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ABSTRACT

The statistical properties of analysis and forecast errors from commonly used ensemble perturbation meth-
odologies are explored. A quasigeostrophic channel model is used, coupled with a 3D-variational data assimilation
scheme. A perfect model is assumed.

Three perturbation methodologies are considered. The breeding and singular-vector (SV) methods approximate
the strategies currently used at operational centers in the United States and Europe, respectively. The perturbed
observation (PO) methodology approximates a random sample from the analysis probability density function
(pdf ) and is similar to the method performed at the Canadian Meteorological Centre. Initial conditions for the
PO ensemble are analyses from independent, parallel data assimilation cycles. Each assimilation cycle utilizes
observations perturbed by random noise whose statistics are consistent with observational error covariances.
Each member’s assimilation/forecast cycle is also started from a distinct initial condition.

Relative to breeding and SV, the PO method here produced analyses and forecasts with desirable statistical
characteristics. These include consistent rank histogram uniformity for all variables at all lead times, high spread/
skill correlations, and calibrated, reduced-error probabilistic forecasts. It achieved these improvements primarily
because 1) the ensemble mean of the PO initial conditions was more accurate than the mean of the bred or
singular-vector ensembles, which were centered on a less-skilful control initial condition—much of the im-
provement was lost when PO initial conditions were recentered on the control analysis; and 2) by construction,
the perturbed observation ensemble initial conditions permitted realistic variations in spread from day to day,
while bred and singular-vector perturbations did not. These results suggest that in the absence of model error,
an ensemble of initial conditions performs better when the initialization method is designed to produce random
samples from the analysis pdf. The perturbed observation method did this much more satisfactorily than either
the breeding or singular-vector methods.

The ability of the perturbed observation ensemble to sample randomly from the analysis pdf also suggests
that such an ensemble can provide useful information on forecast covariances and hence improve future data
assimilation techniques.

1. Introduction

Numerical weather forecasts exhibit deterministic
chaos (Lorenz 1963); small errors in the initial condition
can grow exponentially and eventually render a forecast
useless. Since perfect weather forecasts are thus unat-
tainable, forecast information is more appropriately ex-
pressed in a probabilistic framework, whereby the user
is provided with information on the likelihood of a range
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of forecast events. Such probabilistic forecasts are in-
creasingly desired by a wide range of forecast users
(e.g., Fritsch et al. 1998).

Ideally, probabilistic forecasts could be generated by
evolving the probability density function of the forecast
[the ‘‘Liouville’’ equation; Ehrendorfer (1994a,b)].
Such integrations for low-order dynamical systems typ-
ically reveal the initially sharp probability density func-
tion becoming increasingly diffuse with time. For nu-
merical weather prediction (NWP) models, however,
this approach is computationally unfeasible.

A computationally tractable method to approximate
the evolution of the probability density function (pdf )
is through ensemble forecasting. Here, a limited number
of forecasts are generated by integrating a numerical
forecast model forward in time multiple times from dis-
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tinct and plausible initial conditions (Leith 1974). The
mean of this ensemble of forecasts acts as a nonlinear
filter, averaging out the nonpredictable aspects of the
flow that vary from member to member and leaving the
aspects that tend to agree. Further, ideally, the relative
frequency of forecast model outcomes may be used to
generate calibrated probabilistic weather forecasts.

The best method for specifying a set of initial con-
ditions for ensembles of forecasts is still actively de-
bated, and pioneering efforts have focused more on the
dynamical characteristics of the initial condition than
on the statistical aspects. These ‘‘dynamically con-
strained’’ techniques add to a control forecast pertur-
bations that will grow or have grown rapidly. The pre-
sumption is that if a limited-size ensemble must be used,
forecasts from these perturbations are already spanning
the most important subspaces of the ensemble forecast.
To this end, the European Centre for Medium-Range
Weather Forecasts (ECMWF) has adopted a method
dubbed the ‘‘singular vector,’’ or SV, approach (Buizza
and Palmer 1995; Molteni et al. 1996). Singular-vector
perturbations are designed to maximize growth over a
finite time interval (typically, 2 days). The SV approach
uses an adjoint (Errico 1997) and linear tangent of the
forecast model to determine these growing directions,
and the perturbations are designed in this subspace. The
breeding technique, used at the National Centers for
Environmental Prediction (NCEP; Toth and Kalnay
1993, 1997), generates perturbations in directions where
past forecast errors have grown rapidly. This is achieved
by periodically renormalizing differences between
member forecasts, somewhat analogous to the procedure
used to determine the Lyapunov exponents and vectors
of a dynamical system (Wolf et al. 1985). Legras and
Vautard (1996) show that the breeding and SV tech-
niques are related through notions of ‘‘backward’’ and
‘‘forward’’ Lyapunov vectors.

Houtekamer and Derome (1995, hereafter HD95) in-
troduced a Monte Carlo perturbation methodology that
we shall refer to hereafter as the perturbed observation
(PO) method. This method does not produce dynami-
cally constrained perturbed initial conditions; rather, it
is designed to approximate a random sample from the
probability distribution for the true state at the same
analysis time ta, given1 all available observations for t
, ta. We will refer to this distribution as the analysis
pdf. To produce such samples, multiple, parallel data
assimilation cycles are performed, and the method sto-
chastically simulates errors in both the observations and
the first guess. In the context of this perfect model ex-
periment, for example, the first guess and the obser-
vations thus are treated probabilistically. The PO tech-
nique, using an ensemble Kalman filter for data assim-

1 In general, this distribution also depends on the forecast model,
the analysis scheme, and their errors.

ilation, has been shown to produce a random sample
from the correct distribution in the case that observa-
tional errors are Gaussian, dynamics are linear, and the
ensemble size is large (Burgers et al. 1998). In the case
examined here, dynamics are nonlinear, the PO tech-
nique is approximate (due to use of a three-dimensional
variational assimilation scheme), and the ensemble size
will be limited.

