
1 

File generated with AMS Word template 1.0 

Objective methods for thinning the frequency of reforecasts while meeting 1 

post-processing and model validation needs 2 

 3 

 4 

Sergey Kravtsov,a Paul Roebber,a Thomas M. Hamill,b James Brown c 5 

a University of Wisconsin-Milwaukee (UWM), Milwaukee, WI 6 
                                                               b NOAA Physical Sciences Laboratory, Boulder CO 7 

                 c Office of Water Prediction,  National Weather Service (OWP NWS) 8 

 9 

 10 

 11 

Corresponding author: Sergey Kravtsov, kravtsov@uwm.edu 12 

  13 



2 

File generated with AMS Word template 1.0 

ABSTRACT 14 

This paper utilizes statistical and statistical-dynamical methodologies to select, from the full 15 

observational record, a minimal subset of dates that would provide representative sampling of 16 

local precipitation distributions across the contiguous US (CONUS). The CONUS region is 17 

characterized by a great diversity of precipitation-producing systems, mechanisms and large-18 

scale meteorological patterns (LSMPs) which can provide favorable environment for local 19 

precipitation extremes. This diversity is unlikely to be adequately captured in methodologies 20 

which rely on grossly reducing the dimensionality of the  data — by representing it in terms of 21 

a few patterns evolving in time — and thus requires data thinning techniques based on high-22 

dimensional dynamical or statistical data modeling.  We have built a novel high-dimensional 23 

empirical model of temperature and precipitation capable of producing highly statistically 24 

accurate surrogate realizations of the observed 1979–1999 (training-period) evolution of these 25 

fields. This model also provides skillful hindcasts of precipitation over the 2000–2020 26 

(validation) period.  We devised a subsampling strategy based on the relative entropy of the 27 

empirical model’s precipitation (ensemble) forecasts over CONUS and demonstrated that it 28 

generates a set of dates that captures a majority of high-impact precipitation events while 29 

substantially reducing a heavy-precipitation bias inherent in an alternative methodology based 30 

on the direct identification of large precipitation events in the Global Ensemble Forecast 31 

System (GEFS,  version 12) reforecasts. The impacts of data thinning on the accuracy of 32 

precipitation statistical post-processing, as well as on the calibration and validation of the 33 

Hydrologic Ensemble Forecast Service (HEFS) reforecasts are yet to be established.   34 

  35 
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SIGNIFICANCE STATEMENT 36 

High-impact weather events are usually associated with extreme precipitation, which is 37 

notoriously difficult to predict even using highly resolved state-of-the-art numerical weather 38 

prediction models based on first physical principles. The same is true for statistical models that 39 

use past data to anticipate the future behavior likely to stem from an observed initial condition. 40 

Here we use both types of  models to identify the timing of initial conditions, over the historical 41 

climate record, that are likely to produce extreme precipitation events. We show that the overall 42 

statistics of precipitation over contiguous US can be encapsulated in a greatly reduced set of 43 

initial conditions, which makes testing and validation of hydrological forecast models and the 44 

associated decision support much less computationally expensive. 45 

 46 

1. Introduction 47 

The statistical post-processing of weather forecasts has been shown to be extremely useful 48 

for ameliorating model biases and extracting usable forecast signal amidst the noise due to 49 

chaotic error growth and sampling due to limited ensemble size (Hamill and Whitaker 2006; 50 

Hamill et al. 2006, 2013, 2015; Scheuerer and Hamill 2015). Post-processed forecasts are 51 

typically more skillful and reliable, rendering them useful for automated decision support. 52 

Large sample sizes of reforecasts are particularly helpful in four particular situations: (a) the 53 

post-processing of rare events, (b) the post-processing of longer-lead events, where usable 54 

signal is small, noise is large, and forecasts are for time-averaged quantities. While the 55 

production of a long, complete time series of reforecasts is desirable for such situations, the 56 

computational expense of reforecasting scales linearly with the reforecast sample size. 57 

Objective methods that can indicate what subset of dates are the most important to generate 58 

reforecasts are greatly desired. Given the national forecast responsibilities of the National 59 

Weather Service (NWS), that subset of dates should ideally be large enough to provide the 60 

necessary training and validation data over the contiguous US (CONUS).  61 

There are several challenges to be anticipated with designing a procedure for reforecast 62 

sub-sampling. One challenge of sub-selecting past dates is that they will be less useful for 63 

training if the dates are based on the existence of observed high-impact weather such as heavy 64 

precipitation. In such a case, the training data is biased toward the existence of high-impact 65 



4 

File generated with AMS Word template 1.0 

events, and post-processed guidance will likely over-forecast them. Accordingly, we seek 66 

methodologies for deciding on which dates to use that avoid the use of validating observations 67 

but instead use only information such as the initial condition state or the existence of conditions 68 

related to severe weather at a similar date noted in previous reforecasts.  69 

Yet another challenge could be the under-sampling of more commonplace events. Were 70 

such a reforecast sub-sampling procedure designed for a very limited geographic area, dry 71 

weather or light/moderate precipitation could be drastically under-sampled, leading to poor-72 

quality guidance of more common weather events. However, suppose a methodology is 73 

developed to identify past cases with high-impact weather separately for multiple regions 74 

across the CONUS. We would anticipate that high-impact weather in one region would 75 

coincide with more commonplace weather in other regions, thereby avoiding under-sampling 76 

of more commonplace events when forming the overall sample. Thus, reforecasts conducted 77 

from a union of the identified dates, we hypothesize, should be adequate for training of both 78 

common and uncommon weather-forecast post-processing.  79 

In subsampling, and thereby reducing, the number of historical dates on which 80 

reforecasting is conducted, the “thinned” reforecasts must facilitate end-user applications, such 81 

as hydrologic forecasting, watch/warning operations, and decision support. Here, it is 82 

important to establish that the reforecast sample size can be reduced, materially (i.e., saving 83 

meaningful computational resources), without an unacceptably negative impact on the quality 84 

of the hydrologic forecasts and associated decision support, particularly for large and extreme 85 

events. The NWS Office of Water Prediction (OWP) currently uses and plans to use 86 

meteorological reforecasts for a wide variety of hydrologic modeling applications. For 87 

example, the Hydrologic Ensemble Forecast Service (HEFS: Demargne et al. 2014) is used by 88 

the thirteen River Forecast Centers (RFCs) of the NWS to produce reliable and skillful 89 

hydrologic forecasts for, among other things, informing flood forecasting operations and 90 

managing water resources. The HEFS ingests weather and climate forecasts from the various 91 

meteorological models, including the Global Ensemble Forecast System (GEFS:  Guan et al. 92 

2021; Hamill et al. 2021; Zhou et al. 2021), and produces ensemble streamflow forecasts for 93 

the short to the long range. The HEFS depends on a large sample of meteorological reforecasts 94 

to: 1) downscale and bias-correct the precipitation and temperature forecasts used in the 95 

hydrologic models; 2) validate the HEFS, particularly for large and extreme events; and 3) 96 
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support myriad decision support applications and end-users, such as the New York City 97 

