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 41 
ABSTRACT 42 
 43 

Common methods for the statistical postprocessing of deterministic 2-meter temperature 44 

(T2m) forecasts over US and nearby land regions were evaluated at leads from +12 h to +120 h.   45 

Forecast data were extracted from the Global Ensemble Forecast System (GEFS) v12 46 

reforecast data set and thinned to a 1/2-degree grid encompassing the contiguous US.  47 

Analyzed data from the European Centre/Copernicus reanalysis (ERA5) were used for training 48 

and validation.  Data from the 2000-2018 period were used for training, and 2019 forecasts 49 

were validated.   The statistical postprocessing methods compared were the raw forecast 50 

guidance, a decaying-average bias correction (DAV), quantile mapping (QM), a univariate 51 

model output statistics (uMOS) algorithm, and a multi-variate (mvMOS) algorithm.  mvMOS 52 

used the raw forecast temperature, the DAV bias correction, and the QM adjustment as 53 

predictors. 54 

Forecasts from all the post-processing methods reduced the root-mean-square error 55 

(RMSE) and bias relative to the raw guidance.  QM produced forecasts with slightly higher error 56 

than DAV, though error differences were not always statistically significant.  uMOS and mvMOS 57 

produced statistically significant lower RMSEs than DAV at forecast leads longer than 1 day, 58 

with mvMOS exhibiting the lowest error.  Taylor diagrams showed that the MOS methods 59 

reduced the variability of the forecasts while improving forecast-analyzed correlations.   QM and 60 

DAV modified the distribution of forecasts to more closely exhibit those of the analyzed data.  61 

A main conclusion, reinforcing that found by others, is that the judicious statistical 62 

combination of guidance from multiple post-processing methods is capable of producing 63 

forecasts with improved error statistics relative to any one individual post-processing technique 64 

on its own.   As each post-processing method applied here is algorithmically relatively simple, 65 

this suggests that operational deterministic postprocessing could produce improved T2m 66 
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guidance with little effort, assuming that reduction of error is the primary criterion for evaluating 67 

the post-processing procedure.   68 
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1. Introduction. 69 

Much of the attention in the recent literature on the statistical postprocessing of forecasts 70 

has shifted to the postprocessing of ensemble prediction system guidance and the production of 71 

skillful and reliable probabilistic forecasts.   This is reflected in a recent textbook (Vannitsem et 72 

al. 2018) highlighting developments in this discipline.   Despite the evolution in this direction, 73 

many weather prediction centers still produce deterministic forecast guidance from a variety of 74 

methods, especially forecasts of more statistically straightforward quantities such as surface 75 

temperature and particularly at shorter forecast lead times (days, not weeks).  Hence, it is still of 76 

practical interest to operational weather prediction centers to understand the potential strengths 77 

and weaknesses of several plausible candidate statistical post-processing methods.    78 

In this article we compare the characteristics of several algorithmically simple methods 79 

when applied to the statistical correction of two-meter above ground surface temperatures (T2m).   80 

The algorithms are the decaying-average  (DAV) bias correction (Cui et al. 2012), quantile 81 

mapping (QM; Hopson and Webster 2010, Voisin et al. 2010, Maraun 2013), and Model Output 82 

Statistics (MOS) regression techniques (Glahn and Lowry 1972, Carter et al. 1989).   While this 83 

is not an exhaustive list, these represent different techniques with different underlying correction 84 

principles, and each is used operationally in different contexts.   In fact, in the US National 85 

Weather Service, each of these is used.   The DAV method is used in the National Blend of 86 

Models (NBM; Craven et al. 2020).   QM is also used in the NBM for precipitation forecasts 87 

(Hamill et al. 2017, Hamill and Scheuerer 2018), and MOS is still used for station data 88 

postprocessing (e.g., Glahn et al. 2009). 89 

Algorithms often employ some approximations when training sample sizes are smaller, 90 

such as bolstering the training set with data from  “supplemental locations” (Hamill et al. 2017) 91 

or pooling of training data over locations spanning large regions (Lowry and Glahn 1976).  With 92 

newly available global reforecasts from version 12 of the NWS Global Ensemble Forecast 93 

System (Hamill et al. 2020, Zhu et al. 2020ab), there is a long-enough training data set that 94 
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such approximations are not necessary for surface temperature, and each grid point can be 95 

processed using only that point’s data for training.  In particular, this study independently 96 

evaluated the raw and post-processed forecasts over a set of ½-degree grid points in a domain 97 

encompassing the contiguous US (CONUS).  2000-2018 T2m forecast and reanalysis data were 98 

used as training data, and the forecasts were validated during 2019.  These multiple post-99 

processing methods were evaluated with common (root-mean-square error, bias) metrics as 100 

well as those less commonly applied to weather predictions such as “Taylor diagrams” (Taylor 101 

