State estimation using the ensemble
Kalman filter, and its application for
numerical weather prediction

Tom Hamill
NOAA Earth System Research Lab
Boulder, Colorado USA 80305

This will be a talk about the
intersection of
“data assimilation”
and
“ensemble prediction”



Data Assimilation:

How we produce the initial condition(s) for weather forecasts

Initial condition
Surface (10m) Wind Speed (knots) / MSLP (mb)

Bnalysis valid 1200 UTC Mon 19 Oct 2009

15 20

The initial conditions include
the temperature, humidity,
wind velocity, cloud cover,
pressure, etc. on a regular grid
at many vertical levels. Also:
ocean temperatures, land

Weather

) ey,
forecast model

48-hour forecast

Surface (10m) Wind Speed (knots} / MSLP (mb)

temperatures, even soil moisture.

Figure 6. The modeled maximum wind-speed
footprint (a), and the corresponding distribution of
total industry-wide loss (b), for Lothar 12Z 25 - 00Z
27 December 1999.

from Keller et al. AMS Conf. preprint

Motivation for

ensemble prediction:

1999 storm “Lothar”

Black Forest damage




“Ensemble prediction” or “ensemble forecasting”
Multiple simulations of the weather from slightly different initial
conditions, perhaps different forecast models

deterministic
forecast — >
totally misses
damaging
storm over
France; some
ensemble
members
forecast it
well.

Probabilities
commonly
estimated
from frequency
of event in the
ensemble.

from Tim Palmer’s
book chapter, 2006.

Deterministic predictions
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Initial conditions for Lothar ensemble forecasts

Analysis

Ensemble forecast of the French / German storms (surface pressure)
Start date 24 December 1999 : Forecast time T+0 hours

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Analysis 5

Analysis 6

Analysis 7

Analysis 8

Analysis 9

Analysis 10

N

T

5

A\

&%
%
-
¢
-

N\

Analysis 11

Analysis 12

Analysis 13

Analysis 14

Analysis 15

Analysis 16

Analysis 17

Analysis 18

Analysis 19

Analysis 20

ﬁ\\%
A

§

N

A\

w
A
A

Analysis 21

3\

Analysis 22

Analysis 23

Analysis 24

Analysis 25

7

%

Analysis 26

Analysis 27

Analysis 28

Analysis 29

Analysis 30

Analysis 31

Analysis 32

Analysis 33

Analysis 34

Analysis 35

Analysis 36

Analysis 37

Analysis 38

Analysis 39

Analysis 40

f”&

§

N
AN

w
%

Analysis 41

N

Analysis 42

@

Analysis 43

Analysis 44

Analysis 45

A

A\

)

AN
W

Analysis 46

®
A

N

Analysis 47

Analysis 48

Analysis 49

Analysis 50




Data assimilation, from
first principles

What “observations”
(measurements) are available to
estimate the state?

surface observations, ~ hourly weather balloons, ~ twice daily
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. .aircraft observations

ship, buoys, ~ hourly




Weather balloons, i.e., rawinsondes
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not available uniformly around
the world.
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Visible satellite images

McIDAS



Visible satellite images
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By watching the movement in successive
images, one can estimate cloud-top wind motion
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LS Wﬁ& Where there are no
wﬁ*‘ clouds, no wind
vectors can be estimated.

Winds can only be
determined for one level
at a given location.
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Height (km}

Passive “sounder”
instruments on satellites

AMSU-A microwave sounder on US NOAA polar-orbiting satellite

Each channel’s approximate weight

for the temperature at a given height
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Information available to estimate
the atmospheric state at time t

e Observations (measurements)
— Many over US, Europe, China

— Fewer over the oceans

— May measure something else (radiance at a particular
frequency) than what we need to initialize a model
forecast.

e A prior forecast of the state at time t, initialized at
t—At

— important for defining the state where there are few

or no observations.