Department for Environmental Protection (NYCDEP), who require hydrologic (re)forecasts to 98 

help manage the NYC water supply.  99 

Recent work by OWP suggests that the sensitivity of the HEFS to reforecast sample size 100 

originates primarily from the need to validate the HEFS and provide guidance for large and 101 

extreme events (refs?). This is not surprising, because the statistical modeling used in the HEFS 102 

is relatively parsimonious, whereas decision makers are particularly interested in the accuracy 103 

of the HEFS for large and extreme events. In order to demonstrate that a “thinned’ 104 

meteorological reforecast can adequately support validation and decision support with the 105 

HEFS, it is important to conduct hydrologic reforecasting, both with and without data thinning, 106 

and demonstrate that: (a) The HEFS can be calibrated using a thinned sample without an 107 

unacceptable decline in forecast quality (e.g. without residual biases from under- or over-108 

sampling large and extreme events), as demonstrated through statistical validation, and; (b) any 109 

increase in validation sampling uncertainty does not materially impact the ability of OWP to 110 

guide strategic investments in the HEFS or to support decision makers in using historical 111 

(validation) information, particularly for large and extreme events.  112 

The methodologies described below should estimate probabilities of large and extreme 113 

events (cases) across the US, but the underlying methodology may estimate probabilities for 114 

subdomains of the US and then combine them. In this study, we will evaluate the importance 115 

of a case based on the forecasts of precipitation exclusively. While hydrologic predictions can 116 

be sensitive to other weather variables such as temperature and melting level, these are likely 117 

to be second-order effects which will be ignored here to generate a benchmark solution. 118 

Furthermore, this paper will only deal with the construction of an optimal thinned sample based 119 

solely on the meteorological information; the actual hydrologic forecasting and validation will 120 

be reported on in a future companion publication. 121 

The rest of the paper is organized as follows. Section 2 provides scientific background that 122 

illustrates our thought process in developing a novel statistical methodology to model 123 

precipitation and introduces our proposed case selection techniques.  These methodologies are 124 

described in detail and their performance is evaluated in sections 3 and 4, respectively. Section 125 

5 contains a summary of the paper, as well as some discussion and outlook. Some of the more 126 
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technical figures are placed in the Supplemental Information, which also includes a link to the 127 

data sets used or generated in this study. 128 

 129 

2. Background and proposed methodologies 130 

a. Statistical downscaling and prediction of precipitation  131 

Statistical prediction (and downscaling) methods for precipitation are based on the 132 

(extensively studied) association between extreme precipitation and recurrent large-scale 133 

meteorological patterns (LSMP), which provide favorable environment for smaller-scale 134 

processes often underlying the extreme precipitation events (although not all such events are 135 

tied to LSMP). Barlow et al. (2019) reviewed, among other things, the types of meteorological 136 

synoptic systems and mechanisms for extreme precipitation LSMPs for the North America 137 

region and found a great diversity of LSMPs depending on the geographical location and 138 

season. LSMPs are distinct from teleconnection patterns in that the LSMPs are conditioned on 139 

the occurrence of a specific event (here, extreme precipitation), whereas classical 140 

teleconnections are not. The most intuitive way of defining the LSMP is through compositing, 141 

although a variety of other methods are available, including regression-based and cluster-142 

analysis methods (Grotjahn et al. 2016). For example, Robertson et al. (2016) used K-means 143 

cluster analysis (Robertson and Ghil 1999) of the reanalysis wind data over North America to 144 

identify seven distinct large-scale circulation types and tie some of them to enhanced 145 

probability of springtime flooding events in the Midwest of the US. We note here that while 146 

identifying a small subset of large-scale recurrent patterns  — independent of precipitation — 147 

to classify weather states is an attractive methodology, it is apparently at odds with the extreme-148 

precipitation LSMPs’ diversity mentioned above; hence, the practical utility of such 149 

methodologies to downscale precipitation is likely to be quite limited. 150 

Classical regression approaches such as canonical correlation analysis (CCA: Wilks 2011) 151 

also have a limited applicability to short-term precipitation modeling due to non-Gaussian and 152 

intermittent nature of precipitation; however, they may be suitable and have been utilized for 153 

the prediction of seasonal rainfall both directly (Sinha et al. 2013) and as an auxiliary tool for 154 

selecting external predictors in conjunction with alternative methodologies (Holsclaw et al. 155 

2016). The most widely used class of the latter alternative methods for statistical modeling, 156 
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downscaling and prediction of precipitation involves, in one way or another, generalized linear 157 

models (GLM: McCullagh and Nelder 1989) — an extension of classical linear regression 158 

models to simulate the (conditional) expectation of a non-Guassian distributed variable (such 159 

as precipitation) as a function of external predictors (exogenous variables) associated with non-160 

stationary forcing (seasonal, anthropogenic or otherwise related to the climate variability 161 

external to the climate sub-system of interest) or, of most relevance to the present discussion, 162 

with the occurrence of LSMPs. These models are typically constructed to estimate probability 163 

of daily precipitation at a grid point (or weather station) level (for example, Furrer and Katz 164 

2007), although some generalizations to multiple stations accounting for spatial correlations 165 

between them are also available (Kenabatho et al. 2012). Manzanas et al. (2018) fitted separate 166 

GLM models to downscale daily precipitation occurrence and, separately, daily precipitation 167 

amount at each grid cell using upper-air predictors simulated by multi-model seasonal climate 168 

hindcasts over the Philippines. They showed that this methodology can yield a significant 169 

forecast skill improvement for seasonal precipitation prediction over that of raw forecasts in 170 

cases where the dynamical model predicts large-scale exogenous variables better than it 171 

predicts the precipitation itself. 172 

An alternative approach to precipitation modeling over a spatially extended array of grid 173 

points or stations — a Hidden Markov model approach — assumes the existence of a few 174 

discrete “hidden” weather states that capture spatial dependencies of rainfall probabilities 175 

within the region considered, with Markovian daily transitions between these states tied to 176 

exogenous predictors via GLM regression; in the latter case these models are referred to as 177 

non-homogeneous Markov models: NHMM (Robertson et al. 2004). Holsclaw et al. (2016) 178 

developed a combined HMM-GLM approach, in which a weather state HMM model is 179 

complemented by a GLM model that can modify individual (hidden) states at a station level in 180 

response to external predictors (rather than the probabilities of transitions between fixed states, 181 

as in NHMM). We speculate that this approach would also be challenging to adapt for faithful 182 

modeling of extreme precipitation over the entire CONUS, where, once again, the heaviest tails 183 

of local precipitation distributions are associated with a multitude of precipitation producing 184 

systems (Barlow et al. 2019), rather than with a small number of weather states and/or 185 

exogenous predictors. 186 

b. Present approaches 187 
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To summarize the above discussion, neither classical linear regression-based methods nor 188 

clustering or HMM methods are directly suitable for statistical modeling and prediction of 189 

precipitation over the entirety of CONUS due to non-Gaussian and intermittent nature of 190 

precipitation and a great diversity of precipitation-producing systems/mechanisms in this 191 

region, respectively. GLM regression methods may work at a grid-point level but will still 192 

require the choice of exogenous dynamical variables based on a subjective zoning of the area; 193 

these methods are also incompatible with automated linear regularization and predictor-194 

selection techniques such as CCA or (closely related) partial least squares methods (PLS: Wold 195 

et al. 1984).  196 

Here we address these difficulties via a new methodology based on statistical modeling of 197 

the so-called pseudo-precipitation field, which uses column integrated water vapor saturation 198 

deficit as a negative complement to precipitation (Yuan et al. 2019). Pseudo-precipitation is 199 

thus characterized by a more symmetric distribution than the actual precipitation, opening up 200 

a possibility of utilizing standard linear regression methods for its modeling. Furthermore, in 201 

contrast to classical precipitation field, pseudo-precipitation patterns provide, additionally, 202 

information on both the synoptic-scale and anisotropic mesoscale environment (including 203 