2001).   The hope is that the results will guide the choice of algorithms in future operational 102 

postprocessing decisions. 103 

Below, section 2 discusses the data used in this study as well as the postprocessing 104 

methods and the methods of evaluation.  Section 3 provides results, and section 4 concludes. 105 

 106 

2. Data, post-processing, and evaluation methods. 107 

 108 

a. Forecast data. 109 

 Gridded T2m reforecasts from the US National Weather Service Global Ensemble 110 

Forecast System, version 12 (GEFSv12) were used in this study.  The ensemble forecast 111 

system was described in Zhou et al. (2021), the reforecast data were described in Guan et al. 112 

(2021), and the reanalyses used to initialize the reforecasts were described in Hamill et al. 113 

(2021).   Briefly, v12 of the GEFS provides a major system upgrade; the ensemble prediction 114 

system uses a new finite-volume dynamical core, there are major improvements to the 115 

deterministic and stochastic physics, and the grid spacing has been refined to ~25 km.   116 

Ensemble prediction skill is improved in many ways, as described in Zhou et al. (2021).  The 117 

real-time ensemble is accompanied by a reforecast data set spanning 2000-2019, which is 118 

available for free download from Amazon Web Services, https://noaa-gefs-119 

retrospective.s3.amazonaws.com/index.html .   During this period, for each day at 00 UTC, a 5-120 
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member reforecast ensemble was generated to +16 days lead.   Once per week an 11-member 121 

ensemble was generated to +35 days.   For this simple study, we examined only the 122 

deterministic control member from this reforecast ensemble.   While data were available on a 123 

1/4-degree grid, the data were subsampled to 1/2 degree, confined to a domain from 125 to 60 124 

degrees west longitude and 20 to 50 degrees north latitude.  We do not expect sub-sampling to 125 

affect the results.   The domain encompassed the contiguous US and included some of Mexico, 126 

southern Canada, and the Carribean  (Fig. 1).  Only forecasts at grid points considered > 50% 127 

land in both the forecast and analyzed data were considered, as there were some oddities 128 

where the forecast and analyzed data differed in their land-water classifications, and this 129 

profoundly affected the statistics.    Forecasts were evaluated from +12 h to +120 h lead time in 130 

time steps of 12 h. 131 

 132 

b.  Analysis data. 133 

 Coincident “ERA5” reanalyses (Hersbach et al. 2020) from the European Centre for 134 

Medium Range Weather Forecasts (ECMWF) / Copernicus Climate Service reanalysis were 135 

downloaded and used for statistical model training and validation.   The data were extracted on 136 

a 1/4-degree grid and sub-sampled to the 1/2-degree grid, coincident in space with the forecast 137 

grid.  Data were extracted at 12 h intervals from the beginning of 2000 to the end of January 138 

2020.   ERA5 employs a T2m analysis procedure using station observations, and it was thus 139 

deemed to be a reasonably trustworthy gridded reference product. 140 

 141 

c.  The decaying-average bias correction. 142 

 This method will be abbreviated as “DAV” hereafter.    The method has previously been 143 

described in Cui et al. (2012).   The approach is quite simple, both algorithmically and in terms 144 

of implementation.  The application developer chooses a value  that determines the weighting 145 



7 

to apply to the most recent discrepancy between forecast and observation (or analysis).   For a 146 

forecast date t for a particular forecast lead time and grid point, the DAV bias estimate is  147 

 148 

 ,      (1) 149 

 150 

where  is the bias estimate at the same lead time and grid point but one day previous, and 151 

 is the sample forecast value of a random variable Xf and  is the sample analyzed value at 152 

date t.    Some particularly appealing characteristics of DAV are: (a) training may be conducted 153 

on-the-fly; one need not conduct a separate training, followed by validation. (b) Because of this, 154 

storage of training data in an operational environment is not necessary.   When considering 155 

high-resolution grids over large areas and spanning multiple forecast variables, multiple lead 156 

times, and lengthy training periods, this storage can become quite large.    Some disadvantages 157 

of the DAV method were discussed in Hamill (2018), in particular the difficulty in choosing an 158 

optimal value of  in the presence of time-varying unconditional bias. 159 

 The error of the DAV method was only slightly sensitive to the chosen value of .   Fig. 2 160 

shows the RMSE of the DAV method during the 2000-2018 training period as a function of .   161 

