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ABSTRACT 17 

Conventional statistical postprocessing techniques offer limited ability to improve the skills of 18 

probabilistic guidance for heavy precipitation. This paper introduces two deep learning (DL) 19 

based, geographically aware, and computationally efficient postprocessing schemes namely the 20 

Artificial Neural Network – Multiclass (ANN-Mclass) and the ANN-Censored, Shifted 21 

Gamma Distribution (ANN-CSGD). Both schemes are implemented to postprocess Global 22 

Ensemble Forecast System (GEFS) forecasts to produce forecasts (PQPFs) over the contiguous 23 

United States (CONUS) using a short (60-day), rolling training window.  The performances of 24 

these schemes are assessed through a set of hindcast experiments, wherein postprocessed 24-h 25 

PQPFs from the two DL schemes were compared against those produced using the benchmark 26 

quantile mapping algorithm for lead times ranging from 1 to 8 days.  Outcomes of the hindcast 27 

experiments show that DL schemes overall outperform the benchmark as well as the raw 28 

forecast over the CONUS in predicting probability of precipitation over a range of thresholds. 29 

The relative performance varies among geographic regions, with the two DL schemes broadly 30 

improving upon quantile mapping over the central, south, and southeast, and slightly 31 

underperforming along the Pacific coast where skills of raw forecasts are the highest. Between 32 

the two schemes, the hybrid ANN-CSGD outperforms at higher rainfall thresholds (i.e., > 33 

50mm/day), though the outperformance comes at a slight expense of sharpness and spatial 34 

specificity. Collectively, these results confirm the ability of the DL algorithms to produce 35 

skillful PQPFs with a limited training window, and point to the prowess of the hybrid scheme 36 

for calibrating PQPFs for rare-to-extreme rainfall events.   37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 



3 

File generated with AMS Word template 2.0 

1. Introduction 47 

Accurate, spatially detailed quantitative precipitation forecasts (QPFs) are of paramount 48 

importance for applications ranging from flash flood forecasting to reservoir management 49 

(Cloke and Pappenberger 2009; Pappenberger and Buizza 2009; Brown et al. 2014; Scheuerer 50 

et al. 2017). Despite continuing improvements in the accuracy of QPFs from numerical weather 51 

prediction (NWP) models, statistical postprocessing has remained a vital supplemental 52 

mechanism for enhancing the skill and spatial resolution of forecasts, and for quantifying  53 

forecast uncertainties. Today, a plethora of conventional statistical postprocessing schemes 54 

exist that serve these purposes. These range from the analog method (e.g., Hamill and Whitaker 55 

2006; Hamill et al. 2015); variants of Bayesian approach (Krzysztofowicz, 2008; Wu et al. 56 

2011; Robertson et al. 2013; Reggiani and Boyko 2019; Darbandsari and Coulibaly 2022); and 57 

regression-based mechanisms (Hamill et al. 2004; Sloughter et al. 2007; Wilks 2009; Scheuerer 58 

and Hamill 2015; Taillardat et al. 2019; Ghazvinian et al. 2020; to name a few).  59 

The extant techniques, in particular the parametric schemes, have demonstrated wide 60 

success in augmenting the skill of PQPFs from diverse NWP systems for a range of lead times. 61 

Yet,  there is growing recognition that additional room for improving the schemes might be 62 

limited, much due to the inflexible model structures and difficulties in selecting training 63 

samples for establishing predictor-predictand relationships (Ghazvinian et al. 2021). This 64 

recognition prompted various authors to explore newer, more flexible machine learning (ML) 65 

techniques as alternative postprocessing mechanisms (Herman and Schumacher 2018; 66 

Taillardat et al. 2019; Rasp and Lerch 2018; Bremnes 2020; Scheuerer et al. 2020; Baran and 67 

Baran 2021; Ghazvinian et al 2021, Veldkamp et al. 2021; Chapman et al. 2021; Schulz and 68 