The relative merits of dynamically constrained versus
Monte Carlo methods are still unclear. Comparisons of
forecasts from the different operational forecast centers
are not particularly illuminating, since in addition to
different perturbation methodologies, the different cen-
ters use different analysis schemes, different forecast
models running at different resolutions, and differently
sized ensembles. Experiments using the same forecast
model provide some perspective. A comparison of the
use of dynamically constrained (SV and bred) versus
unconstrained (e.g., Mullen and Baumhefner 1989) per-
turbations was explored by Anderson (1997), who found
that more realistic forecasts could be obtained for the
Lorenz (1963) model from random perturbations than
from either of the dynamically constrained techniques.
Evidence from operational numerical weather prediction
models may suggest just the opposite (Toth and Kalnay
1993, 1997). HD95 found little difference in the skill
of ensemble mean forecasts from bred, PO, and SV
methodologies using a T21L3 quasigeostrophic (QG)
model.

Our intent in this article is to extend the HD95 com-
parison of perturbation methodologies. As in HD95, we
will compare ensemble-forecast characteristics pro-
duced from PO, bred, and (approximate) SV ensembles.
Rather than considering the accuracy of the ensemble
mean as in HD95, here we explore other aspects of
quality, evaluating them using rank histograms (An-
derson 1996; Hamill and Colucci 1997, 1998a), forecast
dispersion, spread–skill relationships, and the accuracy
of subsequent probabilistic forecasts. We will generate
approximate analogs to current implementations of the
breeding and SV techniques and compare them with the
PO technique.

An important ancillary result of this paper is that the
mean of the PO analyses may have lower rms error than
the control analysis (i.e., ensemble averaging is bene-
ficial, even at the analysis time). While we regard this
property as a potentially important benefit of the PO
technique, it is also of interest to understand whether
the PO technique has other desirable properties beyond
its better mean. Thus, we also construct an alternative
version of the PO ensembles in which the PO ensemble
initial conditions are recentered on a control initial con-
dition. This also permits more ready comparison with
the results in HD95.

All experiments here are conducted using a quasi-
geostrophic channel model in a perfect-model frame-
work; the same model is used to generate both the ref-
erence, or ‘‘true solution,’’ and the forecasts. A three-
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TABLE 1. Approximate model levels (mb).

Model level Pressure (mb)

0 (ub)
1
2
3
4
5
6
7
8
9 (ut)

1000
917
771
648
545
458
385
324
272
250

TABLE 2. Model parameters: U is the maximum velocity of the jet
in the zonal state toward which the solution is relaxed; N is the Brunt–
Väisälä frequncy; f is the Coriolis parameter; b is the meridional
gradient of f; n is the coefficient for fourth-order horizontal diffusion;
K is the vertical eddy viscosity assumed in the Ekman pumping; and
t is the relaxation time.

21U 5 60 m s
22 21N 5 1.13 3 10 s

21f 5 10 – 4 s
211 21 21b 5 1.6 3 10 m s

15 4 21n 5 1.24 3 10 m s
2 21K 5 5 m s

t 5 20 days

dimensional variational (3DVAR) data assimilation sys-
tem is used (Parrish and Derber 1992, hereafter PD92),
with simulated radiosondes assimilated every 12 h. A
reference control forecast is generated, and the bred and
SV perturbations are centered on this forecast. The PO
forecasts are then generated, and analyses and forecasts
are compared after an initial adjustment period.

Admittedly, the assumption of a perfect forecast mod-
el is not a realistic analog for actual numerical weather
prediction, where model error may be significant or even
dominant. However, the use of a perfect model permits
examination of perturbation methodologies in a manner
where all other complications are eliminated.

This paper is organized as follows: section 2 provides
a brief review of the quasigeostrophic model, the data
assimilation technique, and the observational network
to be used. Section 3 describes the perturbation strat-
egies as implemented in this model. Section 4 compares
analyses and subsequent forecasts from the bred, SV,
and PO techniques and explores some of the forecast
problems. Section 5 provides a discussion of the results,
and section 6 summarizes the results and implications.

2. Forecast model and data assimilation

a. The quasigeostrophic channel model

All experiments here were conducted in a perfect-
model framework using the quasigeostrophic model
used in Rotunno and Bao (1996) and Morss (1999). This
is a midlatitude, beta-plane, finite-difference, channel
model that is periodic in x (east–west), has impermeable
walls on the north and south boundaries, and rigid lids
at the top and bottom. Pseudo–potential vorticity (PV)
is conserved except for Ekman pumping at the surface,
¹4 horizontal diffusion, and forcing by relaxation to a
zonal mean state. There is no stationary asymmetric
forcing in the model such as land/sea contrasts or terrain.
For these experiments, the domain is 16 000 3 8000 3
9 km; there are 129 grid points east–west, 65 north–
south, and eight interior levels, with additional stag-
gered top and bottom levels (at z 5 0, 9 km) at which
potential temperature is specified (Table 1). For these
tests, the model performs 200 time steps per day. Ad-
ditional model parameters are given in Table 2. Sample

output of midtropospheric PV and geopotential height
for three sequential days are illustrated in Fig. 1.

To measure the magnitude of perturbations or errors,
three norms will be used here, the L2 norm, the total
energy norm, and the enstrophy norm. Given a geo-
potential perturbation F9, PV perturbation q9, and n
model grid points, the L2 norm is defined as

1/2n

21 21/2 2\ · \ 5 g n (F9) , (1)2 OL j[ ]j51

where g is the gravitational constant (9.8 m s21) and
the subscript j denotes a gridpoint index. The energy
norm and potential enstrophy norm (hereafter referred
to as simply the ‘‘enstrophy norm’’) are defined as

21 21/2\ · \ 5 f nenergy

1/22 2 2n 2]F9 ]F9 f ]F9
3 1 1O 25 1 2 1 2 1 2 6[ ]]x ]y N ]zj51 j j j

(2)
and

1/2n

21/2 2\ · \ 5 n q9 .Oenstrophy j1 2j51
(3)

Each norm emphasizes different scales of motion; the
L2 norm emphasizes errors in the larger scales, and the
enstrophy norm the errors in the smaller scales.

b. Observational network

All forecast experiments were carried out using the
observational network shown in Fig. 2. This network
configuration was chosen to mimic roughly some of the
characteristics of the current radiosonde network. Spe-
cifically, we introduced a data void for the eastern third
of the domain to simulate a poorly observed oceanic
region. Observation locations in the data-rich area were
selected sequentially and randomly, using a one-dimen-
sional Latin square algorithm (Press et al. 1992) that
enforces a minimum distance between observations. The
observational data density was specified so the error of
the control analysis (see section 2d) was ;7% of the
model climatological rms error, measured in the L2

norm. This magnitude of analysis error broadly agrees
with that of current analysis systems (e.g., Kalnay et al.
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FIG. 1. Illustration of truth run fields of PV (dashed) and geopo-
tential height (solid) at model level 4 on sequential days. Units are
m for geopotential height (Z ) and s22 for PV: (a) day 10, (b) day 11,
and (c) day 12.