LSMPs) in which local precipitation occurs, making it ideally suited for linear inverse 204 

modeling (LIM: Penland 1986; Penland and Sardeshmikh 1995) and related data-driven 205 

modeling methodologies (Kravtsov et al. 2005, 2009, 2016, 2017). The LIMs exhibit sub-206 

seasonal forecasts skill comparable to that of state-of-the-art numerical weather prediction 207 

(NWP) models (see, for example, Winkler et al. 2001) and, most importantly, are able to isolate 208 

initial states associated with useful predictability of its own, as well as of NWP-model based 209 

forecasts (Newman et al. 2003; Albers and Newman 2019). This property can be helpful for 210 

identifying potentially predictable high-impact precipitation events — the main focus of the 211 

present study. The proof-of-concept mesoscale-resolving regional inverse models of surface 212 

temperature over CONUS have been developed and tested before (Kravtsov et al. 2017); these 213 

models are complex enough (yet numerically efficient) to provide an overarching description 214 

and forecast utilization of LSMPs associated with local weather extremes. We expect the same 215 

statement to be true for the combined surface temperature/pseudo-precipitation modeling we 216 

propose here. 217 
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In addition to the above (main) purely statistical and numerically efficient methodology, 218 

we will also develop and test a procedure for selecting an optimal thinned subsample of 219 

representative dates by utilizing the GEFSv12 reforecasts of precipitation for the 2000–2019 220 

period. This procedure would allow one to conduct a (greatly) reduced number of hydrologic 221 

hindcasts to estimate the adequacy of the reduced sample for the post-processing, validation 222 

and end-user needs. However, it is much more computationally demanding than the proposed 223 

purely data-driven methodology insofar as it still requires, in the first place, the full-blown 224 

meteorological reforecasts of the entire climate state to determine the thinned subsample, which 225 

somewhat defies the purpose of data thinning. Full, every-day reforecasts were available for 226 

the GEFS versions 10 (Hamill et al. 2013) and 12 (Guan et al. 2021), but such full records may 227 

not be available in the future to be subsampled. Yet, the present dynamical/statistical ad-hoc 228 

algorithm based on the GEFSv12 reforecasts can be considered a control against which to 229 

evaluate our main statistical modeling methodology, and, in what follows, we describe this 230 

algorithm first. 231 

 232 

3. Data sets and methodological details 233 

a. Selecting reforecast case dates based on heavy precipitation in GEFSv12 reforecasts 234 

We argue here that a metric of an event’s extremeness should be based on precipitation 235 

magnitude as opposed to, say, the quantile of today’s forecast relative to its climatological 236 

distribution (for example, a 0.1-inch forecast in the desert may be an extreme event relative to 237 

the local climatology but still of marginal significance to hydrologic applications). In the 238 

present methodology, the importance of a case for potential selection was judged based on the 239 

0–10-day total GEFSv12 ensemble-mean reforecast precipitation 𝑃!", sampled daily over the 240 

2000–2019 period for each of the 18 CONUS regions associated with distinct 2-digit 241 

Hydrologic Unit Codes (HUC-2 units:  https://nas.er.usgs.gov/hucs.aspx).  Some case choices 242 

were based on large ensemble-mean precipitation averaged over the entire HUC-2 unit, while 243 

others were optimized on the top 20% of grid points inside that HUC-2 unit (at the 0.25º 244 

resolution)  to emphasize smaller-scale impactful events.  A small number of cases were also 245 

based on large CONUS-wide ensemble-mean precipitation.   More specifically, the 246 

subjectively chosen breakdown of cases was as follows:  247 
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    (a) 30% of the total cases were optimized based on the maximum 10-day ensemble mean 248 

precipitation in that HUC-2 unit.  After choosing a case day on this criterion, an ad-hoc de-249 

weighting of the day before and the day after was applied so they are less likely to be 250 

chosen. However, we find that the algorithm often chooses case days separated by at least 2 251 

days (which can be easily adjusted if desired). 252 

    (b) 60% of the total cases are optimized based on the maximum 10-day ensemble-mean 253 

precipitation at the 20 grid points within that HUC-2 that have the largest mean precipitation. 254 

    (c) The remaining 10% are chosen based on maximal CONUS-averaged ensemble-mean 255 

precipitation. 256 

In developing the above merged set of dates from across the subdomains, we chose the first 257 

case date from each subdomain unless it was a repeat. Then we proceeded to the second ordered 258 

case date in each subdomain, the third, and so forth, until we have reached n total cases, where 259 

n is an adjustable pre-determined size of the thinned sample. The lists of presumed important 260 

cases were developed separately for the warm (April–September) and cool season (October–261 

March), with 𝑛 = 520. 262 

The resulting procedure produces a list of dates with an irregular sampling in time, which 263 

is to be expected if there exist long periods with no hydrologically significant activity 264 

(assuming the GEFSv12 mean precipitation to be a reasonable proxy for such an activity) 265 

which the algorithm aims to skip to provide more samples when there is strong forcing. The 266 

clustering around the largest storms from multiple initial conditions/issued datetimes is 267 

controlled, to an extent, by our de-weighting procedure, which involves a trade-off: on the one 268 

hand, we don't want a lot of shared information between samples; on the other hand, we do 269 

want to sample the largest events from several issued datetimes (and, hence, lead durations). 270 

Other adjustable parameters include the total number of cases n and the proportions of cases 271 

associated with each of the case categories (a, b, c) above. 272 

We will hereafter refer to the thinned sample produced by the above procedure as sampleA;  273 

illustrative examples from this sample will be presented alongside with the results from our 274 

alternative, purely data-driven methodology presented below. 275 

 276 
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b. Selecting reforecast cases using EMR (Empirical Model Reduction) statistical model 277 

1) DATA SETS AND VARIABLES: INTRODUCING PSEUDO-PRECIPITATION 278 

We analyzed data from the National Center for Environmental Prediction North American 279 

Regional Reanalysis (NARR) (http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html); 280 

Messinger et al. (2006), using daily “observations” on a 349×277 grid with nominal horizontal 281 

resolution of 32 km and 29 pressure levels, over the 1979–2020 period; about a third of these 282 

data are from locations over land, leading to ~30000 data points in each of the ~365 (days per 283 

year)	×42 years~15000 maps for a single-level field. The NARR data set has been widely used 284 

in the climate downscaling community (see Zobel et al. 2018 and references therein). Bukovsky 285 

and Karoly (2007) found that NARR provides faithful estimates of the observed precipitation 286 

over CONUS, although some biases exist over Canada due to a relatively poor quality of the 287 

assimilated data there.  288 

We utilized NARR data sets for the (daily) accumulated precipitation 𝑃𝑟 and 2-m air 289 

temperature 𝑇#. We also used the air temperature 𝑇 and specific humidity 𝑄 data at all available 290 

pressure levels to compute the air dryness 𝐷 related to the column-integrated water-vapor 291 

saturation deficit (Yuan et al. 2019). In an air column of area 𝛿𝐴, the mass of water vapor 𝛿𝑚 292 

to be added to achieve saturation throughout the column is 293 

𝛿𝑚 = −	𝛿𝐴1(𝜌$ − 𝜌$,&)𝑑𝑧 = 𝛿𝐴1(𝜌$ − 𝜌$,&)
𝑑𝑝
𝜌𝑔 =

𝛿𝐴
𝑔 1(𝑄 − 𝑄&)𝑑𝑝. 