For the official validation in 2019 against other techniques, the  that produced the lowest 162 

RMSE at each forecast lead time during the training period was chosen. 163 

 164 

d. Quantile mapping.  165 

Let the cumulative distribution function (CDF) for the forecast at a particular grid point 166 

location and time be denoted by 167 

 168 

,         (2) 169 

 170 
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where Xf is again the temperature forecast random variable at time t, and V is a specific 171 

temperature value.  The     We define a quantile function that maps a 172 

cumulative probability p back to the forecast temperature variable: 173 

 174 

  .         (3) 175 

 176 

The quantile-mapping (QM) procedure thus maps the forecast temperature sample to its 177 

cumulative probability in the climatological distribution of forecasts and then applies the quantile 178 

function (also known as the percent-point function) to this cumulative probability associated with 179 

the climatological distribution of analyzed data: 180 

 181 

          (4) 182 

 183 

In this way it estimates an analyzed value sharing the same cumulative probability relative to its 184 

analyzed climatological distribution as the sample forecast value to the climatological forecast 185 

distribution.   The bias estimate is then . 186 

The CDFs for forecast and analyses at many grid points were characteristic of  non-187 

Gaussian distributions.  After some experimentation, a 3-component Gaussian mixture model 188 

was chosen to represent the CDFs instead of a one-component Gaussian or other parametric 189 

distribution.   It used the python module scikit-learn.mixture.  This module determined weights, 190 

means, and standard deviations associated with three Gaussian kernels whose weighted sum 191 

provided the closest fit to the empirical distributions of forecasts (or analyzed) data.   An 192 

example of the fitted distributions and P-P plots (Wilks 2011, sec. 4.5.2) are provided in Figs. 3 193 

and 4, respectively.  At this grid point and at many others examined, the fitted CDFs appear to 194 

produce highly accurate parametric representations of the empirical CDFs.  Different 195 
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distributions were estimated for each grid point, forecast month, and lead time using 2000-2018 196 

data and the month of interest including the data from +/- 1 month. For example, +120 h CDFs 197 

for the month of February are fit with January - February - March 2000-2018 training data.    See 198 

Wilks (ibid) for interpretation of the Q-Q plots. 199 

 200 

e. Univariate MOS. 201 

 Univariate MOS, or uMOS hereafter, is an application of simple linear regression to bias 202 

correction.   This assumes that an estimate of the analyzed temperature may be determined 203 

through a regression equation of the form 204 

 205 

         (5) 206 

 207 

where  and  are the fitted intercept and slope.   The error (or residual)  is 208 

commonly assumed to be normally distributed with zero mean.  In practice, non-linear 209 

relationships and heteroscedasticity were present at many grid points, as will be discussed in 210 

the results, but for generality, no grid-point specific remedial measures such as power 211 

transformation of data were employed.  Linear regression is reviewed in many texts, including 212 

Wilks (2011, section 7.2.1).  As with the QM, separate regression equations were fit for each 213 

grid point at each forecast lead time, month by month, using 2000-2018 training data and a 3-214 

month period centered on the month of interest.   The implicit bias estimate was thus 215 

.  216 

 217 

f. Multi-variate MOS. 218 

 Multi-variate MOS using multiple forecast variables as predictors has a long heritage in 219 

the US National Weather Service (Glahn and Lowry, Carter et al. 1989) and in many other 220 
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forecast agencies.  Commonly, multiple forecast fields including variables above the surface are 221 

used as additional predictors, variables such as forecast cloud cover, thicknesses between 222 

pressure levels, and so forth.  Application of this approach with the data at hand could be more 223 

challenging, for a screening regression approach to the selection of predictors might result in 224 

different predictor choices for different parts of the domain.   Rather than use this approach with 225 

its training and data management complexity, multi-variate here implies something slightly 226 

different; instead of multiple forecast variables, the bias corrections from other approaches are 227 

used as predictors.   Specifically, we estimate the analyzed state with a regression equation of 228 

the form 229 

 230 

       (6)  231 

 232 

This allows us to determine whether a method that uses information from alternative bias 233 

correction approaches may improve the forecasts.  No interaction terms were included.  234 

Previously, multi-method synthesis showed promise for probabilistic forecasts (Möller and Groẞ 235 