State estimation (“data assimilation”)
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State estimation (“data assimilation”)

forecast for
time t

+ forecast-error
statistics

—

observations
for time t

L/

data
assimilation

+ observation-error
statistics

state estimate
fortime t

weather
forecast
model

forecast for
time t+At

State estimation (“data assimilation”)

forecast for
time t

+ forecast-error
statistics

—

observations
for time t

L/

data
assimilation

/

+ observation-error
statistics

For purposes of discussion
today, assume these are
determined ahead of time by
the maker of the observing

system.

state estimate
for time t

weather
forecast
model

forecast for
time t+At



State estimation (“data assimilation”)

—

observations

for time t

L/

forecast for data
time t assimilation

+ forecast-error
statistics

Let’s spend some time to understand
the statistics behind data assimilation

+ observation-error

statistics

state estimate
fortime t

and then the forecasts and the
characteristics of forecast-error

statistics.

weather
forecast
model

forecast for
time t+At

Forecast-errors statistics may be very different
from one day to the next because of “chaos”

@ _ —1)

7 =y —2)

dy

—_ = — ) =
 — P2 -y
dz ,

E = I‘y — ‘3~

o, p, B arefixed.

The Lorenz (1963) model

Errors grow more quickly for some

initial conditions than others. Hence, in data
assimilation, would be useful to have state-
dependent forecast error statistics

from Tim Palmer’s
2006 book chapter
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From first principles:
Bayesian data assimilation

X, =(unknown) true model state
y, = [y,,l//t_l] = observations = [today’s, all previous]

P(x,|w,)e P(y,|x, ) P(x,v..)

“posterior”

A manipulation of
Baye’s Rule, assuming
observation errors are
independent in time.

“prior”

21

Bayesian data assimilation:
2-D example

Prior Density Estimate and Observation
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Computationally expensive when highly dimensional! Here, probabilities
explicitly updated on 100x100 grid; costs multiply geometrically with the number

of dimensions of model state. Also: “curse of dimensionality”

22
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Data assimilation terminology

y : Observation vector (weather balloons, satellite
radiances, etc.)

e x°:Background state vector (“prior”)
e x?: Analysis state vector (“posterior”)

e H: (hopefully linear) operator to convert model
state = observation location & type

* R: Observation - error covariance matrix
e Pb:Background - error covariance matrix
e P2: Analysis - error covariance matrix

23

Simplifying Bayesian data assimilation:
toward the Kalman Filter

P(x[|l//t)o<P(y[|xI) P(‘xl

Assume

1 T
P(y, |x,)~N(y,,R) < exp| —~(Hx~y,) R"(Hx~
(y,|x)~N(y,.R) p( 2( yt) ( y‘)j S~ assumed

WH) ~ N(Xb’Pb) oc exp(—%(x _ Xb)T bel (X B Xb)) e Gaussian

WH) (manipulation of Baye’s rule)

P(xl

P(xt | l//t) o< exp(—%[(x - xb)T p" (x - xb)+ (Hx - y)T R (Hx - y)D @)

Maximizing (@) equivalent to minimizing —In(@), i.e., minimizing the functional
24
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Kalman filter update equations

J(x)= %[(x—xb )T P (X—xb )+ (Hx-y) R (Hx—y)]

After much math, plus other assumptions about linearity, we end
up with the “Kalman filter” equations (see Lorenc, Q/RMS, 1986).

b b This “update” equation tells how to estimate the analysis state.
a __ «—— Aweighted correction of the difference between the

X =X + K ( y HX ) observation and the background is added to the background.
K is the “Kalman Gain Matrix.” It indicates how much

to weight the observations relative to the background and

how to spread their influence to other grid points

-1
_ pbgT byyT
K=P'H \HP'H +R| +
a b P2 is the “analysis-error covariance. The Kalman filter
P = I - KH P indicates not only the most likely state but also quantifies
the uncertainty in the analysis state.

How the background errors at the next data assimilation time
are estimated. M is the “tangent linear” of the forecast model M

Assumed . X, =Mx, +1, <77,T’I,T) -Q

—

\

How the forecast is propagated. In “extended Kalman
filter” M is replaced by fully nonlinear M

Kalman filter update equation:
example in 1-D, H=identity operator

, P’ R ., P°

(v-x")

y

~ P°4R

b
P* =pP° —Pp° PT_

b

= +—
Pb+RX P°+R

R

P*'+R

P°+R

26
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Other roles of P®, the background-
error covariance matrix

o’(x))  Cov(xlx,) . . . Cov(x.x)) x, is the model state
Cov(xf,x,) o’ (xg) R Cov(xﬁ,x’;) at grid pOI.nt L .x2 the
; - state at grid point 2,
P’ = : : : : and so on. n dimensions

to the model state.