(1) 

Here 𝑧 is the geometric height, 𝑝 is the pressure, 𝜌 and 𝜌$ are the dry-air and water-vapor 294 

densities, respectively, the subscript s denotes the quantities for saturated air and 𝑔 = 9.82 m 295 

s–2 is the gravity acceleration. The specific humidity of saturated air 𝑄& can be computed as 296 

(Bolton 1980): 297 

𝑄& = 𝜀
𝑒&
𝑝 ;		𝑒& = 6.112 exp D

17.67	𝑇
𝑇 + 243.5I,	 

(2) 

where 𝜀 = 0.62198 is the ratio of the molecular weights of water and dry air, 𝑒& is the 298 

saturation water-vapor pressure, and air temperature 𝑇 is expressed in ºC. Air dryness 𝐷 is 299 

defined as the equivalent water depth associated with the quantity 𝛿𝑚 in (1): 300 
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𝐷 = −
𝛿𝑚
𝜌'𝛿𝐴

= −
1
𝜌'𝑔

1(𝑄 − 𝑄&)𝑑𝑝, 
(3) 

where 𝜌' = 1000 kg m–3 is water density. The air dryness in (3) can be thought of as a negative 301 

complement to precipitation and used to construct the so-called pseudo-precipitation field 𝑃𝑃, 302 

which is, here, equal to the actual precipitation 𝑃𝑟 if 𝑃𝑟 > 0.001 m day–1 or to 𝑃𝑟 + 𝐷 303 

(essentially, the air dryness 𝐷) otherwise. 304 

 305 

 306 

Figure 1: Pseudo-precipitation (PP) (top), as well as precipitation Pr (bottom) on June 1, 1979, derived 307 
from the NARR reanalysis (m). White areas in the bottom plot are either outside of the NARR domain 308 
or, otherwise, have zero Pr. 309 
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 310 

The 𝑃𝑃 field incorporates the information about both precipitation, which can exhibit 311 

small-scale intermittent structures, and multi-scale synoptic environment (see Fig. 1); it thus 312 

provides a promising, yet unexplored way to characterize and predict, statistically, wet and dry 313 

weather conditions. One of its attractive features is that the distribution of 𝑃𝑃, unlike that of 314 

𝑃𝑟, is a single-mode, two-tailed distribution, which makes 𝑃𝑃 more similar to other dynamical 315 

and thermodynamic variables describing atmospheric state. This opens up a possibility for 316 

using standard methodologies developed previously for temperature and flow-field analysis 317 

and modeling (CCA, LIMs) to analyze and model pseudo-precipitation and, hence, its positive 318 

part associated with the actual precipitation. 319 

2) EMR MODELING OF PRECIPITATION 320 

We here apply advanced methods for high-dimensional statistical data modeling to identify 321 

potentially predictable large/extreme precipitation events. This idea is rooted in the 322 

demonstrated ability of a sub-class of such inverse models — LIM models (section 2b) to 323 

“forecast the forecast skill” (Albers and Newman 2019).  324 

(i) General methodology 325 

The Empirical Model Reduction (EMR: Kravtsov et al. 2005, 2009, 2016, 2017) is a 326 

generalization of LIM data modeling methodology to incorporate memory effects in the 327 

postulated parametric form of this empirical model’s evolution operator. The model 328 

construction usually takes place in a reduced phase space (for example, the space associated 329 

with L leading Empirical Orthogonal Functions (EOFs) of the field(s) simulated, in which case 330 

the state of the system on a given day is described by the L-valued vector of PCs 𝐱. The EMR 331 

emulator models the evolution of PCs using the following multi-level form (three levels are 332 

shown below): 333 

𝑑𝐱 = 𝐱 ∙ 𝐀(!) + 𝐫(!),																								 

𝑑𝐫(!) = P𝐫(!)	𝐱Q ∙ 𝐀(*) + 𝐫(*),								 

𝑑𝐫(*) = P𝐫(*)	𝐫(!)	𝐱Q ∙ 𝐀(+) + 𝐫(+), 

 

(4) 
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where the differentials on the left-hand side denote the daily increments of the corresponding 334 

variables. The first model level in isolation, with the residual 𝐫(!) represented, at the simulation 335 

stage (see below), by the spatially correlated white noise, would make up a classical LIM model 336 

(for example, its 1-D analog would be the AR-1 red-noise model widely used to test for 337 

statistical significance of spectral peaks in a time series). Instead, in the EMR modeling, daily 338 

increments of the first-level residual 𝑑𝐫(!) are in turn modeled as a linear function of the 339 

extended predictor vector P𝐫(!)	𝐱Q to form the second level of the multi-level regression model 340 

(4). In the same way, the third level connects the daily increments of the second-level residual 341 

𝑑𝐫(*) and the extended predictor vector P𝐫(*)	𝐫(!)	𝐱Q involving the variables from the previous 342 

two model levels. 343 

The matrices of the model coefficients A and the level residuals are found by a regularized 344 

multiple linear regression (MLR) and depend on the seasonal cycle at the monthly resolution. 345 

While the residuals of the first and second level may involve serial correlations, the last level’s 346 

residual 𝐫(+) is typically white in time (otherwise, additional levels can be added). Note that 347 

while the model construction procedure is sequential from the first level down to the last level, 348 

the equations (4) — when rewritten as one equation containing the time-lagged variables — 349 

are formally equivalent to the autoregressive moving average model (ARMA: Box et al. 1994).  350 

The model (4) can provide independent realizations of observations that are statistically 351 

very similar to the input data. At this stage of model simulation, the residual forcing at the third 352 

model level 𝐫(+) is replaced by a random forcing, which can involve simultaneous or lagged 353 

spatial correlations between different PC “channels” and depend on the simulated state x 354 

(effectively making the model nonlinear). One can also use the EMR model for statistical 355 

forecasting of the out-of-sample data. Trivial linear transformation of the simulated PCs 356 

provides the data simulation or forecasts in the original physical space. 357 

While the original LIM models, as well as the EMR methodology above, have been 358 

typically applied to fairly low-dimensional subsets of meteorological data, Kravtsov et al. 359 

(2015, 2017) demonstrated its applicability to larger or higher-resolution data sets such as 360 

regional surface temperature (Kravtsov et al. 2017) and precipitation. In the latter case, most 361 

relevant to the present project, the EMR modeling of combined 𝑇# and 𝑃𝑃 fields resulting from 362 

an hourly, 16-km-resolution Japan regional reanalysis was successfully used by AIR 363 