FIG. 2. Observational network used for forecast experiments.

1996). As will be shown, however, analysis errors for
this observation network vary more in time than analysis
errors in operational models.

In these experiments, all observations were presumed
to be radiosondes (raob’s), with observational error
characteristics taken from PD92 and vertical observa-
tional error correlations from Bergman (1979). Further
details and the specific covariance matrices used are
shown in Morss (1999). For simplicity, observations
were required to be located at model grid points, and
representativeness error is subsumed into the observa-
tional error covariances.

c. Data assimilation methodology

All experiments employ a 3DVAR assimilation
scheme described in detail in Morss (1999). This scheme
assumes, following PD92, background error covariances
that are diagonal in spectral space; more specifically,
the scheme assumes that, if the background errors in
PV were expanded in horizontal trigonometric series,
the coefficients for each wavenumber pair and each
model level would be independent. In practice, we tuned
the covariances for each wavenumber to be consistent
with the 12-h forecast errors by calculating forecast er-
ror statistics over a long analysis/forecast cycle, mod-
ifying the covariances and repeating the process until
there was little change in the covariances.

d. The true solution and the control analyses

Our comparisons assume a perfect model; thus, the
true solution was computed using the same model at the
same resolution as is used for forecasts. The true so-
lution began from a localized disturbance on the spec-
ified zonal state used for relaxation of PV. The QG
model was then integrated for 300 days; the first 200
days of this integration, during which the solution is
approaching a turbulent statistical equilibrium, were dis-
carded, and the subsequent 90 days compose the true
solution employed in our experiments.

Given the true solution, a series of control analyses
and forecasts were made as follows: the first analysis
was simply the true solution contaminated by random
noise. Every 12 h thereafter, another analysis was made
with the 3DVAR scheme by assimilating a set of sound-
ings from the network of Fig. 2 and using the previous
12-h forecast as background. We call these (imperfect)
soundings, which are incorporated into the control anal-
ysis, the control observations. These soundings were
produced at each observation location by adding random
error to soundings from the true solution at the appro-
priate time. The random observation errors were gen-
erated consistent with the observation error covariances
given in section 2b; this was achieved by multiplying
random, normally distributed N(0, 1) numbers by the
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FIG. 3. Schematic illustrating the perturbed observation strategy as implemented here. Every
12 h, observations are generated from the truth run, and different sets of perturbed observations
are assimilated into each ensemble member.

product of the square root of the eigenvalues and their
respective eigenvectors of the observation error co-
variance matrix, as discussed in Houtekamer (1993).
This cycle was then repeated; another 12-h forecast was
generated from the control initial condition, and the data
were assimilated using 3DVAR.

3. Ensemble techniques

a. Perturbed observations

The goal of the PO method is to generate a set of
initial conditions that approximate a random sample
from the analysis pdf by stochastically simulating each
source of error in the analysis. To this end, the PO
technique generates an ensemble of parallel forecast–
data assimilation cycles with each cycle receiving
unique perturbed observations and unique initial con-
ditions. We start with an ensemble of N analyses at some
time t0. These analyses were generated by adding per-
turbations to a control analysis; the perturbations were
constructed from scaled differences between random
model states following Schubert and Suarez (1989). The
PO method then iterates the following three-step pro-
cedure: 1) Make N forecasts to the next analysis time;
for our implementation, the first step is to t0 1 12 h.
(2) For each of the N parallel cycles, generate N in-
dependent sets of perturbed observations valid at this
analysis time by adding noise to the control observa-
tions, with the noise added consistent with observational
error covariances. 3) Produce an objective analysis, up-

dating each of the N first guess fields using the asso-
ciated set of perturbed observations. Here, the data as-
similation scheme is 3DVAR. This procedure is sche-
matically illustrated in Fig. 3. A sample initial condition
and its differences from the PO ensemble mean initial
condition are shown in Fig. 4a.

The breeding and SV schemes construct initial con-
ditions by adding perturbations to a control analysis. To
provide a consistent benchmark for comparison, we also
constructed an alternative version of the PO analyses.
In this version of PO, the perturbation differences of
individual PO analyses from the mean of all PO analyses
were recentered on the control analysis (this is also what
is done operationally at the Canadian Meteorological
Centre). We shall refer to subsequent ensemble forecasts
as PO/recenter.

A more quantitative explanation for the rationale of
perturbing observations in the ensemble Kalman filter
is provided by Burgers et al. (1998), and the reader is
also referred to HD95 for other background on the PO
methodology.

b. The breeding method of generating ensemble
perturbations

The breeding method implemented here followed the
methodology outlined in Toth and Kalnay (1993, 1997;
Z. Toth 1998, personal communication). Perturbed ini-
tial conditions were generated in sets of ‘‘positive’’ and
‘‘negative’’ pairs around a control initial condition.
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FIG. 4. (a) Sample PO perturbed initial condition (heavy solid) and
difference from the ensemble mean initial condition (light solid and
dashed) for geopotential height Z at level 4 and time t 5 10 days
into assimilation experiment. Contours for differences are every 10
m, with dashes indicating negative differences. (b) Bred geopotential
height perturbed initial condition and deviation from the control anal-
ysis. (c) The SV perturbed initial condition and deviation from the
control.

FIG. 5. Time-averaged standard deviation of the PO ensemble analy-
sis about the ensemble mean geopotential height at model level 4.