I Cov(xl{,xﬁ) Cov(xlz’,xi) . Gz(xﬁ)

Say x, is the surface temperature at Heidelberg, x, is the
surface temperature at Hamburg. Cov(x,, x,) indicates

how the forecast errors are related between the two locations.
If the forecast is too cold at Heidelberg, will it tend to be

too cold at Hamburg, too?
27

Other roles of P, the background-
error covariance matrix

o’(x})  Cov(xlx,) . . . Cov(xl.x}) ] x, is the model state
) 2 id point 1, x, th
A

P’ = ’ ’ : : and so on. n dimensions
. to the model state.

b b b _b 2 b
Cov(xl,x") Cov(xz,xn) o o (x,,)

Say x, is the surface temperature at Heidelberg, x, is the
surface east-west wind velocity at Heidelberg. Cov(x,, x,)
indicates how the temperature error may be related to

the wind error. Perhaps when it’s cooler at night, it

tends to be less windy. These “cross-covariances” very
important in atmospheric data assimilation. 28
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Other roles of P®, the background-
error covariance matrix

o’(x))  Cov(xlx,) . . . Cov(x.x)) x, is the model state
) ) id point 1 h
olii) P o) | Redsen e
P = and so on. n dimensions
to the model state.
Cov(xl{,xﬁ) Cov(xlz’,xi) ... o (xﬁ)

Another point: for numerical weather prediction this
matrix is very large, ~ 10’x10’. Thinning and lower-rank
approximations are necessary to make this
computationally affordable.

29

Kalman filter update,
2-dimensional example

100

80

(xPy, xP,)
N 40+ ( (/

20 y

0 e

\ P

0 20 40 60
<y

80

Prior, Observation, Pb, and R Estimate
T T T T

(a)

b
X2

100

Posterior and P°®
T : . T

100

80

60 F

o

40

201

(6)

PP covariance matrix controls the amount x, is adjusted from the
observation y; if Cov(x°;, x,) = 0, no adjustment to x®,

30
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Kalman filter update equations

J(x)= %[(x—xb )T p° (x—xb )+ (Hx—y)T R™ (Hx—y)]

After much math, plus other assumptions about linearity, we end
up with the “Kalman filter” equations (see Lorenc, Q/RMS, 1986).

b a T How the back imilation ti
— ground errors at the next data assimilation time
- are estimated. M is the “tangent linear” of the forecast mode!
Pt+1 MP'M +Q — d. Mis th 1 £ the f del M
X, =Mx 41, (n17)=Q

b a
x, =Mx" —ou_ . .
t+1 How the forecast is propagated. In “extended Kalman 31

filter” M is replaced by fully nonlinear M

Assumed .

Kalman filter limitations when applied
to atmospheric data assimilation

e Future forecast model states are estimated
with linear operator. Atmosphere
sometimes behaves very non-linearly.

e Covariance propagation step P2 > P, very
computationally expensive.

e Still need tangent linear (M) & adjoint model

(MT) for evolving covariances, and linear
error growth assumption questionable.

32
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Can we improve on the
Kalman filter?

e Utilize a non-linear forecast model
e Improve computational efficiency

e Remove some restrictive linear &
Gaussian assumptions.

33

From the Kalman filter to the
“ensemble” Kalman filter (EnKF)

e What if we estimate PP from a random

ensemble of forecasts? (Evensen, JGR,
1994)

e Let’s design a procedure so if error growth
is linear and ensemble size infinite, gives
same result as Kalman filter.

34
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Canonical EnKF
update equations (for time t)

X? — Xbi+K(yi _ HX‘;) H = (possibly nonlinear)
operator from model to
observation space

-1

K=P'H"(HP'H" +R) Yi =¥y,

y; ~ N(O,R)
P’ =XX"

n

X:(Xi’—xb ,...,Xb—Xb)

Notes: (1) Anensemble of parallel data assimilation cycles is conducted,
assimilating perturbed observations .

(2) Background-error covariances are estimated using the ensemble. 35

Propagation of state and error
covariances in EnKF

. (P? never
P =([x () -% (O][x:()-%: ()] ) oty
formed)
X? (t +1)= MX? (f) if forecast model is “perfect”

i if forecast model has model

<77i an> =Q error.