Lerch 2021; Li et al. 2022). In the field of precipitation forecasts postprocessing, Scheuerer et 69 

al. (2020) developed a multi-class Artificial Neural Network (ANN) scheme for subseasonal-70 

to-seasonal range (week 2-4).  Herman and Schumacher (2018) created a random forest-based 71 

postprocessing algorithm that has demonstrated prowess in producing skillful probabilistic 72 

guidance for day 1 and 2 during recent Flash Flood and Intense Rainfall (FFaIR) experiments 73 

(WPC; 2019, 2020). More recently, Ghazvinian et al. (2021), drawing inspirations from Rasp 74 

and Lerch (2018), formulated a hybrid Deep learning (DL)-parametric framework that fuses 75 

the ANN with the Censored, Shifted Gamma Distribution (CSGD; Scheuerer and Hamill 76 

2015), namely the ANN-CSGD. Relative to the traditional parametric methods, all these ML 77 

schemes offer flexibility in modeling predictor-predictand relationship and in integrating 78 
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ancillary predictors and allow for  adaptive selection of spatio-temporal training windows. 79 

Ghazvinian et al. (2021) demonstrated that ANN-CSGD broadly outperforms the original 80 

CSGD and Mixed-type Meta-Gaussian Distribution (MMGD; Wu et al. 2011).  This enhanced 81 

performance, as the authors explained, is attributable primarily to the adaptive and therefore 82 

more effective stratifications of training samples.  83 

The challenges faced by postprocessing as a field go beyond the aforementioned limitations 84 

of parametric schemes alone.  To date, a vast majority of contemporary schemes, including the 85 

more recent ML schemes, were formulated on the premise that extensive historical 86 

observations and retrospective forecasts (reforecasts) are available for training and calibration.  87 

In reality, however, reforecasts are often unavailable for many operational NWP systems in the 88 

US and abroad. The US National Weather Service’s computing platform, for example, 89 

maintains archives of real-time forecast only for the past 60 days (see Hamill et al. 2017); and 90 

at present it is a practical necessity for any operational schemes to adapt to this short training 91 

window (Hamill 2018; Vannitsem et al. 2021). Note that the limited length of the training 92 

window aggravates the paucity in training sample that has already been an issue in the 93 

postprocessing of precipitation forecasts, necessitating the inclusion of compensatory 94 

measures. The quantile mapping and dressing (QMAP) algorithm (Hamill et al. 2017), the 95 

current operational algorithm of the US National Blend of Models (NBM), addresses the data 96 

paucity by incorporating supplemental locations, i.e., locations sharing similar climatology and 97 

physiographic features such as elevation and topographic facets. Experiments performed by 98 

the authors have confirmed that this practice leads to sizable improvements in the skills of 99 

probability of precipitation (PoP) forecasts obtained through quantile mapping.  100 

The aforementioned strengths of ANN models, in particular their ability to discern and 101 

establish complex predictor-predictand relationship from a large, heterogeneous sample, as we 102 

postulate, would render them particularly effective in alleviating the data paucity issue by 103 

intelligently expanding the domains where forecast-observation pairs are pooled. We further 104 

conjecture that ANN models’ adaptive way of stratifying samples can lead to superior 105 

calibration beyond what is attainable by the QMAP that relies on prescribed supplemental 106 

locations.  In this paper, we address these hypotheses by experimentally adapting and extending 107 

two DL algorithms, namely the ANN-Mclass (Scheuerer et al. 2020) and the ANN-CSGD 108 

(Ghazvinian et al. 2021), to short, 60-day training window. We perform a set of hindcast 109 
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experiments over a 3-year window for the entire CONUS, wherein we appraise the efficacy of 110 

the adapted schemes relative to the QMAP in processing ensemble QPF for day 1-8.  111 

The present study expands the work of Ghazvinian et al. (2021) in three major directions.  112 

First, it entails comparisons of the skills of PQPFs produced by the hybrid ANN-CSGD and 113 

