between the two
1) Place a 5 kQ resistor between a 12V terminal and a G (ground) terminal on the pins in a battery-connection
charging regulator. receptacle. Is the voltage 10.0 to 15.5
. . Vde?
2)S .
) Switch the power switch to ON. A No No
3) Measure the dc voltage across the resistor.
Is the measured voltage 13.3 to 14.1 V?
Yes Yes
50 Q Load Test See Adjusting Charging Voltage (p.
1) Switch the power switch to OFF. 308) to calibrate the charglng
regulator, or return the charging
2) Disconnect the power source (transformer / solar panel). regulator to Campbell Scientific for
3) Remove the 5 kQ resistor calibration.
4) Place a 50 Q, 1 W resistor between a 12V terminal and a G (ground) terminal
on the charging regulator.
5) Reconnect the power source and then switch the power switch to ON.
7) Measure the voltage across the ends of the resistor.
Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?
8) Switch the power switch to OFF.
NOTE The resistor will get HOT in just a few seconds. After measuring the N
o

voltage, switch the power switch to OFF and allow the resistor to cool before
removing it.

Yes

Test Completed
The charger is functioning properly. Remove the 50 Q resistor.

507

Section 10. Troubleshooting

508

10.9.3.4 Adjusting Charging Voltage

Note Campbell Scientific recommends that a qualified electronic
technician perform the following procedure.

The procedure outlined in this flow chart tests and adjusts PS100 and CH100

charging regulators.

If a need for repair or calibration is indicated after following

the procedure, see Assistance (. 5) for information on sending items to Campbell

Scientific.

Adjusting Charging Circuit

resistor.

of the charging regulator.

Regulators (p. 509)) so that voltage across the 5 kQ resistor is 13.3 Vdc.
Can the output voltage be set to 13.3 V?

1) Place a 5 kQ resistor between a 12V terminal and a G (ground) ground terminal
on the charging regulator. Use a voltmeter to measure the voltage across the 5 kQ

2) Connect a power source that supplies a voltage >17 V to the input CHG terminals

3) Adjust pot R3 (see FIGURE: Potentiometer R3 on PS100 and CHI100 Charging

No

50 Q Load Test
1) Switch the power switch to OFF.

2) Disconnect the power source (transformer / solar panel).
3) Remove the 5 kQ resistor

the charging regulator.

5) Reconnect the power source and then switch the power switch to ON.
7) Measure the voltage across the ends of the resistor.
Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?

8) Switch the power switch to OFF.

4) Place a 50 Q, 1 W resistor between a 12V terminal and a G (ground) terminal on | No

NOTE The resistor will get HOT in just a few seconds. After measuring the voltage,

switch the power switch to OFF and allow the resistor to cool before removing it.

Get Repair Authorization

The charging regulator is damaged and should be repaired
or replaced.

Yes

Test Completed
The charger is functioning properly. Remove the 50 Q resistor.

Section 10. Troubleshooting

FIGURE 119: Potentiometer R3 on PS100 and CH100 Charger / Regulator

D
==

10.10 Troubleshooting — Using Terminal Mode

Table CR1000 Terminal Commands (p. 510 lists terminal mode options. With
exception of perhaps the C command, terminal options are not necessary to
routine CR1000 operations.

To enter terminal mode, connect a PC to the CR1000 with the same hard-wire
serial connection used in What You Will Need . 40. Open a terminal emulator
program. Terminal emulator programs are available in:

e Campbell Scientific datalogger support software (p. 89 Terminal
Emulator . 545) window

e DevConfig (Campbell Scientific Device Configuration Utility Software)
Terminal tab

e HyperTerminal. Beginning with Windows Vista, HyperTerminal (or
another terminal emulator utility) must be acquired and installed
separately.

As shown in figure DevConfig Terminal Tab (p. 511), after entering a terminal
emulator, press Enter a few times until the prompt CR1000> is returned.
Terminal commands consist of a single character and Enter. Sending an H and
Enter will return the terminal emulator menu.

509

510

Section 10. Troubleshooting

ESC or a 40 second timeout will terminate on-going commands. Concurrent
terminal sessions are not allowed and will res