36
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The ensemble Kalman filter: a schematic

—— Observations

— Observations

#1 Perturbed #1 Perturbed
Observations ™ Observations
member 1| | p| EnkF member 1 Forecast | g, ~member | EnKF
forecast analysis Model forecast o
#2 Perturbed #2 Perturbed
— Observations ™ Observations
i i (This schematic
member 2 member 2 Forecast member 2 is a bit of
—»1 EnKF : EnKF Isabitoran
forecast |'> analysis Model [ forecast inappropriate
simplification,
for EnKF uses
| #3 Perturbed | g #3 Perturbed b
Observations Observations every member
f to estimate
i background-
member 3 member 3 Forecast member 3 error covariances)
forecast : EnKF |> analysis Model [® forecast EnKF |>
37
. . . .
Bayesian data assimilation:
Prior Density Estimate and Observation Posterior Density Estimate
100 T T T T 100 T T T T
(a) (b)
80 1 80 f\\ 1
/\w =\
(o) fliau
60 LO\\ g 60 \\/)‘\ g
J v J
\// A |
40 @ / 40 ( \\\% i
20 R 20 R
PN =
N 7 N
0 AN N 0 ) AN
0 20 40 60 80 100 0 20 40 60 80 100

*H1)

Computationally expensive! Here, probabilities explicitly updated on 100x100

*H1)

grid; costs multiply geometrically with the number of dimensions of model state.

38
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How the EnKF works:
2-D example

Prior Sample & P® Estimate Posterior Sample and Implied P°®
100 T T T T 100 T T T T
(a) (b)
80 80 1
60 60 -
'l 'l
40 - 40 F
20 20
N
o L L o ‘ 2R
0 20 40 60 80 100 0 20 40 60 80 100
Xy 0

Start with a random sample from bimodal distribution used
in previous Bayesian data assimilation example. Contours reflect

the Gaussian distribution fitted to ensemble data.

39

Why perturb the observations?

Prior and Observation

P® ~ N(0,0.5)
y=1,R=05

A

N
vl‘ |\ i
.I|‘I||| ||!‘ Il

Posterior, No Pert Obs Posterior, With Pert Obs

1.51 1.51
= 1.0r = 1.0F
T &
0.5 0.5¢
0.0 Z 0.0 hS

2
=1 0 1 2 3
X

N
1o 1 2 3 -2
x v\ /

histograms denote the ensemble values;
heavy black line denotes theoretical
expected analysis-error covariance

40
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How the EnKF may achieve its improvement
relative to previous methods:
better background-error covariances

1000 hPa temperature EK and
surface pressure (hPa

3D—Var increment Ensemble Filter Increment

Output from a “single-observation” experiment. The EnKF is cycled for a long
time. The cycle is interrupted and a single observation 1K greater than the mean
prior is assimilated. Maps of the analysis minus first guess are plotted. These
“analysis increments” are proportional to the background-error covariances
between every other model grid point and the background at the observation
location. 41

More examples of flow-dependent
background-error covariances

Covariances of background forecasts, 900 hPa Temp

A .3 .5 7
Covariance Magnitude
Vd ~

42
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Example : 500 hPa height analyses (~5500 m elevation) assimilating

only surface

I

ﬂ

Full NCEP-NCAR

Reanalysis (3D-Var) |/ )

(120,000+ obs)

Ensemble
Kalman Filter
(214 surface
pressure obs)

Older method,
similar to 3D-Var
(214 surface
pressure obs)

fig. from Jeff Whitaker

3

pressure obser

vations

Q

<

N

N

\\ f“ . ‘V‘ 4

@

observation
locations

RMS=39.8 m

RMS=82.4m

Black dots show
surface pressure ob

A modification to the basic EnKF:
“covariance localization”

Ensemble Est.

of Variance/Covariance

Correlation Function

Covariance
after Localization

20

40 60
x grid point

80 100

20 40 60 80 100
x grid point

20 40 60
x grid point

80

100

Estimates of covariances from a small ensemble will be noisy,
with signal-to-noise small especially when covariance is small

44
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(a) Correlations in P°, 25—member ensemble

Covariance
localization
in practice

from Hamill review paper in “Predictability of
Weather and Climate” (Cambridge Press), 2006

Problem: “filter divergence”

Ensemble of solutions drifts away from true solution.
During data assimilation, small variance in background
forecasts causes data assimilation to ignore influence of
new observations.