15 

File generated with AMS Word template 1.0 

Worldwide (Boston, MA) for flood-risk assessment over Japan (Boyko Dodov 2016, Director 364 

of Flood Modeling, personal communication). We here build an analogous combined 𝑇#/𝑃𝑃 365 

daily EMR model over CONUS and utilize it to identify potentially predictable large and 366 

extreme precipitation events to be included in the final thinned subsample. 367 

(ii) EMR application to NARR 𝑇!/𝑃𝑃 data 368 

All model construction steps,  including the identification of seasonal cycle and initial data 369 

compression,  were done using the NARR’s  1979–1999 (training period) data.  We built our 370 

EMR model (4) in the phase space of 3000 common EOFs of the daily 2-m air temperature and 371 

pseudo-precipitation (section 3b.1) anomalies with respect to the mean seasonal cycle 372 

computed by the linear regression of raw daily data onto the first five harmonics of the annual 373 

cycle. The maps of climatological standard deviation of these anomalies (over the 1979–1999 374 

period) are shown in Supplemental Fig. S1. The EOF identification only used land grid points 375 

(hence, the assessment of model performance should in principle also focus on the land region). 376 

We first computed 1000 leading EOFs of 𝑇# and 3000 leading EOFs of  PP field, normalized 377 

the corresponding individual PCs by the standard deviation of the leading PC of each field and 378 

applied an additional EOF rotation to the data set of concatenated 𝑇#/PP individual normalized 379 

PCs, finally retaining the leading 3000 common PCs so obtained. These PCs were again 380 

normalized by the standard deviation of their own PC-1,  while the corresponding dimensional 381 

EOF patterns were found by regressing the individual fields onto these common PCs (note that 382 

these patterns only represent the actual common EOFs over the land region and should be 383 

interpreted as a teleconnection pattern over ocean). To initialize model forecasts performed 384 

over the validation period (2000–2020),  we projected the anomaly data there (again, with 385 

respect to the 1979–1999 mean seasonal cycle) onto common 𝑇#/PP EOFs computed above. 386 

For the back transformation, to produce the patterns in physical space from a map of individual-387 

day PC loadings (as obtained, for example, from our EMR model simulations), one is to simply 388 

add all of the 3000 individual EOF patterns multiplied by the corresponding loadings, on top 389 

of the mean seasonal cycle. The EOF truncation errors associated with the procedure above are 390 

shown in the supplemental Figs. S2 (training  period) and S3 (validation interval) and 391 

demonstrate a fairly high accuracy (small errors) over CONUS for both 𝑇# and PP data, 392 

sufficient for a faithful representation of extreme hydroclimatic events in the region. 393 
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The EMR model construction and simulation technical steps follow Kravtsov et al. (2017), 394 

except here we are only modeling the evolution of daily fields and thus disregard the sub-daily 395 

and monthly model tiers employed there. Note that all of the model operators in (4) are season-396 

dependent at monthly resolution. For example, to estimate the model parameters for January, 397 

we consider the December–January–February (DJF) subset of daily data and use a regularized 398 

(PLS) version of multiple linear regression for each of the three model levels sequentially. At 399 

the simulation stage,  the third-level residual r(3) is simulated by pulling its randomized 5-day 400 

snippets from the library of actual residuals obtained during the model construction stage. This 401 

random forcing selection is also season-dependent, so that,  for example,  if the current time 402 

step is in January,  the DJF subset of r(3) library is used for that purpose. To avoid unnecessary 403 

discontinuities, the consecutive random forcing snippets were overlapped by two days and 404 

added with the weights (√3/2, 1/2) and (1/2, √3/2) before phasing out the previous snippet 405 

of r(3) completely. 406 

We used the EMR model above in two ways: first to produce, from random initial 407 

conditions, 100 synthetic realizations of the 2-m air temperature and precipitation (positive 408 

pseudo-precipitation) 1979–1999 evolution and assess how well the model captures the 409 

observed statistical characteristics of these fields (section 4a). Second, we ran 0–10-day 100-410 

member  ensemble forecast of temperature and (pseudo) precipitation for each of the 2000–411 

2020 initial conditions to assess the model’s predictive skill (section 4b) and eventually utilized 412 

these forecasts to develop  and test an innovative methodology for reforecast thinning (section 413 

4c). Since our interest here is in extreme precipitation events, we will focus below on the 414 

simulation of precipitation; the present EMR performance in modeling temperature will be 415 

considered elsewhere. 416 

3) CASE SELECTION USING EMR ENSEMBLE FORECASTS 417 

In principle, the EMR ensemble-mean hindcasts of the 0–10-day total precipitation 𝑃!" can 418 

be processed in exactly the same way as the GEFSv12 reforecasts to produce an alternative 419 

representative subset of events of impact, as described in section 3a; the outcome of such a 420 

procedure, which results in the thinned sample we will refer to as sampleB, are briefly discussed 421 

at the very end of section 4c . However,  a large size of the EMR hindcast ensemble (possible 422 

to achieve due to this model’s numerical efficiency) makes it possible to develop an alternative 423 

methodology that involves relative entropy of the EMR hindcasts; this methodology will be 424 
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introduced below and described in detail in section 4c. We  will call the thinned sample 425 

produced by this EMR based method simply a “sample” or an “EMR-RE sample.” 426 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A JJA-season sequence of 

daily surface precipitation maps (m) 

from: (left) arbitrary [random] 

realization of EMR model; (right) 

NARR reanalysis. Day “1” in a panel 

caption would correspond to June 1, 

1979. White areas in the bottom plot 

are either outside of the NARR 

domain or, otherwise, have zero Pr. 
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 427 

4. Results 428 

a. Using the EMR model as an emulator of daily precipitation evolution 429 

Preliminary inspection of the EMR-model daily precipitation simulations in physical space 430 

obtained by simply considering the positive pseudo-precipitation reveals model biases in the 431 

distribution of precipitation events (not shown). To eliminate these biases, we apply quantile 432 

mapping (for each of the DJF,  MAM, JJA, SON seasonal subsets) to each 1979–1999 model 433 

simulation of pseudo-precipitation to make the simulated local distributions of this quantity 434 

identical to those based on the original 1979–1999 NARR data. Specifically, the observed 435 

1979–1999 and simulated 2000–2020 PP time series at a given grid point and for a given season 436 

(DJF, MAM,  JJA, SON) were sorted in the ascending order, upon which the sorted 2000–2020 437 

simulated values were replaced by the sorted 1979–1999 observed values, then put back in the 438 

original order (cf. Hamill 2018). This procedure automatically ensures the identical local (i.e., 439 

a given grid point’s) precipitation distributions between the model and NARR reanalysis as 440 

well. However, the spatiotemporal characteristics of sequences of daily precipitation maps are 441 

entirely due to dynamics embedded in the EMR model’s propagator. Examples of such 442 

sequences for the warm and cold season are shown in Fig. 2 and supplemental Fig. S4, 443 

respectively and give one a visual impression of how well the model matches the space–time 444 

structure of the observed stationary and propagating precipitation patterns; the external link to 445 

longer sequences is also available in the Supplemental Information.  446 

We also compute,  for future use, daily time series of day 0–10 cumulative precipitation 447 