ANN-Mclass to determine the merit of the former. Second, both DL algorithms integrate 114 

ensemble attributes beyond the ensemble mean and incorporate geographic locations as well 115 

as physiographic features, thus allowing for exploitation of skill gains associated with the 116 

introduction of these predictors. Third, this study examines geographic variations in the relative 117 

performance of DL and QMAP schemes to identify the dependence of skill differentials on 118 

precipitation regimes and accuracy in NWP forecast.  Furthermore, this study assesses the skills 119 

of PQPFs for a range of thresholds much beyond the PoP, thereby providing critical 120 

information about the robustness of various schemes in forecasting intense precipitation events 121 

that is absent in extant studies in the context of NBM (Hamill et al. 2017; Hamill and Scheuerer, 122 

2018). 123 

The remainder of this article is structured as follows. Section 2 describes the two DL 124 

schemes as well as the benchmark QMAP model adapted for this study,  layout of the hindcast 125 

experiment, and the training/validation data sets. Section 3 presents results of the hindcast 126 

experiment and discusses findings. Section 4 summarizes the work and offers concluding 127 

remarks. 128 

2. Materials and methods 129 

a. Postprocessing schemes   130 

1) DEEP LEARNING WITH CATEGORICAL PROBABILITY PREDICTIONS (ANN-MCLASS) 131 

Scheuerer et al. (2020) proposed a dense neural network-based postprocessing scheme that 132 

produces probabilities of 7-day precipitation totals falling into discrete categories at the 133 

subseasonal scale (i.e., week 2,3 and 4). To elaborate, the scheme creates 𝑚 + 1 possible 134 

classes of future observed precipitation probabilities. This is achieved by constructing 135 

precipitation climatology established from observation or analysis. Let 𝐶𝑖 = [𝑞𝑖−1, 𝑞𝑖] denote 136 

the 𝑖th class where 𝑖 ∈ {0, … , 𝑚}. Empirical quantile boundaries 𝑞𝑖 are associated with the 137 

following probability levels: 138 
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𝑝𝑐𝑙,𝑖 = (1 − 𝑝𝑜𝑝𝑐𝑙) + 𝑝𝑜𝑝𝑐𝑙(𝑖 𝑚⁄ ),                          𝑖 = 0, … , 𝑚 (1) 

Where 𝑝𝑜𝑝𝑐𝑙 represent the probability of precipitation (> 0.254 mm) from climatology. The 139 

first class = [𝑞−1, 𝑞0] represents precipitation values below 0.254mm (dry conditions) and 140 

𝑞𝑚 = ∞.  Scheuerer et al. (2020) chose to derive empirical quantiles from precipitation analysis 141 

for each grid point and day of the year using a 61-day window centered around the day of 142 

interest and all years of available data.    143 

Scheuerer et al. 2020 proposed a modified categorial cross-entropy loss (MCCES)  144 

𝐿1,…,𝑚+1(𝒑, 𝒚) = −log ( ∑ 𝑦𝑖

𝑚+1

𝑖=1

𝑝𝑖)  (2) 

Where 𝒑 = (𝑝1, … , 𝑝𝑚+1) is vector of estimated probabilities for each of 𝑚 + 1 classes, 145 

and 𝒚 = (𝑦1, … , 𝑦𝑚+1) is corresponding binary (one-hot encoded) truth vector that describes 146 

whether analyzed value falls into the respective category in a training case.  This modification 147 

is necessary as the category assignment can be ambiguous (multiple cases with 1 due to 148 

duplicative values in climatology). MCCES reduces to standard categorical cross entropy when 149 

the assignments are unambiguous (see Appendix B of Scheuerer et al. 2020). 150 

Continuous predictive distribution can be derived from the categorical probabilities by 151 

approximating the cumulative hazard function 𝐻(𝑥) =  − log [ 1 − 𝐹(𝑥)] using piecewise 152 

linear interpolation/ extrapolations for the points inside/outside the data ranges.  In the hazard 153 

function, 𝐹(𝑥) represents cumulative probabilities estimated by summing up the probabilities 154 

specific for individual categories and for each forecast case. Exploratory analysis by Scheuerer 155 

et al. (2020) showed that the interpolation provides a reasonable reconstruction of predictive 156 