Starting with random perturbations, short-term forecasts
were made (here, 12 h) for both members of a pair. The
difference in model level 4 (;500 mb) geopotential
height (Z 5 F/g) between the two paired forecasts was
smoothed with a Gaussian filter and the magnitude of
the differences was compared to an estimate of the cli-
matological analysis error. This estimate changed from
region to region based on the local observational data

density. If the difference exceeded twice the regional
estimate of analysis error, the difference field was scaled
back until the geopotential height difference was equal
to two times the estimated analysis error; if not, the
differences were unchanged. The perturbations were
then centered around the control analysis, creating the
positive and negative perturbation. The method was re-
peated for the remaining sets of pairs. Short-term fore-
casts were then generated for each ensemble member,
and the breeding method was repeated at the next anal-
ysis cycle.

As in the operational method, our implementation of
the breeding technique requires a map of the spatial
variation of typical analysis error (as in Fig. 6 of Toth
and Kalnay 1997). We produced an estimate of this from
the following: using the network from Fig. 2, the stan-
dard deviation of the PO ensemble about its mean mea-
sured in the L2 norm was calculated at each model level
4 grid point. This was done for a set of 20 separate
forecast case days four days apart from each other. Fig-
ure 5 illustrates this field of deviations, averaged over
all case days. Differences between bred pairs were mea-
sured relative to this field.

A sample bred perturbed initial condition and its dif-
ference from the control analysis are shown in Fig. 4b.

c. Approximate singular vectors

The SVs are the directions in phase space where
growth is maximized over a time interval t0 , t , t1.
The first SV maximizes, over all possible perturbations
to the control analysis at the initial time, amplification
in a chosen norm between times t0 and t1. The second
SV maximizes amplification in the subspace orthogonal
to the first SV, the third maximizes amplification in the
subspace orthogonal to that spanned by the first and
second, and so on. Here, we choose a time interval t1

2 t0 of 48 h and use the total energy norm.
We calculate perturbations that approximate the lead-

ing SVs by first constructing a larger set of perturbations
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FIG. 6. Subspace similarity index indicating the amount of projec-
tion of eigenvectors of ensembles of size 25, 50, 100, and 200 project
onto the subspace of the leading 25 singular vectors from a 400-
member ensemble. Projection amounts are shown for a 2-day forecast
starting at day 10.

that are a random sample from a normal random vector
with covariance proportional to S21, where S is the ma-
trix that defines the total energy inner product for the
model; that is, xTSx is the energy of a perturbation x
[the relation between the statistics of initial perturba-
tions and the norm used in calculating SVs is discussed
further in Houtekamer (1995)]. Each scaled perturbation
in this sample is then added to the control analysis at
t0 and integrated forward 48 h to t1. The scaling is
chosen small enough that the evolution of each pertur-
bation is very nearly linear; in practice, the ratio of
typical perturbation velocities to flow velocities is about
1023.

Next, we compute horizontal winds and temperatures
from each perturbation at t1 and calculate the eigenvec-
tors of the resulting sample covariance matrix for the
perturbations (i.e., we calculate the empirical orthogonal
functions, or EOFs, in terms of winds and temperatures
of the perturbations after 48 h). These eigenvectors ap-
proximate the evolved SVs at t1, with errors that ap-
proach zero as the number of perturbations in the sample
increases.

Of course, it is the SVs at initial time t0 that have
been suggested for use as ensemble perturbations. Each
of the above eigenvectors at t1 represents a linear com-
bination of perturbations; these same linear combina-
tions, but using the perturbations at t0, approximate the
initial SVs [related numerical techniques have been
demonstrated in Lorenz (1965), Barkmeijer et al.
(1998), and Bishop and Toth (1999)]. The SV pertur-
bations were then generated as follows: the leading 12
singular vectors were selected to build 24 perturbations
around the control (the 25th forecast was the control
itself ). Random rotations were generated, and the re-
sulting rotated SV perturbations were then orthogonal-
ized (under the energy norm) and normalized to a mag-
nitude so their subsequent forecasts would have a do-
main-average energy equal to the PO domain- and time-
average energy around day 2 of the forecast (T. Palmer
1998, personal communication). Positive and negative
pairs of these SV perturbations were added to the control
initial condition. An example of the resulting pertur-
bations is shown in Fig. 4c.

We chose this approximate approach both because it
was simple to implement and because we found it an
intriguing application of ensemble techniques. Its ob-
vious limitation is that reasonable approximation of the
leading SVs may require the integration of an unfeasibly
large set of perturbations. All results presented here use
approximate SVs derived from samples of 200 pertur-
bations at each t0. An estimate of the quality of this
approximation can be found in Fig. 6. This shows, for
various sample sizes, the subspace similarity, that is, the
projection of the leading 25 eigenvectors of the co-
variance matrix at t1 5 2 days onto the subspace spanned
by the leading 25 eigenvectors for a sample of size 400
(Buizza 1994). When 200 perturbations are used to con-
struct the singular vectors, each of the first 10 eigen-

vectors have projections greater than 0.95 onto this sub-
space. Together these 10 vectors account for about 60%
of the variance in the sample (not shown). At the final
time t1, there is thus little change in the subspace
spanned by the leading 25 eigenvectors as the sample
size increases beyond 200, and we conclude that the
leading approximate SVs are nearly converged to the
exact SVs.

Sampling problems are worse at t0, as might be ex-
pected given that we seek to approximate perturbations
that grow rapidly between t0 and t1. Indeed, the ap-
proximations to the SVs at t0 are noisy (see Fig. 4c)
compared to calculations of SVs using the tangent linear
and adjoint. As we will show below, however, the ap-
proximate SVs still grow very rapidly (relative to the
leading Lyapunov exponent, say) between t0 and t1, and
must therefore have a strong projection on the leading
subspace of exact SVs. This rapid growth, combined
with the fact that the leading approximate SVs are, by
48 h, quite similar to the exact SVs, indicates that the
approximate SVs should have comparable performance
for ensemble forecasting, at least after 48 h.

4. Comparison of ensemble initial conditions and
forecasts

We now evaluate the quality of ensemble analyses
and forecasts from each perturbation methodology. We
start with an examination of the characteristics of anal-
ysis error for the PO ensembles and the control. Next,
we determine whether an ensemble of initial conditions
for each of the three perturbation techniques has uniform
rank histograms (Anderson 1996; Hamill and Colucci
1997, 1998a), which are also known as ‘‘Talagrand di-
agrams.’’ Uniformity of the rank histogram is a nec-
essary (but not sufficient) condition for the analysis to
be considered a random sample from the analysis pdf.
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Thereafter, we probabilistically evaluate the ensembles
of forecasts. We again use rank histograms but also
explore the error growth characteristics of each forecast
in the various norms and the accuracy of subsequent
probabilistic forecasts. We will also present spread–skill
relationships for the three methods.