A"’" \
2 =7\
pA O‘\ ) - e, \
) — AT g\
(LS | ¢ |
e e s |
P =7
> < =t N
7 o)
S oy, /
_ » %
- .
S~
=~
-
~
\X
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Filter divergence: some causes

Observation error statistics incorrect.

Too small an ensemble.
— Poor covariance estimates just due to random sampling.

— Not enough ensemble members. If M members and
G > M growing directions, no variance in some directions.

e Model error.

— Not enough “resolution.” Interaction of small scales with larger
scales impossible, so growth of differences between ensemble
members happens too slowly.

— Imperfections of how we treat “sub-gridscale” phenomena like
thunderstorms.

— Other model aspects unperturbed (e.g., land surface condition)

— Others

47

Possible filter divergence remedies

e Higher-resolution model, more members (but
costly!)
e Covariance localization (discussed before)

e Possible ways to parameterize model error
— Apply bias correction
Covariance inflation
Integrate stochastic noise
Add simulated model error noise at data assimilation
time.
Multi-model ensembles

48
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Challenges

How to deal with non-normally distributed errors.

— “particle filters” sound promising but haven’t found
been demonstrated successfully with high-dimensional
systems yet.

Covariance localization and the problems it
introduces (imbalances, difficult application to
non-point observations).

Reduction of (or an accurate quantification of)
“model error.”

49

Conclusions

Ensemble Kalman filter used more and more because of
— Great results in simple models and more recently, NWP models
— Coding ease

— Conceptual appeal (more gracefully handles some nonlinearity
and treatment of model error)

However:
— Somewhat computationally expensive

— Requires careful modeling of observation, forecast-error
covariances to exploit benefits. Exploration of these issues
relatively new.

— Still many statistical challenges ahead.
Acknowledgments: Jeff Whitaker, Chris Snyder, Jeff
Anderson, Peter Houtekamer

For more information, a review article:

— www.esrl.noaa.gov/psd/people/tom.hamill/ensda_review.pdf
50
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Bayesian data assimilation
background

X, ‘lyt) o< P([//t ‘XI)P(XI) Bayes rule

assuming independence

(l//t 1‘X ) of errors in time.

I/jt I‘X ) )
l//t_l‘xt P(x =P(X,‘l//t_l) Bayes rule

P

x, v, )< P(y,|x,)P(x,|v..,)

51

Different implementations of
ensemble filters

Double EnKF (Houtekamer and Mitchell, MWR, March
1998)

Ensemble adjustment filter (EnAF; Anderson, MWR, Dec
2001)

Ensemble square-root filter (EnSRF; Whitaker and Hamill,
MWR, July 2002)

Ensemble transform Kalman filter (ETKF; Bishop et al,
MWR, March 2001)

Local EnKF (Ott et al, U. Maryland; Tellus, in press)

Others as well (Lermusiaux, Pham, Keppenne, Heemink,
etc.)

52
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Why different
implementations?

e Save computational expense
e Problems with perturbed obs. Suppose
P°*~N(0,1), R~N(0,1), E[corr(x®y’)]=0

Random sample x? : [0.19, 0.06, 1.29, 0.36, -0.61]
Random sample y’ : [-1.04, 0.46, -0.12, -0.65, 2.10]
Sample corr (x°,y’) =-0.61 !

Noise added through perturbed observations can introduce spurious
correlations between background, observation errors. However,
there may be some advantages to perturbed observations in
situations where the prior is highly nonlinear. See Lawson and
Hansen, MWR, Aug 2004. 53

Computational shortcuts in EnKF:
(1) serial processing of observations

Method 1 " Observations
1 and 2

—1—

Background
foregcasts EnKF — Analyses

Method 2
Observation Observation
1 2
— T — T
Background Analyses

forecasts EnKF " after obs 1 » EnKF — Analyses

54
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Computational shortcuts in EnKF:
(2) Simplifying Kalman gain calculation

K=PH'(HP°H'+R)