(𝑃!") and display its (seasonal) mean and 99th percentile in Figs. 3 and 4, respectively. Note 448 

that while the simulated local daily precipitation distributions are fixed due to quantile 449 

mapping, the simulated and observed distributions of 𝑃!" can be different if the spatial scales 450 

or persistence/intermittency of the simulated precipitation differ from the observed 451 

characteristics. However, this does not seem to be the case here, with the simulated 𝑃!" mean 452 

entirely consistent with observations (Fig. 3).  The simulated 𝑃!"’s  99th percentile (Fig.  4) is 453 

a slight overestimate compared to observations (including large areas over land), reflecting, 454 

perhaps, a slightly overly persistent local precipitation anomalies, but the overall match 455 

between the simulated and observed 𝑃!" distributions is still very good. 456 
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 457 

Figure 3: 1979–1999 seasonal climatology of the 0–10-day total precipitation at the surface — 𝑃!" 458 
(mm). Left: climatology based on an ensemble of 100 EMR model simulations; right: the difference 459 
between the simulated and NARR based 𝑃!" climatology, with stippling indicating the regions over 460 
which this difference is of the same sign for more than 97 realizations (so, effectively, is statistically 461 
significant at the 5% level). 462 
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 463 

Figure 4: The same as in Fig. 3, but for the 99th percentile of 𝑃!".  464 

 465 

 466 

 467 
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b. EMR model predictive skill 468 

To initialize the EMR model forecasts starting from a given day n within the 2000–2020 469 

validation interval, we assume that the observable state vectors x at days n, n–1 and n–2 are all 470 

known. This, however, still requires us to solve for the values of the hidden-level variables r(1) 471 

and r(2) at the initial day n, which involves two pre-steps of the model (4) driven by a random 472 

r(3) forcing that ensure dynamical consistency [within the model (4)] of the hidden-state 473 

variables with the observables xn, xn–1,  xn–2. After these pre-steps,  the model is integrated 474 

forward in a normal way until the time n+10. This procedure is repeated for all of the available 475 

initial conditions. Upon transformation back to physical space,  the collection of PP forecasts 476 

for a given lead time is, again, quantile mapped to the 1979–1999 local daily PP distributions; 477 

finally, zeroing out the negative values of this quantile mapped PP forecast gives the final 478 

forecast of the daily precipitation at this lead time, for each initial condition. Summing up the 479 

precipitation forecasts for the days n to n+10 makes up the final 𝑃!" forecast for each initial 480 

condition; we produced an ensemble of 100 such forecasts under different realizations of the 481 

random forcing. Below we will focus on these 𝑃!" forecasts when estimating the EMR model’s 482 

forecast skill.  483 

We will also compare the EMR model forecasts with the benchmark damped persistence 484 

forecasts of daily precipitation: 485 

 486 

																																																									𝑝,-. = 𝑟.𝑝, + (1 − 𝑟.)𝑝,T 																																												(5)			 487 

 488 

where 𝑟. is the precipitation’s lag-m autocorrelation and 𝑝̅ is the climatology, both computed 489 

for each season’s subset of the 1979–1999 NARR’s daily precipitation data. The damped 490 

persistence 𝑃!" forecasts are obtained from (5) as the sum of 𝑝,-. for 𝑚 = 0, 10VVVVVV. 491 

1) DETERMINISTIC SKILL 492 

We first discuss some traditional deterministic measures of skill by comparing the observed 493 

𝑃!" values with their ensemble-mean EMR based prediction. Figure 5  provides cool-season 494 

examples of such a comparison for select cases of substantial observed 𝑃!" episodes over 495 

CONUS (see Fig.  S5 for analogous warm-season comparisons). Visual inspection confirms 496 

reasonable EMR forecasts (left column) of the spatial scale, shape, location and magnitude of  497 
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 498 

Figure 5: Examples of (cool season) 𝑃!" forecasts using EMR model (left) and GEFSv12 system 499 
(right), along with the actual 𝑃!" maps based on NARR reanalysis (middle). Units are mm. The 500 
forecast initialization time (the same across each row) is shown in panel captions in the 501 
YYYYMMDDHH format.  502 

 503 

the observed large 𝑃!" events (middle column), qualitatively similar to analogous GEFSv12 504 

forecasts (right column). The overall correlations between the observed and forecasted 𝑃!" time 505 

series (for each season) [Fig. 6, left], while positive,  are fairly low, at the 0.2–0.3 level in most 506 

areas, with the exception of a few season-dependent regions reaching potentially useful levels 507 

               EMR forecast                                 NARR reanalysis                          GEFSv12 reforecast                       
 

 
 
                                          Ensemble-mean 0–10-day total precipitation (mm) 
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of 0.5–0.6. However, these correlations are consistently higher than those for the damped-508 

persistence forecasts (Fig. 6, right).  509 

 510 

Figure 6: The EMR model precipitation forecast skill. Left: Correlation between (1-day lead-time) 511 
EMR forecast (ensemble-mean of 100 members) and daily 𝑃!" time series from NARR reanalysis, for 512 
each season. Right: The difference between forecast skill of the EMR model and (daily) damped 513 
persistence forecast of 𝑃!" (see text for details). Stippling indicates the areas of positive differences, 514 
where the EMR forecast beats the damped persistence forecast). 515 
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 516 

Figure 7: EMR model’s 𝑃!" forecast (2000–2020) root-mean-square (rms) error relative to (1979–517 
1999) climatological standard deviations, for each season.  Note the inverted color scale; otherwise, 518 
the same layout and conventions as in Fig. 6. 519 

 520 

 

 

 

s 
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The root-mean-square (rms) distance between the observed and forecasted 𝑃!" time series 521 

(Fig.  7) is generally close to the 𝑃!"’s climatological standard deviation, with EMR model 522 

forecasts beating damped persistence forecasts in some of the southern areas but performing 523 

similar to damped persistence forecasts elsewhere.  524 

Overall, the deterministic measures of skill suggest, at best, a modest performance of the 525 

EMR model in forecasting 𝑃!". This,  however,  may be in part due to unsuitability of these 526 

measures to describe the forecast quality of a discontinuous and highly intermittent — in space 527 

and time — state variable such as precipitation. In particular,  considering the ensemble-mean 528 

forecast only completely disregards much of the useful information associated with the entire 529 

ensemble of forecasts. 530 

 531 

Figure 8: The (average 2000–2020) EMR model’s 𝑃!" forecast interquartile range (IQR) — based on 532 

an ensemble of 100 forecasts — relative to the (1979–1999) climatological IQR of 𝑃!", for each 533 
season. The ratios below unity (stippling) indicate an enhanced forecast utility relative to that of 534 
climatology forecast. Note the inverted color scale. 535 

 536 
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 537 

Figure 9: Left: The EMR forecast success rate defined as the fraction of 𝑃!" forecasts (over all initial 538 
conditions, in each season separately) for which the actual 𝑃!" value from the NARR reanalysis is 539 
within the IQR of (100-member) ensemble forecasts; stippling shows the areas with success rate 540 
exceeding the value of 0.5 (associated with the climatology forecast). Right: the difference between 541 
the EMR success rate and the success rate associated with the damped persistence forecast combined 542 
with the IQR of the EMR model (see text for details); stippling denotes the areas of positive 543 
differences (EMR model beats damped persistence forecast). 544 