CDF. A possible drawback of this model could be its reliance on the parameter m.  As the 157 

number of classes directly impacts cross-entropy loss function value, other metrics such as 158 

continuous ranked probability score (CRPS; Matheson and Winkler 1976, Wilks 2011) should 159 

be used for configuration of optimal number of classes for final predictions (see Scheuerer et 160 

al. 2020). 161 

2) HYBRID DEEP LEARNING-CSGD (ANN-CSGD) 162 

Censored, shifted gamma nonhomogeneous regression model (CSGD) first was introduced 163 

by Scheuerer and Hamill (2015).  This technique and its extensions have been shown to be 164 

capable of generating reliable and skillful medium-range PQPFs over different regions of the 165 
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world (see, Baran and Nemoda 2016; Zhang et al. 2017; Baran and Lerch 2018; Taillardat et 166 

al. 2019; Ghazvinian et al. 2020; Valdez et al. 2021).  Nonetheless, Ghazvinian et al. (2020) 167 

noted a caveat of the CSGD that stems from the direct use of climatological shift without tuning 168 

and showed that this led to a negative bias in predicted PoP, particularly for shorter lead times.   169 

Heeding the success of the hybrid neural network-parametric postprocessing scheme of 170 

Rasp and Lerch (2018), Ghazvinian et al. (2021) formulated a similar, hybrid ANN-CSGD 171 

framework. The new framework retains the use of CSGD as the predictive distribution but 172 

employs a fully connected neural network structure that links the three CSGD parameters to 173 

ensemble statistics and ancillary predictors.   174 

In this work, we follow the notations of Ghazvinian et al. (2021) and denote by 𝐹𝑘,𝜃 the 175 

CDF of gamma distribution with parameters shape  𝑘 > 0, scale  𝜃 > 0. CDF of CSGD denoted 176 

by 𝐹0
𝑘,𝜃,𝛿(𝑦) with the shift parameter  𝛿 < 0 is given by (Scheuerer and Hamill, 2015) 177 

𝐹0
𝑘,𝜃,𝛿(𝑦) = {

𝐹𝑘,𝜃(𝑦 − 𝛿),         𝑦 ≥ 0 

0,                           𝑦 < 0
  (3) 

The three parameters of ANN-CSGD are optimized by minimizing the average value of 178 

crps over training sample. As shown in Scheuerer and Hamill (2015), a closed-form expression 179 

for crps exists for CSGD, and it takes the following form: 180 

crps (𝐹𝑘𝑖𝜃𝑖𝛿𝑖
, 𝑦𝑖) = (𝑦𝑖 − 𝛿𝑖)[2𝐹𝑘𝑖,𝜃𝑖

(𝑦𝑖 − 𝛿𝑖) − 1] −
𝜃𝑖𝑘𝑖

𝜋
𝐵 (

1

2
, 𝑘𝑖 +

1

2
) [1 −

                                     𝐹2𝑘𝑖,𝜃𝑖
(−2𝛿𝑖)] + 𝜃𝑖𝑘𝑖[1 + 2𝐹𝑘𝑖,𝜃𝑖

(−𝛿)𝐹𝑘𝑖+1,𝜃𝑖
(−𝛿𝑖) −

                                     𝐹𝑘𝑖,𝜃𝑖
(−𝛿𝑖)

2 − 2𝐹𝑘𝑖+1,𝜃𝑖
(𝑦𝑖 − 𝛿𝑖)] + 𝛿𝐹𝑘,𝜃(−𝛿)2  

 

(4) 

 

where 𝐵(0,0) is the beta function, and (𝑘𝑖 , 𝜃𝑖 , 𝛿𝑖) are three parameters of ith predictive 181 

CSGD with 𝑦𝑖 being the corresponding verifying observation. Ghazvinian et al. (2021) 182 

demonstrated that ANN-CSGD alleviates the negative bias in PoP by directly learning shift 183 

parameter as an arbitrary function of predictors. In addition, the authors showed that ANN-184 