Twenty separate forecast case days were used, starting
10 days into the assimilation and then producing fore-
casts every 4 days thereafter. Forecasts were evaluated
to a lead time of 5 days.

a. Control analysis and PO ensemble mean analysis
characteristics

We first document the characteristics of the control
analyses relative to the PO ensemble. This control anal-
ysis should be more accurate on average than the in-
dividual PO initial conditions, since PO initial condi-
tions receive observations with additional random errors
added. To verify this, a 90-day PO assimilation cycle
was carried out with 25 members using the observa-
tional network in Fig. 2. Similarly, the control initial
condition was generated for the same 90-day cycle. Fig-
ures 7a–c show the analysis error measured for the PO
ensemble (dots), the control (solid line), and the PO
ensemble mean (dot–dash). As shown, the control initial
condition usually has lower error than the majority of
the PO initial conditions. Interestingly, though the con-
trol analysis is on average more accurate than individual
ensemble members’ analyses, the control analysis is also
typically higher in error than the ensemble mean anal-
ysis. The improvement of the ensemble mean analysis
over the control is most obvious in the enstrophy norm,
which emphasizes the smaller, less predictable scales.

The difference between the ensemble mean and the
control analyses may have several causes. First, it is
possible that if tested over a longer test period, the dif-
ferences would be diminished. Another possibility is
that this improvement is due to the small but cumulative
effects on nonlinearities that develop during each 12-h
forecast between assimilation cycles. These cause the
ensemble mean of first guess fields to have (on average)
less error than the control first guess [a similar result
was also suggested in Kalnay and Toth (1994)]. The
differences may be due to forecast nonlinearities be-
cause the analysis operator is linear and cannot con-
tribute to this effect. Given a positively and negatively
perturbed pair of first guess fields centered on a control
first guess, and given a positively and negatively per-
turbed pair of observations centered on a control set of
observations, the average of the pair of analyses will
be the same as if the control first guess were updated
with control observations.

This result indicates that the PO ensemble started with
an advantage over the other two perturbation methods,
since the swarm of PO ensembles in this simulation was
more optimally centered in phase space than the bred
or SV techniques, which were centered around this high-

er-error control analysis. Note that the improvement of
the PO ensemble mean analysis over the control analysis
was a result that was not duplicated operationally at the
Canadian Meteorological Centre (P. Houtekamer 1998,
personal communication). There, an improved assimi-
lation scheme at higher resolution was used to generate
the control analysis, so it was typically lower in error.

b. Ensemble initial condition characteristics

We first examine rank histograms of the analysis error.
These histograms were generated by determining the
rank of the truth at a given point when pooled with an
ensemble sorted from lowest to highest. If the ensemble
is a random sample from the same distribution as the
truth, then the truth will be equally probable to occur
in each rank and, over many points and days, the rank
histogram should be populated uniformly across ranks.

Figures 8a–l show rank histograms of PO, PO/recen-
ter, SV, and bred level 4 Z, u, and u. As shown, the PO
and PO/recenter initial conditions were much closer to
exhibiting the desired uniformity of rank. Thus, the bred
and SV initial conditions do not meet the necessary test
of uniformity to be considered random samples from
the analysis pdf.

Bred and SV methods each have different problems
that contribute to their initial lack of uniformity of rank.
One common reason their extreme ranks of Z were un-
duly populated is that the swarm of bred, SV, and PO/
recenter ensembles were less optimally centered in
phase space, as was discussed in section 4a. A more
important reason for nonuniformity of the bred and SV
rank histograms is that the initial size of bred and SV
were not constructed in a manner that permits them to
estimate the actual uncertainty of the flow that day. Cur-
rent operational bred and SV ensemble initial conditions
were specifically designed to have a fixed initial spread
(and in the case of SVs, a very small initial spread);
hence they cannot possibly be samples from the true
distribution, which varies in time, as shown in Fig. 7.2

Conversely, PO perturbations appear to vary in size with
analysis error. Evidence for this variation is provided in
Fig. 9, a plot of the standard deviation of PO level 4 Z
first guess fields at days 10, 20, and 30. In all cases
there were larger deviations over the data void than over
the data-rich area, but the domain-averaged dispersion
also varied from day to day, and this amount of dis-
persion was roughly consistent with the analysis errors
for these days (Fig. 7). The PO initial conditions showed
significant spread–skill correlation, to be discussed later.

Another characteristic that appeared in the rank his-
tograms of Fig. 8 were the lower populations at the
extreme ranks for u and u than for Z in the breeding

2 It may be possible to design alternative breeding or SV methods
where initial spread varies in time depending on recent error growth.
Alternatives to the operational methods were not tested here.
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FIG. 7. Analysis error for PO ensemble (dots), the control for breeding and SV forecasts (solid),
and the PO ensemble mean (dot–dash) measured in the (a) L2 norm, (b) energy norm, and (c)
enstrophy norm.
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FIG. 8. Rank histograms of ensemble analyses: (a) PO level 4 Z, (b) PO/recenter level 4 Z, (c) bred level 4 Z, (d) SV level 4 Z, (e)
PO level 4 u, (f ) PO/recenter level 4 u, (g) bred level 4 u, (h) SV level 4 u, (i) PO level 4 u, (j) PO/recenter level 4 u, (k) bred level 4
u, and (l) SV level 4 u.

and SV techniques. We consider the breeding tech-
nique’s reasons first. Here, the flatter rank histogram in
u and u was unfortunately not so much a sign of proper
sampling of the pdf but rather a consequence of the u
and u fields having been noisier than the Z fields. The
noise introduced to winds, potential temperatures, and
PV perturbations was a result of the use of a regional
rescaling process; transitions from regions where re-
scaling was performed to those where no rescaling was
performed introduced kinks into the Z field. Taking spa-
tial derivatives accentuated this noise, resulting in a
larger spread of the ensemble. Hence, there was less
probability the truth was beyond the span of the ensem-
ble for these variables. Unfortunately, the larger spread
was introduced arbitrarily at the transition zones from
rescaling to no rescaling and was not necessarily as-
sociated with regions of enhanced uncertainty.