 545 
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2) PROBABILISTIC CHARACTERISTICS OF SKILL 546 

A perhaps more suitable measure of skill for precipitation should involve probabilistic 547 

characteristics associated with ensemble forecasts of this quantity. An example of such a 548 

measure is shown in Fig. 8, which plots the climatological ratio of the interquartile range (IQR) 549 

of the EMR model forecasts to the climatological IQR of 𝑃!". This quantity is related to the so-550 

called potential predictability (see Kleeman 2002 and references therein), with the values less 551 

than 1 (this value corresponds to climatology forecast) and increasingly closer to zero 552 

indicating a progressively more reliable forecast. Based on this measure, the EMR model 553 

provides potentially useful forecasts throughout the region of interest, including CONUS. 554 

While providing a measure of forecast utility, the potential predictability does not directly 555 

compare the forecast with the actual observed precipitation value for the time of forecast. To 556 

do so, we here introduce an additional forecast skill measure — the forecast success rate — by 557 

counting the frequency of forecasts for which the observed 𝑃!" value is within the IQR range 558 

of the EMR forecast ensemble. The EMR model forecast success rate has large areas with 559 

values exceeding 0.5 (the observed value of 𝑃!" is within the IQR of EMR forecasts 50% of 560 

the time or more) and sometimes nearing the value of 1  (Fig.  9, left). We also combined the 561 

damped persistence forecasts of 𝑃!" with the mean and IQR range of the corresponding EMR 562 

forecast to compute the success rate associated with the damped persistence forecast: in 563 

particular, the “range” associated with a damped persistence forecast 𝑓/ was set to be 𝑓/ −564 

∆., 𝑓/ + ∆/, where ∆. and ∆/ are the offsets  between the EMR model’s ensemble mean  and 565 

its 25th and 75th percentiles,  respectively. We verified that the damped persistence forecast 566 

success rate defined in this way is substantially lower than the EMR model’s success rate  (Fig.  567 

9,  right). 568 

Hence,  the EMR model produces reliable (low-dispersion) forecasts that tend to track the 569 

observed precipitation (signal), much more so than the damped persistence forecasts. Kleeman 570 

(2002) argued that a forecast’s relative entropy 571 

 572 

																																																																𝑅 =Z 𝑝0 ln
𝑝0
𝑞00
,																																																				(6)				 573 

where 𝑝0 is climatological distribution and 𝑞0 is that for the prediction, can be very useful in 574 

characterizing prediction utility as it naturally captures both the signal and dispersion compo- 575 
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 576 

Figure 10: Relative entropy of EMR forecasts. Left: the expectation (climatology), with stippling 577 
showing the areas where this expectation exceeds that associated with the damped persistence forecast 578 
(see text for details); right: the 99th percentile. Note that the relative entropy here was only computed 579 
and shown over the grid points at which the 99th percentile of 𝑃!" exceeded 50 mm (cf. Fig. 7, left); 580 
the areas in which this is not the case are colored white. 581 

 582 
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nents of skill. The relative entropy measures how different the forecast distribution is from a 583 

climatological distribution. However, the expectation of R (characterizing climatological 584 

difference between forecasts and observations) would tend to be lower for the forecast schemes 585 

that are more skillful than others. For example, the climatological relative entropy associated 586 

with the damped persistence forecasts is expected to be higher than that for the EMR forecasts. 587 

This is indeed the case (Fig. 10, left) [note that the relative entropy here was only computed 588 

and shown over the grid points at which the 99th percentile of 𝑃!" exceeded 50 mm (cf. Fig. 7, 589 

left)]. Yet, over time, the relative entropy associated with individual 𝑃!" forecasts can greatly 590 

exceed its climatological value (Fig. 10, right). In section 4c below, we will develop a 591 

subsampling strategy in which the forecasts with large values of the quantity R are tagged to 592 

define and sample potential large and extreme precipitation events. 593 

c. EMR based probabilistic algorithm for thinning reforecast sample size 594 

Note that the cases displayed in Figs. 5 and S5 were selected using the ad hoc algorithm 595 

based on heavy precipitation in GEFSv12 reforecasts  (section 3a; SampleA) (the multi-page 596 

image files with analogous maps for other selected cases are available through a webpage 597 

referenced in the Supplementary Information). As mentioned before, the same algorithm was 598 

applied to the EMR model’s ensemble-mean 𝑃!" forecasts (which are also available through 599 

the supplementary website); see a brief discussion at the end of this section. We here also 600 

developed and applied an alternative strategy, which selects the dates based on the large value 601 

of the EMR forecasts’ relative entropy. In particular, we computed, for each day, the average 602 

among the top 10%  relative-entropy grid point values over CONUS (which were also pre-603 

selected to have the seasonal 1979–1999 𝑃!"’s 99th percentile exceeding 5 cm, thus excluding 604 

the white areas in Fig. 10);  each day in the record was then ranked based on its relative entropy 605 

score. Upon selecting 40% of the highest-score dates from the first and 40% of the highest-606 

score dates from the second half of the original 2000–2020 sample (thereby eliminating 607 

possible effects of any long-term relative entropy trends), we edited out the member with a 608 

higher R from all the pairs of consecutive high-relative-entropy days identified above, and then 609 

from the pairs separated by two days. This procedure results in the identification of 1095 cases 610 

separated by at least two days out of the total 7671 days comprising the 2000–2020 period, 611 

which we argue to be an optimal subset including the majority of the high-impact events and 612 

yet also representative of the climatological 𝑃!" distribution. If more frequent sampling is 613 
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required, the  additional dates for reforecasts can be added at random from the remainder of 614 

the record.  615 

 616 

Figure 11: Examples of (cool season) 𝑃!" forecasts using EMR model (left), along with the actual 𝑃!" 617 
maps based on NARR reanalysis (middle). Units are mm. The right column shows the corresponding 618 
map of the relative entropy. The forecast initialization time (the same across each row) is shown in 619 
panel captions in the YYYYMMDDHH format. Note that, similar to Fig. 10, the relative entropy in 620 
the right-column plots was only computed and shown over the grid points at which the 99th percentile 621 
of 𝑃!" exceeded 50 mm (cf. Fig. 7, left); the areas in which this is not the case are colored white. 622 
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The size of the latter sample is also consistent with that of the sampleA, which has 520 cases 623 

per each of the semi-annual cool and warm seasons (over 2000–2019 period, with the following 624 

breakdowns: DJF – 188, MAM – 276, JJA – 247, SON – 329 cases). The corresponding 625 

breakdowns for the present sample are: DJF – 282, MAM – 290, JJA – 240, SON – 283 cases, 626 

featuring a more uniform seasonal distribution of cases, with more  DJF cases and fewer SON 627 

cases compared to the GEFSv12 based subsample. The two samples turn out to be largely 628 

independent,  with only 198 (~20%) matching dates over the 2000–2019 period. A few 629 

examples of the 𝑃!" observed and predicted maps based on the present sample are shown in 630 