CSGD’s efficient way of modeling complex interactions between three CSGD parameters is a 185 

major factor that contributed to its superior predictive skill at higher thresholds relative to the 186 

original CSGD.   187 

3) QUANTILE MAPPING STENCIL 188 



8 

File generated with AMS Word template 2.0 

Chosen as the benchmark technique is the QMAP algorithm  a coarse-grid approximation 189 

to the current baseline postprocessing scheme for a single ensemble prediction system 190 

component of the NBM. The algorithm was first described by Hamill et al. (2017), and was 191 

later modified in Hamill and Scheuerer (2018) to incorporate quantile dressing. In essence, it 192 

establishes matching quantiles from training data (forecasts and corresponding analyses for 193 

designated locations). The resulting quantile map function is then applied to real-time forecasts 194 

to produce probabilistic guidance grids. To augment sample size, the algorithm incorporates 195 

the so-called supplemental locations. The supplemental locations are locations that share 196 

similar precipitation climatology (as represented by climatological CDF), elevation, and terrain 197 

orientation (facet). 198 

In this study, we implement the original version of QMAP as described by Hamill et al. 199 

(2017), but for simplicity chose to forgo the dressing mechanism – we do so with the tacit 200 

assumption that the incremental improvements in skills as a result of dressing would be 201 

insufficiently large to alter the relative performance of the algorithms. In our implementation 202 

of the QMAP scheme, up to 100 supplemental locations are identified for each target grid point 203 

(0.25 × 0.25 degree in size), and for each month of the year using the data from the respective 204 

month and two surrounding months. For each lead time and the grid point of interest, empirical 205 

quantiles 𝑞(𝑝), 𝑝 ∈ {1 100⁄ , 2 100⁄ , … , 99 100⁄ } are constructed from the augmented forecast 206 

and analysis data sets, which are accumulated within a rolling window and supplemental 207 

locations. Note that in this step, ensemble members from Global Ensemble Forecast System 208 

(GEFS), are pooled to populate forecast CDFs based on the assumption that these members are 209 

identically distributed. To account for wider sampling variability in larger forecast quantiles 210 

(larger than 0.95 quantile of forecasts), a linear approximation of quantile mapping function is 211 

applied. A detailed explanation of this procedure can be found in Hamill et al.  2017.  212 

The quantile map thus established is then used to transform members of ensemble forecasts 213 

from following day and in a 5 × 5 stencil of surrounding grid points using the forecast CDF of 214 

each point and analysis CDF of the center grid point. Using expanded spatial domain enlarges 215 

the ensemble size and reduces the sampling error in ensemble and helps mitigate potential 216 

mismatches in forecast and analyses quantiles due to displacement errors in forecast (Hamill 217 

et al. 2017). The exceedance probability for each precipitation threshold is computed using the 218 

fraction of the transformed members exceeding that threshold. To assess the impact of stencil 219 
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size on the skills of postprocessed PQPFs, the QMAP method was implemented on 1 × 1 220 

(center point) and 5 × 5 stencils.  221 

b. Architecture of two DL schemes 222 

To rigorously evaluate the performance of the two DL schemes, we configure both to use 223 

identical predictors and on identical grid mesh (0.25 × 0.25 degree). These predictors are 224 

ensemble statistics including ensemble mean, probability of precipitation (POP) and ensemble 225 

spread. Following the practice of Scheuerer and Hamill (2015), for each point we compute 226 

these statistics from a super ensemble constructed using members in an expanded spatial 227 

domain.  In this study, each expanded domain is the 5 × 5 stencil surrounding the target point, 228 

thus maintaining consistency with the training scheme of QMAP. To simultaneously 229 

postprocess forecast over the entire grid mesh, we use geographical coordinates (latitude and 230 

longitude) of analyses grid points as predictors to the networks.  As additional spatial features, 231 

we introduce grid terrain height and local terrain orientation information (facet).  Note that we 232 

chose to exclude additional ensemble-based predictors (e.g., additional statistics from 233 

ensemble, control member; see, e.g., Taillardat et al. 2019); as our initial evaluation showed 234 

that the inclusion of these predictors failed to yield systematic improvement in predictive skill, 235 

possibly due to an increased risk of overfitting.   236 

Both DL models share a similar model architecture with differences in the shape of output 237 

layer where model predictions are derived. The architecture consists of the following elements: 238 