2016, Bassetti et al. 2017, Yang et al. 2017, Baran and Lerch 2017). The implicit bias correction 236 

is then .   The training data periods were the same as with uMOS, but a 237 

first sweep through the data was necessary to generate the DAV and QM bias estimates. 238 

 239 

g.  Verification methods. 240 

 Commonly used verification methods will be applied, focusing on error and bias.   Root-241 

mean square error (RMSE) statistics will be provided.  For a bias-correction method with n 242 

samples, the estimated RMSE is 243 

 244 
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      (7) 245 

 246 

and the estimated unconditional mean bias (BIA) is 247 

 248 

         (8) 249 

 250 

Differences of RMSE for the various bias-correction methods were evaluated relative to the 251 

DAV method.   5th and 95th percentile confidence intervals for these RMSE differences were 252 

generated with the paired block-bootstrap procedure described in Hamill (1999); 100 253 

resamplings were performed. 254 

 Taylor diagrams were also generated as a way of understanding the forecast 255 

characteristics (Taylor 2001, Wilks 2011, sec. 8.6.3).   These diagrams were plotted in polar 256 

coordinates.  The radial distance from the origin represented the ratio of the climatological 257 

standard deviations of forecast vs. analyses.  This was the mean forecast variability divided by 258 

the mean analyzed variability, where variability measured the standard deviation of the sample.   259 

The angle, computed clockwise from the 12 o’clock position, represented the forecast vs. 260 

observed correlation.  For this application of Taylor diagrams, a sample will be plotted for each 261 

forecast grid point, so that the potential variability of the error decomposition across the domain 262 

can be examined.   263 

 264 

3. Results. 265 

 Figure 5 provides RMSE and BIA statistics averaged over all land points within the 266 

domain.   The DAV method provided a statistically significant decrease in RMSE relative to the 267 

raw guidance, and this improvement in skill amounted to 1-3 days gain lead time; for example, 268 
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the +3 day DAV forecasts were nearly as skillful as the +1 day raw forecasts.   QM generally 269 

produced forecasts with slightly higher RMSE than DAV, but the uMOS and mvMOS forecasts, 270 

especially after +1.5 days, provided a significant reduction in RMSE relative to DAV.  Overall, 271 

the mvMOS forecasts produced the lowest domain-average errors, and this was generally true 272 

across seasons (not shown).   Domain-average biases were reduced in all methods, but the 273 

DAV method produced forecasts with the lowest bias.   Apparently the bias characteristics of 274 

2000-2018 were somewhat dissimilar to those of 2019, for QM, uMOS, and mvMOS all 275 

demonstrated slight warm biases, which should not be evident were the bias characteristics the 276 

same in the training and validation periods.  The uMOS and mvMOS results were slightly lower 277 

in error when the forecast data predictor was changed to be a deviation from climatology (not 278 

shown).   However, to facilitate more direct comparison against the other methods, only the 279 

results using the unmodified forecasts are presented. 280 

 The reduced error of mvMOS is an interesting result, supported by other literature 281 

(Mӧller and Groẞ 2016, Bassetti et al. 2017, Yang et al. 2017, Baran and Lerch 2018).  Different 282 

bias-correction methods have different strengths.   To the extent that bias is less dependent on 283 

whether the forecast temperature is comparatively more warm or cold but instead more 284 

dependent on local discrepancies, then DAV performs well.   The QM method does not attempt 285 

to minimize error but seeks the analyzed value associated with today’s quantile in the forecast 286 

distribution.   This may result in large mappings if the CDFs are different in character.   The 287 

MOS methods by design minimize RMSE, but as will be discussed, at the expense of other 288 

forecast characteristics. 289 

 How responsive were the various statistical adjustment techniques to changes of 290 

weather?  As an example, time series of +24h forecast data for a grid point near Boulder, CO, 291 

USA are presented in Fig. 6.  The top panel displays a time series of the +24 h lead GEFSv12 292 

forecast and ERA5 analyzed data, as well as the ERA5 climatology, fitted with cubic splines as 293 

in Hamill and Scheuerer (2020).  The bottom panel shows a corresponding time series of the 294 
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various bias-correction methods.   The 1-day lag autocorrelation coefficients are provided in the 295 

inset legend.  Per its design, the DAV method changed the least from day to day, with the 296 

largest autocorrelations.   The other methods’ bias corrections were more responsive to the 297 

weather.   298 

Let’s consider more closely the rapid oscillations of the regression methods during July 299 

in Fig. 6(b).   Figure 7(a) shows the CDFs used in the quantile-mapping function at this location.   300 