For the SV technique, we believe there were two
primary causes for differently shaped u, u, and Z rank
histograms. First, again u and u were obtained through
spatial derivatives of Z, and the small-scale noise in the
initial Z perturbations was accentuated by taking its de-
rivative. Hence, u and u perturbations were generally
larger and noisier. The shapes of the rank histograms
were also a consequence of initializing SVs with equally
sized initial perturbations. A histogram of the SV per-
turbations (not shown) showed them to be more uni-
formly distributed around the control, but with smaller
tails than the histogram of PO perturbations, which was
approximately normally distributed. Assuming this nor-
mally shaped distribution was correct, this contributed
to depleting the population near the extreme ranks.

c. Ensemble forecast characteristics

Figure 10 shows the rank histograms for the PO, PO/
recenter, bred, and SV ensembles for level 4 Z at 1-, 3-,
and 5-day forecast lead times. As shown, the rank his-
tograms for the PO and PO/recenter ensembles started
off relatively uniform (Fig. 8) and remained qualita-
tively near uniform throughout the forecast. This was
one indication that these ensembles may have provided
useful probability forecasts without requiring calibration
for systematic deficiencies (Hamill and Colucci 1997,
1998a), at least in this perfect-model context. Converse-
ly, the Z rank histograms for the bred and SV ensembles
started off unduly populated at the extremes, showing
that those ensembles still did not appropriately span the
range of forecast possibilities. By day 5, all perturbation
methods produced ensemble forecasts with relatively
uniform rank histograms.

These forecast traits are better understood by consid-
ering the forecast dispersion (error growth) in various
norms (Figs. 11a–c). By design, the PO, PO/recenter
(not shown) and bred perturbations had approximately
equal energy norms at the beginning of the forecast,
averaged over many cases. Their growth rates in L2 and
energy were roughly somewhat comparable thereafter,
suggesting that they are using qualitatively different per-
turbations than for the SV, which grow very rapidly in
these norms during the first 2 days. After day 2, the
growth rates were a bit more similar among all pertur-
bation methods, suggesting all forecasts were now span-
ning the same dynamically important subspace. The SV
and bred L2 growth rates were larger than the PO growth
rate.
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FIG. 9. Standard deviation of PO level 4 first guess Z about en-
semble mean at (a) day 10, (b) day 20, and (c) day 30. Compare with
Fig. 7.

Understanding the characteristics of dispersion in the
enstrophy requires consideration of the algorithmic de-
tails. For the bred and especially for the SV ensembles,
the perturbations were larger than those in the PO en-
semble when measured in the enstrophy norm, indicat-
ing that the bred and SV perturbations had larger am-
plitudes at the smaller scales. For the bred ensemble,
this was a result of the regional rescaling process; as
mentioned earlier, transitions from regions of rescaling
to those with no rescaling introduced kinks into the Z
field, which produced discontinuities in PV. For the SV
ensemble, the short-range forecasts inherited some un-
realistic noise at small scales from use of the approxi-
mate initial SVs, as discussed in section 3c. The per-
formance demonstrated here for the SV ensemble in the
0–2-day range is not necessarily indicative of what

would be obtained with exact SVs constructed using the
tangent-linear and adjoint models.

Next we consider the spread–skill relation. A properly
calibrated ensemble should show some correlation of
spread (deviation of the ensemble about its mean) and
skill of the ensemble mean (Whitaker and Loughe 1998
and references therein). To test for possible spread–skill
relationships here, we calculated the spatially averaged
spread at level 4 on each case day and compared this
to a spatially averaged rms error of the ensemble mean.
We performed the spatial averaging separately for the
data-rich eastern two-thirds of the domain (land, or ‘‘l’’)
and the western third (ocean, or ‘‘o’’). Figure 12 shows
the spread–skill relationship for each perturbation meth-
od at 0-, 1-, 3-, and 5-day lead times. As shown, the
PO and PO/recenter ensembles started with a strong
spread–skill relationship and maintain this during the
forecast, while the bred and SV ensembles initially had
no relevant spread–skill relationship but developed them
by day 5. This demonstrates that the PO method was
capturing the time-dependent initial condition uncer-
tainty that the breeding and SV methods, by construc-
tion, did not. Note, however, that because of this chosen
network design, the analysis errors here varied more
widely with time than in operational analyses, permit-
ting the stronger spread–skill relationships than would
likely be observed operationally (Whitaker and Loughe
1998).

Another method for evaluating competing probabi-
listic forecasts is through the relative operating char-
acteristic, or ROC (Swets 1973; Mason 1982; Stanski
et al. 1989). This diagram evaluates type I (incorrect
acceptance of the alternative hypothesis) and type II
(incorrect acceptance of null hypothesis) statistical er-
rors evaluated at various percentiles of a forecast prob-
ability distribution. In this diagram, the hit rate [51 2
P(type II error)] is plotted relative to the false alarm
rate [5P(type I error)] at incremental percentiles of the
forecast probability distribution. Details of the construc-
tion of the ROC are discussed in the appendix. If one
forecast methodology has a ROC curve farther up and
to the left on the diagram, it exhibits less of each type
of error and may be considered the better forecast. Fig-
ure 13 shows ROC curves for P(level 4 wind speed .
60 m s21). As shown, the PO ensemble has the highest
ROC curve at all thresholds. PO/recenter, SV, and bred
curves are all relatively similar.

We also compared the skill of probabilistic forecasts
using the Brier score (Brier 1950; Wilks 1995). Table
3 provides Brier scores for PO, PO/recenter, SV, and
bred forecasts for P(level 4 wind speed . 60 m s21).
Here, probabilities were calculated from the relative fre-
quency of member forecasts exhibiting winds greater
than 60 m s21. Using daily average Brier scores as sam-
ples, a paired t-test was conducted to determine whether
or not the improvement of the PO ensemble over the
SV and bred ensembles was statistically significant
(Hamill 1999). These hypothesis tests indicate that the



1846 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 10. Rank histograms of ensemble forecasts of the level 4Z: (a) PO, day 1 forecast; (b) PO/recenter, day 1 forecast; (c) bred, day 1
forecast; (d) SV, day 1 forecast; (e) PO, day 3 forecast; (f ) PO/recenter, day 3 forecast; (g) bred, day 3 forecast; (h) SV, day 3 forecast; (i)
PO, day 5 forecast; (i) PO/recenter, day 5 forecast; (k) bred, day 5 forecast; and (l) SV, day 5 forecast.