 Input layer where predictors are introduced to the network. 239 

 Batch normalization (Ioffe and Szegedy 2015). This practice normalizes input to 240 

maintain the mean of each feature close to 0 and the standard deviation close to 1.  241 

 Hidden layers (Dense) with nonlinear activation functions. 242 

 Output layer  243 

For the output layer depending on the model, specific configuration is required 244 

 ANN-CSGD uses output layer with linear activation function and three nodes to 245 

represent functions of three CSGD parameters. Additional functions are required to 246 

limit CSGD parameters in allowable ranges. We follow Ghazvinian et al. (2021) to set 247 

CSGD shift parameter:  δ = −𝑠𝑞𝑟𝑡(𝑂1
2) and use inverse logarithmic link functions for 248 
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location and scale parameters (exp) , 𝜇 = exp(𝑂2
2), and 𝜎 = exp(𝑂3

2). Where oi 249 

represents ith output node.  250 

 ANN-Mclass uses an output layer with 50 nodes and softmax activation function to 251 

ensure that output probabilities are in the range [0,1] and sum to 1. For each forecast 252 

day, observation quantiles are derived using CCPA data of previous 60 days and all 253 

CCPA grids.  This yields a sample of 60 𝑑𝑎𝑦𝑠 × 13528 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 worth of data from 254 

which the empirical quantiles are calculated daily. One-hot encoded CCPA data in each 255 

location and day are then assigned to the designated classes.  The latter approach helps 256 

maintain balanced assignments between classes 𝑖 ∈ {1, … , 𝑚}. As another structural 257 

modification to the work by Scheuerer et al. 2020, we do not include climatological 258 

information in the last layer. This practice was necessary for postprocessing 259 

subseasonal forecasts to ensure that estimated PQPFs revert to climatology in the cases 260 

where signal to noise ratio was limited. In our application this is considered redundant 261 

as it complicates the model and makes overfitting more likely. 262 

For each lead time and each day, previous 60 days’ worth of data over the entire CONUS are 263 

available for training. To reduce generalization errors we use early stopping, one of the most 264 

efficient and widely used regularization techniques (See Goodfellow et al. 2016). In our 265 

application we keep the last 6 days of training data for validation (not used in training) and 266 

monitor its average loss value. The training is terminated when no further decrease in the loss 267 

is seen after three epochs (patience). To simplify matters, we decided to avoid extensive grid 268 

search for hyperparameter tuning. Loss functions were minimized using adaptive moment 269 

estimation (Adam) algorithm (Kingma and Ba, 2014) with the learning rate kept fixed at 𝑙𝑟 =270 

0.01. Following model architectures for hidden layer were tested:  271 

 Number of nodes in hidden layer (s) (ANN-CSGD): {[10], [20],[10,10]} 272 

 Number of nodes in hidden layer (s) (ANN-mclass): {[20],[50], [20,20]} 273 

Our initial assessment showed that expanding the number of hidden layers does not 274 

systematically improve validation loss (possibly due to overfitting). Thus, we did not test 275 

number of hidden layers > 2  in final model configurations. The batch size was set to 10000 for 276 

training both networks. Networks were trained with a common random number generator 277 

(seed) and the configuration with the lowest validation loss was saved for each out-of-sample 278 

day prediction. 279 
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c. Hindcast experiment setup 280 

In this study we focus on postprocessing forecasts of 24-hourly accumulated precipitation 281 

for 1-8 day lead time over the CONUS. We leveraged Global Ensemble Forecast System 282 

(GEFS) -version 11 (v11) reforecast data sets (Hamill et al. 2013).. The GEFS-v11 data we use 283 

were produced on a quadratic Gaussian mesh with ~  0.5°resolution for the first 8 days and ~ 284 