The CDFs aligned closely with each other, so the mappings were quite modest, and only 301 

modest changes in bias estimates occurred from day to day during this month; however, in 302 

other months the QM corrections were more weather sensitive, such as in February.   In 303 

contrast, the regression methods produced differing corrections for different forecast 304 

temperatures at this grid point during July.  Figure 7(b) shows the 2000-2018 training data for 305 

this location as well as the fitted uMOS regression curve.   In this case, the one-size-fits-all 306 

regression approach, with no remedial measures to address issues such as heteroscedasticity, 307 

appeared to be a model shortcoming.  The training data were in fact heteroscedastic, with larger 308 

differences between forecasts and observations at lower temperatures.   Further, the marginal 309 

distributions showed that the underlying data were multi-modal in nature, with peak probability 310 

density at the higher temperatures; because of the larger number of samples with higher 311 

temperatures, the regression fit was more closely optimized to these samples.  As a 312 

consequence, the regression model did not appear to provide a high-quality fit at the lower 313 

temperatures; in this instance when the forecast temperatures were comparatively low, the 314 

regression model predicted a cold forecast bias.   The actual (forecast, analyzed) samples for 315 

July 2019 were presented in Fig. 7(b) as the bolder red points, several of which have colder 316 

forecast temperatures and predicted cold biases based on the regression line.  With a daily 317 

change in forecast temperature from warm to cold, there was a corresponding change in the 318 

estimated forecast bias from too warm to too cold, and hence large oscillations occurred with 319 

the change in forecast temperatures from one day to the next. 320 
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 Despite its challenges exhibited in Fig. 7, the MOS methods did produce comparatively 321 

lower RMSE on average, but what other forecast characteristics did they have relative to the 322 

other methods?   This can be examined in part with Taylor diagrams (Taylor 2001, Wilks 2011, 323 

sec 8.6.3).   Figure 8 provides such diagrams for the +24 h forecasts for raw, DAV, QM, and 324 

mvMOS methods during the Jul-Aug-Sep 2019 period.   See the references above for more 325 

interpretation of these diagrams.  Differently colored dots denote the magnitude of the analysis 326 

standard deviation, i.e., the red dots denoted locations with little weather variability during the 327 

sample period while the brown dots were locations with the most weather variability. 328 

The raw forecasts exhibited much scatter in the Taylor diagram standard deviation ratio, 329 

sometimes with the forecast sample during this season having more variability than the 330 

analyzed data, and sometimes less.   These variations in the standard deviation ratio were 331 

muted only somewhat with the DAV method.   The QM method, consistent with its goal of 332 

producing mappings that represented draws from the analyzed climatology, had a narrower 333 

range of standard deviation ratios that were more concentrated around the 1.0 ratio.   The 334 

practical effect of this as a forecast procedure is that this method retains more of the variability 335 

in the observations.   In contrast, the mvMOS procedure, especially for the forecasts at locations 336 

with smaller analyzed weather variability, produced less variability in the corrected forecasts 337 

than in the analyzed, as denoted by the ratio that on average was lower than 1.0, especially 338 

when climatological variability was small.   It is possible that a human forecaster, say, seeking to 339 

predict the magnitude of a warm or cold event, might prefer the QM guidance relative to one of 340 

the MOS procedures’ guidance, given that the former retained more of the synoptic-scale 341 

variability. 342 

 343 

4.   Conclusions. 344 

 This brief study provided an intercomparison of statistical postprocessing methods 345 

applied to deterministic surface-temperature forecasts on a ½-degree grid over the CONUS and 346 
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surrounding land regions out to +5 days lead time.  The control member from the Global 347 

Ensemble Forecast System version 12 reforecast data were used to provide the forecasts, 348 

2000-2018 for training and 2019 for validation.   ECMWF reanalyses, specifically ERA5, were 349 

used for training and validation.  The four methods that were considered were the decaying-350 

average bias correction (DAV), quantile mapping (QM), a univariate Model Output Statistics 351 

(uMOS), otherwise known as linear regression, and a multi-variate MOS (mvMOS) that used the 352 

surface-temperature forecasts as well as bias estimates from DAV and QM as predictors.   353 