1 m
define bez—ZHxib
m -
I & Y —\
P H' :—Z(x}’ —x XHX? —be)
m—143
I & Y —\
HP'H' =—12‘(Hxib — Hx" XHxib —be)
m—1-5

The key here is that the huge matrix P is never explicitly formed 33

Covariance localization and size of
the ensemble

rms spread

2 -1

rms analysis error (10" m”s™)

1.0

6

— 2x8
--- 2x16 --- 2x16
------ 2x32 e 2% 32
-— 2x64 -— 2x64
--- 2x128 -= 2x128
0.0 T
5000 10000 15000 20000 5000 10000 15000 20000
distance of zero correlation (km) distance of zero correlation (km)
FIG. 4. Analysis error as a function of r, (km), the distance beyond which p is zero, for various enl

mble sizes.
(left) The rms spread in the ensemble, and (right) the rms error of the ensemble mean.

Smaller ensembles achieve lowest
error and comparable spread/error

with a tighter localization funct‘io?6
(from Houtekamer and Mitchell, MWR, Jan 2001)
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Figure 1.12 Illustration of data analysis of observation increments for the 200 mb wind field.
(From Daley, Mon. Wea. Rev. 113: 1066, 1985. The American Meteorological
Society.)

More on the
process of data
assimilation

The discrepancies between the
observations and the 6-hour forecast
are the “observation increment.”

The analysis increment is an estimate
of the change to be applied to the 6-
hour forecast, to form the analysis.

The statistics are hidden here, but:

If your forecast is very accurate

and your observations very inaccurate,
then the analysis increment will be
small...and vice versa.

57

Eigenvalue spectrum as f(ensemble size)

(@)
10.00 E
How does
o
. E 1.00 "~ 3
covariance B .
. . = _ _ 400 members T = o
Iocallzatlon 010F = -~ 100 members \\ =
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flattens eigenvalue spectrum)

source: Hamill et al, MWR, Nov 2001
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Remedy: covariance inflation

b b b b P :
X, r[xi -X }+x r is inflation factor
Prior sample before inflation Prior sample after inflation
1007 T T T | 1007 T T T T
(a) | » (b)
80r . 1 801 . T 1
[ PR | [ .
3, c .
+ -, r -
60 - a. 60 - .
& ... 8 PR
x 3 . 14 x 3
40f Teeatt 1 40r
20f " ] 20t
ol , . . ] ol ,
0 20 40 60 80 100 0 20 40 60 80 100
X%y )

Disadvantage: what if model error in altogether different subspace?

59
source: Anderson and Anderson, MWR, Dec 1999

Remedy: integrating stochastic noise

dx =M (x)dt + S(x,t) dW

D@\Léww\msjr\'c
—— Dd@/m(n{sjn‘c + VZOMJM\ U\/’wU’\
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Remedy : integrating stochastic
noise, continued

e Questions
— What is structure of S(x,t)?
— Integration methodology for noise?
— Will this produce ~ balanced covariances?

— Will noise project upon growing structures and
increase overall variance?

e Early experiments in ECMWF ensemble to
simulate stochastic effects of sub-gridscale in
parameterizations (Buizza et al., Q/RMS, 1999).
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Remedy : adding noise
at data assimilation time

Idea follows Dee (Apr 1995 MWR) and Mitchell and
Houtekamer (Feb 2000 MWR)

xg =Mx+n (nn')=Q  (n)=0
o= (e ) )
o Suchthat <(x[ X

solution: x;,, = x5, +&,., <§t+1§t+l > Q < r+1>

define ens. of x_ )> MP*M" +Q
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Remedy : adding noise
at data assimilation time

t+1
/ /4 h

Integrate deterministic model forward to next analysis
time. Then add noise to deterministic forecasts
consistent with Q.
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Remedy : adding noise
at data assimilation time (cont’d)

* Forming proper covariance model Q important

e Mitchell and Houtekamer: estimate parameters of Q from
data assimilation innovation statistics. (MWR, Feb 2000)

e Hamill and Whitaker: estimate from differences between
lo-res, hi-res simulations (www.cdc.noaa.gov/people/
tom.hamill/modelerr.pdf)
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Remedy : multi-model ensemble?

e Integrate different members with different
models/different parameterizations.

e |nitial testing shows covariances from such
an ensemble are highly unbalanced (M.
Buehner, RPN Canada, personal
communication).
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