TABLE 3. Brier scores for P (level 4 wind . 60 m s21) tallied over
all case days and for each individual case days, for 1-, 3-, and 5-day
forecasts.

Brier score
day 1

Brier score
day 3

Brier score
day 5

PO
PO/recenter
Bred
SV

0.0215
0.0280
0.0290
0.0274

0.0502
0.0603
0.0615
0.0636

0.0920
0.0102
0.0104
0.0104

improvement of the PO over bred and SV was statis-
tically significant at all three lead times (p , 0.001 for
all tests). The improvement of PO/recenter over the bred
and SV forecasts was not statistically significant.

5. Discussion

For this simulation, the PO method (without recen-
tering) provided a reduced-error set of ensemble initial
conditions and forecasts relative to the breeding and SV
techniques. The PO initial conditions and forecasts were
better calibrated, showed a stronger spread–skill rela-
tionship, and produced probabilistic forecasts with re-
duced errors. Only the PO method captured the time-
varying uncertainty in the initial condition. The initial
spread of the PO ensemble varied in time, apparently
to an extent consistent with the analysis uncertainty.
Some of the beneficial characteristics, such as spread–
skill correlations and relatively flat rank histograms
were retained after recentering PO perturbations on the
control initial condition; other characteristics, such as
ROC curves and Brier scores were degraded to a level
no more skillful than bred or SV forecasts.

These illustrate the theoretical benefits of the PO
method in the under a specific set of conditions. The
relative performance of the perturbation methods in this
perfect-model context and under our network design
does not directly indicate the expected performance in
an operational numerical weather prediction setting. The
design of this experiment made the unrealistic assump-
tions of a perfect model, assumed full knowledge of the

observational error characteristics, and used a network
with an accentuated data void. In operational numerical
weather prediction, model error growth can be insidious
and as large or larger than error growth due to initial
condition uncertainty. Also, for the observations, much
information on the observational error characteristics is
available (and is required for data assimilation) but that
information is of course imperfect. In particular, the
possibly non-Gaussian representativeness errors are not
accounted for in this experiment; these are the errors
that arise from representing the atmosphere with the
finite basis of a numerical weather prediction model.

We also note that the PO method is not the only
plausible method for designing sets of initial conditions
that sample the analysis pdf. Though we tested the sin-
gular vector method here using an initial energy norm,
the singular vector method need not use this norm. In
principle, the initial norm should be based upon the
analysis error covariances (Houtekamer 1995; Ehren-
dorfer and Tribbia 1997). When using an exact analysis
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FIG. 11. Dispersion of the PO, SV, and bred ensemble as a function
of forecast lead time in (a) L2 norm, (b) energy norm, and (c) en-
strophy norm.

error covariance norm, forecasts from the resulting sin-
gular vectors are ‘‘optimal’’ in the sense that they ac-
count for the maximum percentage of error variance
possible for a given sized ensemble (under assumptions
of linear error growth). These singular vectors may also
account for day-to-day variations in analysis uncertain-
ty, and hence we would expect their performance to be
similar to that demonstrated here by the PO technique.
The relative computational cost of the PO and ‘‘analysis
error covariance singular vectors’’ is still unquantified.
Also, growth of errors for analysis error covariance sin-
gular vectors may not be linear, as assumed. Still, based
on their obvious theoretical appeal, ECMWF is vigor-
ously exploring the use of analysis error covariance sin-
gular vectors for ensemble perturbations and for im-
proving data assimilation (Barkmeijer et al. 1998, 1999;
M. Ehrendorfer 1998, personal communication).

Though our assumption of no model error raises ques-
tions about operational validity, as previously discussed,
such an experimental design does present advantages.
Specifically, initial condition uncertainty may be con-
sidered in isolation from other effects, and our results
suggest something different from the current conven-
tional wisdom. For example, the rank histograms for
real-world ensemble forecasts (e.g., Hamill and Colucci
1997) are more highly populated at the extreme ranks
than for these perfect-model forecasts. Since the true
solution frequently lies outside the swarm of ensemble
forecasts, this sort of evidence is occasionally cited as
a reason why ensemble forecasts should use a pertur-
bation methodology that produces more dispersive fore-
casts. Perturbations that grow rapidly should produce
forecasts that are more likely to encompass the truth.
However, in this experiment, PO perturbations grew
much more slowly than the singular vectors, yet insuf-
ficient error growth was not a problem; the PO method
produced calibrated, reduced-error probabilistic fore-
casts.

Based on this, we suggest that the design of initial
perturbations should address initial condition uncertain-
ty alone and not also attempt to compensate for prob-
lems in the ensemble forecast associated with model
errors. The perturbation methodology should be de-
signed to produce realistic random samples of the anal-
ysis pdf, and (at least in the perfect-model context) the
appropriate amount of forecast dispersion should nat-
urally result.

What if forecasts conducted with the PO strategy do
not encompass the truth often enough when imple-
mented operationally? This then suggests that either
model error is nonnegligible and/or there are aspects of
the initial condition that are not properly perturbed.
These issues are just beginning to be explored. If model
error cannot be rendered unimportant, then perhaps sto-
chastic forcing will need to be added to the model equa-
tions (e.g., Buizza et al. 1999), or different plausible
model configurations used among the ensemble mem-
bers (Stensrud and Fritsch 1994; Houtekamer et al.
1996), and/or model error accounted for during the data
assimilation (Mitchell and Houtekamer 2000). Another
possibility is that our definition of the ‘‘initial condi-
tion’’ should be expanded to include the state of the
land surface and of poorly defined fixed parameters such
as roughness length (Houtekamer et al. 1996; Hamill
1997; Hamill and Colucci 1998b). Numerical forecasts
are often sensitive to the state of these variables, yet
they are not currently perturbed in the forecasts from
NCEP or ECMWF.