Except at the earliest leads, the MOS techniques produced forecasts with the lowest error with 354 

mvMOS providing errors lower than uMOS.   Through an examination of Taylor diagrams, it was 355 

revealed that while the mvMOS reduced the error, especially at locations with low climatological 356 

variability across a season, it also reduced the variability in the post-processed forecasts 357 

relative to the raw guidance.  On the other hand, QM and DAV methods retained much of the 358 

seasonal variability in the raw forecasts.   Which method a forecaster may prefer could depend 359 

on whether they are optimizing for RMSE (choose a MOS method) or for realistic prediction of 360 

the magnitude of unusual events (choose DAV or QM).   The DAV method produced bias 361 

corrections that were more consistent in time, while the QM and MOS techniques were more 362 

sensitive to the weather of the day.    363 

 A main conclusion is that because different post-processing methods may have differing 364 

strengths and weaknesses, the judicious combination of them may be able to, in some metrics, 365 

provide guidance that is improved relative to any one on its own.  In particular, the mvMOS 366 

method here, which combined DAV, QM, and MOS approaches, produced guidance with the 367 

lowest RMSE.   Since each postprocessing method is relatively straightforward to implement, an 368 

operational combination of these could be a practical solution that would provide improved 369 

guidance for many customers. 370 

 This study was not comprehensive; it considered only an area around the US, and it 371 

used a long training data set and considered only surface temperature, not other variables of 372 
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interest such as winds or cloud cover or precipitation.   Nonetheless, the optimistic results, 373 

confirmed by other supporting literature, suggest that the judicious combination of multiple post-374 

processing methods may provide a practical way to reduce errors with modest effort. 375 
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 444 
Figure 1.   Grid points (dots) considered for evaluation of postprocessing methods in this study. 445 
 446 

 447 
Figure 2: Root-mean-square error of the decaying-average bias correction method as a function 448 

of  for various forecast lead times.   The larger dot denotes the value with the lowest error in 449 

the training period. 450 
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 451 
Figure 3.  Examples of empirical (dashed red, underneath) and fitted (blue, overtop) CDFs 452 

estimated with a 3-component Gaussian mixture, here for January data at +24 h lead time near 453 

Boulder, CO, USA (105° west longitude, 40° north latitude). (a) 2-m temperature forecast data, 454 

and (b) corresponding analysis data. 455 
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 456 
 457 
Figure 4: Probability-probability (P-P) plots corresponding to the data in Fig. 2.     458 
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 459 
 460 
 461 

 462 
 463 
Figure 5:  Domain-averaged errors of raw forecasts and various bias-correction methods.  (a) 464 

RMSE of raw (solid red) and DAV (dashed brown) bias correction methods as a function of 465 

forecast lead time. 5th and 95th percentile confidence interval of differences between the two 466 

forecasts are plotted as light brown around the DAV method. (b) RMSE differences of the QM - 467 

DAV method (blue; lower is an improvement over DAV), uMOS (green), and mvMOS (gray).   468 

Confidence intervals are plotted in lighter-shade colors as in panel (a), but here the confidence 469 

intervals represent differences with respect to the DAV method.  (c) Unconditional bias for raw 470 

forecasts and the various bias correction methods.  471 

 472 
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 473 
 474 
Figure 6:  +24 h forecast and ERA5 analyzed time series of 00 UTC data for a grid point near 475 

Boulder, CO, USA during 2019.   (a) ERA5 analyses (red) and GEFSv12 forecasts (blue).  (b) 476 

Bias estimates from various methods.  One-day lag autocorrelations are provided in the inset 477 

legend. 478 

 479 
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 480 
Figure 7: (a) Fitted cumulative distribution functions (CDFs) used in the quantile-mapping 481 

procedure for +24 h lead forecasts at a grid point near Boulder, CO, USA during July. (b) 482 

Scatterplot of +24 analyzed vs. forecast analyzed 2000-2018 training data for July at Boulder 483 

CO (small gray dots) and marginal probability density functions (gray lines along each axis).  484 

uMOS fitted linear regression line is presented in red, and the 2019 (forecast, analyzed) pairs 485 

are shown as the larger red dots. 486 
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 487 
 488 
Figure 8:  Taylor diagrams for July-August-September and +24 h lead time for (a) raw 489 

forecasts, (b) DAV, (c) QM, and (d) mvMOS.  A sample from each land grid point is plotted as a 490 

separate dot.    The radial magnitude indicates the ratio of the sample forecast standard 491 

deviation during the season divided by the sample analysis standard deviation.   Correlation 492 

increases clockwise from the 12 o’clock position (0.0) to the 3 o’clock position (1.0).   Gray lines 493 

denote lines of equal standardized RMSE.  Individual dots are colored by that grid point’s 494 

sample analysis standard deviation  .  The dots’ color legend is provided in the plot center. 495 
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