Figs. 11 and S6 (and others are available through the Supplementary website). The third 631 

column of these figures shows the distribution of the EMR forecasts’ relative entropy on a 632 

given day, which tends to track the areas of large and extreme precipitation (recall that the 633 

relative-entropy-based selection criterion was only applied over CONUS, rather than over a 634 

larger region of the NARR reanalysis). 635 

 636 

Figure 12: The 𝑃!"’s probability density function (PDF) estimates at 47.4 N, 122.4 W (Seattle, WA) 637 
based, for each season, on the entire daily 𝑃!" data (blue), and two thinned subsamples ~1/7 the size 638 
of the whole available data: a subsample based on relative entropy of EMR forecasts (EMR-RE) 639 
(sample, red) and the one (sampleA, yellow) based on ensemble-mean GEFSv12 𝑃!" forecasts 640 
associated with significant precipitation events over CONUS (see text for details). 641 
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 642 

Figure 13: The differences between the estimates of 𝑃!"’s climatological mean based on: EMR-based 643 
thinned sample and the entire seasonal 𝑃!" data (left column); GEFSv12-based thinned sampleA and 644 
the entire seasonal 𝑃!" data (middle column); EMR-based thinned sample and GEFSv12-based 645 
thinned sampleA (right column). Stippling shows areas where the differences are statistically 646 
significant at the 5% level according to the two-sided bootstrap test involving surrogate random 647 
subsamples of the same size as either the EMR-based thinned sample or GEFSv12-based thinned 648 
sampleA. 649 

 650 
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To assess relative performance of the two methods, we computed distributions of 𝑃!" 651 

associated with each sample and compared them with the climatological distribution of 𝑃!". 652 

An example of these distributions in Fig. 12 demonstrates that the EMR based sample provides 653 

a better match to the NARR based 𝑃!" climatological distribution than the GEFSv12 based 654 

subsample, which tends to be excessively heavy tailed (DJF panel gives a particularly clear 655 

example of this for the location chosen).  The positive bias of the GEFSv12 based sample 656 

(perhaps natural, given the  selection criterion built on the direct occurrence of the large or 657 

extreme precipitation) is also  evident in the maps of the climatological mean (Fig. 13) and (to 658 

a somewhat lesser extent) in the maps of the 99th percentile (Fig. S7), of the distributions based 659 

on full and subsampled data.  Overall, the present sample has a distribution of 0–10-day 660 

total precipitation that is closer to the distribution based on the full data compared to 661 

that of GEFSv12 based sampleA, while capturing the majority of high-impact 662 

precipitation events. It should be noted,  however, that the ultimate test of the success of the 663 

subsampling will be the accuracy of postprocessed precipitation guidance based on the sample 664 

at hand, and not the fidelity against the NARR data.  For example, heavier precipitation periods  665 

preferentially sampled by the GEFSv12 algorithm by design may be particularly important for 666 

establishing the statistical relationships in situations with heavy precipitation that are of 667 

greatest interest.  668 

Finally, we note here that the thinned sampleB obtained using the same algorithm as for the 669 

GEFSv12 data, but applied to the EMR precipitation forecasts, produced results inferior of 670 

those associated with either the EMR-RE sample or the GEFSv12-based sampleA in terms of 671 

the similarity of climatological precipitation distributions based on the thinned and full 672 

available data samples (Figs. S8 and S9). This may be due to the fact that the EMR forecasts 673 

of 𝑃!" have a smaller deterministic skill than analogous high-end GEFSv12 reforecasts. 674 

 675 

5. Summary and discussion 676 

In this study, we developed a novel methodology for multi-scale statistical modeling of 677 

precipitation by utilizing the Empirical Model Reduction (EMR) technique (Kravtsov and co-678 

authors 2005–2017) applied to the NARR reanalysis. The key element of the new algorithm is 679 

the usage of the pseudo-precipitation PP — whose positive values are associated with the 680 

actual precipitation, while negative values represent the column integrated water vapor 681 
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saturation deficit — as a part of the climate state vector to be simulated  by the EMR model. 682 

The PP field thus carries information about both the mesoscale precipitation features and 683 

synoptic-scale environmental background (large-scale meteorological patterns: LSMP) 684 

potentially conducive to high-impact precipitation events. This EMR model was found to 685 

provide a seamless spatiotemporal statistical description of the precipitation-producing weather 686 

systems across a wide range of spatial scales over the entirety of CONUS and to possess a 687 

significant predictive skill,  especially in a probabilistic sense.  688 

We defined the events-of-impact in terms of the relative entropy (Kleeman 2002) of the 689 

EMR based ensemble hindcasts of the 0–10-day total surface precipitation 𝑃!" over the 2000–690 

2020 period and identified an optimal (arguably minimal) subset of dates proved to provide 691 

local precipitation distributions consistent with those based on the full data set. By contrast, an 692 

alternative statistical methodology for selecting such dates based directly on the magnitude of 693 

𝑃!" in high-end ensemble-mean reforecasts of precipitation produced subsamples with a more 694 

substantial heavy-precipitation bias. Thinning the frequency of reforecasts — the task that 695 

motivated this research in the first place — is extremely important in a variety of hydrological 696 

modeling applications to be described in a future companion paper. 697 

Note that our selecting reforecast cases for their presumed importance in one metric (here, 698 

0–10-day precipitation) may bias the sampling properties for different kinds of important 699 

extreme events, which might include hurricanes, mixed precipitation events, severe weather, 700 

extreme surface temperatures or winds, among others. For example, heavy precipitation events 701 

are forecast better using the quantile approach with respect to precipitable water than the 702 

absolute magnitude of the precipitable water (refs?). Such biases, however, would be a 703 

limitation of any method that seeks to limit the reforecast sample size. 704 

Another possible limitation of the EMR methodology developed here is that the EMR 705 

model is trained on the earlier data, while the ongoing climate change may skew the more 706 

recent historical record in various ways, introducing a bias into EMR forecasts associated with 707 

the latter record.  For our present application, we believe that such biases associated with the 708 

𝑃!" statistics are relatively small, as evidenced by a fairly uniform in time distribution of dates 709 

in our thinned samples (so that, for example, the number of important cases identified in the 710 

first and second halves of the 2000–2020 record is similar).  711 

Our new EMR methodology for statistical modeling of precipitation is fundamentally 712 

different from more traditional techniques (which typically work with individual precipitation 713 

records at a local level and/or postulate ad hoc connections with a limited number of large-714 
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scale predictors:  see section 2a)  in that it automatically accounts for spatiotemporal multi-715 

scale structure of precipitation dynamics, thereby providing a unified framework to model 716 

diverse precipitation environments. At the same time, it is still extremely numerically  efficient 717 

and thus easily permits large-ensemble simulations/forecasts which are essential for monitoring 718 

and fully utilizing probabilistic characteristics of precipitation, in contrast to full-blown 719 

dynamical models necessarily limited in the number of ensemble members due to prohibitive 720 

computational expenses.  721 

This paper showcases just one application of the new EMR precipitation model to the 722 

problem of thinning the frequency of reforecasts. Follow-up work will look into how the 723 

various sampling strategies affect precipitation forecast calibration and hydrologic forecast 724 

accuracy. We also plan to further test the EMR model’s potential in a wider range of related 725 

problems around the statistical/dynamical analysis of precipitation and its predictability. 726 
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