The evidence provided here also reinforces the grow-
ing supposition that judiciously designed Monte Carlo
ensembles may be useful in defining background error
statistics to be used during the data assimilation. Current
operational assimilation schemes such as the 3DVAR
scheme used here assume background errors are isotro-
pic and stationary, whereas in truth they may vary sub-
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FIG. 12. Spread–skill relationships, comparing level 4 spatially averaged standard deviations of Z against spatially averaged rms errors of
the ensemble mean Z. Darkened circles represent one case day’s sample spread–skill over the data-rich western two-thirds of the domain
(land). Unfilled circles represent spread–skill over the data void (ocean). Correlations of spread and skill also plotted for land (l) and ocean
(o): (a) day 0, PO; (b) day O, PO/recenter; (c) day 0, bred; (d) day 0, SV; (e) day 1, PO; (f ) day 1, PO/recenter ; (g) day 1, bred; (h) day
1, SV; (i) day 3, PO; (j) day 3, PO/recenter ; (k) day 3, bred; (l) day 3, SV; (m) day 5, PO; (n) day 5, PO/recenter; (o) day 5, bred; and (p)
day 5, SV.

stantially in space and time. Figure 5 showed that when
the observational data density is nonuniform, then local
analysis errors vary with location. As was shown in
Figs. 9 and 12, the standard deviations of the PO en-
semble first guess fields on three different days exhibit
temporal as well as spatial variation, apparently in a
realistic manner. There is growing interest in Kalman
filtering (e.g., Daley 1991), a procedure that generates
not only numerical forecasts but estimates of back-

ground error covariances. The filter then uses these error
statistics to improve data assimilation. Also, recent re-
search by Evensen and van Leeuwen (1996), Houtek-
amer and Mitchell (1998), and Mitchell and Houtekamer
(2000) have shown the potential of an approach called
the ‘‘ensemble Kalman filter.’’ This technique uses sets
of ensembles generated in a manner similar to the PO
method to estimate the background error covariance sta-
tistics. Others have proposed alternative approaches to
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FIG. 13. Relative operating characteristic for P(level 4 wind speed . 60 m s21) for PO, PO/
recenter, bred, and SV ensembles at 1-, 3-, and 5-day lead times.

judiciously using ensembles to improve data assimila-
tion (e.g., Anderson and Anderson 1999).

Implementation of the PO method operationally re-
quires more computer resources than the breeding meth-
od since the 3DVAR data assimilation procedure must
be repeated for each ensemble member. This may be no
more expensive, however, than the computation of sin-
gular vectors used to design perturbations for the
ECMWF ensemble. Also, the PO method is fully par-
allel and in principle, on the right computer, should
require no more time than a single control analysis and
forecast.

6. Summary

Characteristics of ensemble analysis and forecast er-
rors were explored using a quasigeostrophic channel
model in a perfect-model framework. Though the as-
sumption of a perfect model is clearly an inappropriate
analog to operational numerical weather prediction
models, this simplification isolates the effects of pre-
dictability error growth and permits the exploration of
ensemble characteristics without influence of model er-
ror.

The perturbed observation method in this simulation

was shown to generate an improved set of initial con-
ditions for ensemble forecasts. The PO perturbation
methodology started from a reduced-error set of initial
states and thus resulted in reduced-error probabilistic
forecasts relative to the bred and approximate singular-
vector methodologies.

There were a number of reasons why PO forecasts
appeared to be improved. First, the PO forecast initial
conditions were more accurate as a group. This could
be seen by comparing the errors of the ensemble mean
initial condition for the PO ensemble to the control ini-
tial condition. The PO ensemble mean was typically
lower in error, indicating the PO ensemble was more
appropriately centered in phase space. Much of the ad-
vantage of the PO ensemble was lost when PO initial
conditions were recentered on the same control initial
condition as the bred and SV initial conditions. The PO
ensemble initial conditions also exhibited uniformity of
verification rank and a positive spread–skill relationship,
suggesting that the ensemble was capturing the flow-
and location-dependent nature of the uncertainty in the
analysis.

The PO technique also produced relatively uniform
rank histograms, improved probabilistic forecasts, and
substantially higher spread–skill correlations throughout
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TABLE A1. Contingency table of possible events in generating
ROC.

Observed . T ?

Yes No

Member
Forecast . T ?

Yes
No

a
c

b
d

the subsequent forecast. This occurred even though the
growth of perturbations was slower than that produced
by the SV ensembles.

We suggest testing of the PO methodology in a more
operationally relevant situation when computer resourc-
es permit.

Finally, the PO ensemble produces forecast infor-
mation that may be useful for defining time- and flow-
dependent background error statistics used during the
data assimilation. Use of these statistics may reduce
errors in the initial condition and in the subsequent nu-
merical weather forecasts. Such ensemble-based strat-
egies should be explored more fully in the near future.
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APPENDIX

Generation of ROC from Ensembles

The ROC is a plot of ‘‘hit rate’’ versus ‘‘false alarm
rate’’ calculated using forecasts at various quantiles of
a probability distribution as decision thresholds. General
use and interpretation of the ROC is explained in more
depth in Swets (1973) and Stanski et al. (1989). We
focus here on how to use ensemble data to calculate the
ROC. The ROC is calculated for a specific forecast pa-
rameter, such as the probability that the wind exceeds
a certain threshold T. Assume for a given sample lo-
cation the ensemble forecast x of this parameter is a
vector of N forecasts sorted from lowest to highest. Also
assume an observation O is available at this location.
Each sorted ensemble member from lowest to highest
may be considered a potential decision threshold. A
particular 2 3 2 contingency table Ci, i 5 1, . . . , N is
associated with each of the N sorted members; hence,
there will be N contingency tables calculated (Table A1).
For a given sorted ensemble member xi and an obser-
vation y, an element of a 2 3 2 contingency table Ci is
populated, the element of the table depending on wheth-
er the observation and member forecast were each above
or below the threshold T. For example, element b of C1

is incremented by 1 if the x1 . T and the O , T. The

rest of the N contingency tables are incremented using
the rest of the N ensemble members as forecasts. This
process is repeated using (presumably independent)
samples from different observation locations and dif-
ferent case days. The hit rate [5a/(a 1 c)] and false
alarm rate [5b/(b 1 d)] are then calculated for each of
the N contingency tables and plotted to generate the
ROC.
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