0.67° for 9–16 days lead times. The reforecasts are composed of 11 ensemble members (10 285 

perturbed and one control) issued every 24-h at 00 UTC.  The reforecast data were retrieved, 286 

extracted for CONUS on native Gaussian grid, bilinearly interpolated to a 0.25° grid mesh and 287 

accumulated to 24-h sums. As the analyses we use Climatology-Calibrated Precipitation 288 

Analysis (CCPA; Hou et al. 2014), which is available on 6-h increments spanning from 1 289 

January 2002 to 31 Dec 2019 on the CONUS National Digital Forecast Database (NDFD; 290 

Glahn and Ruth 2003) grid resolution (see https://vlab.noaa.gov/web/mdl/ndfd-spatial-291 

reference-system.). The latter data were upscaled to 0.25° resolution and accumulated to 24-h 292 

sums. To mimic the US NBM operations as described in Hamill et al. (2017), training for each 293 

scheme is performed each day on forecasts for the lead times of 1-8 days and corresponding 294 

analysis over previous 60-day rolling window. The trained schemes are then applied to 295 

forecasts of prediction day to create PQPFs that are then verified against coincidental analysis. 296 

This training-verification cycle repeats progressively in time over a 3-year window extending 297 

from 1 January 2017 to 31 December 2019.      298 

Note that the aforementioned studies used archive of real-time GEFS forecasts (20-member 299 

ensemble). As this data set is only available for a short time window, the present study relies 300 

instead on the reforecast available for a longer time span but with fewer ensemble members.  301 

In addition, we apply a longer verification window than that used in the previous studies, and 302 

this allows for more robust assessments of the time and region-dependent performance 303 

differences.  304 

3. Results 305 

a. CRPSS 306 

To assess the relative overall predictive performance of three postprocessing schemes, we 307 

first examine continuous ranked probability skill score (CRPSS). We use climatological CRPS 308 

as the reference. Climatological CRPS was calculated for each grid point, separately for each 309 

month using CCPA data pooled across a 3-month window surrounding that month from years 310 

https://vlab.noaa.gov/web/mdl/ndfd-spatial-reference-system
https://vlab.noaa.gov/web/mdl/ndfd-spatial-reference-system
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between 2002 and 2015. For each forecast suite, we first compute CONUS-wide, lead-time 311 

specific CRPSS by aggregating either the raw ensemble QPFs or postprocessed PQPFs among 312 

all grid points in CONUS and across all verification days within the 3-year window. To 313 

highlight the impacts of using an expanded spatial domain, we computed the results using raw 314 

forecasts over each target grid point (center point) and corresponding 5 × 5 stencil. Note that, 315 

Table 1 summarizes different model configurations and corresponding abbreviations used in 316 

the figures of this study. 317 

 318 

Model Experiment name 5 × 5 stencil Supplemental locations 

DL ANN-CSGD Yes (super ensemble) No 

 ANN-Mclass Yes (super ensemble) No 

Quantile mapping QMAP (5 × 5) Yes Yes 

 QMAP (center point) No Yes 

Raw ensemble RAW (5 × 5) Yes - 

 RAW (center point) No - 

Table 1. Different experiment names and configurations used 319 

Figure 1 shows the CRPSS results. It is evident that DL based schemes show the best overall 320 

predictive performance across lead times. Quantile mapping from each source (5 × 5 stencil 321 

and center point) highly improves the overall performance of corresponding raw forecasts. 322 

Inclusion of forecasts from neighboring grid points (5 × 5 stencil) improves the skill of raw 323 

and quantile mapped forecast across lead times. This can be explained by the fact that 324 

expanding the spatial window helps alleviate displacement errors in the raw forecast and 325 

increase the spread, thus improving the calibration.   326 
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 327 

Fig. 1. Continuous ranked probability skill score (CRPSS) results computed over the CONUS and shown as 328 
a function of lead time. Climatological forecasts are used as the reference. 329 

b. Brier skill scores 330 

To assess the relative efficacy of three postprocessing schemes in predicting specific 331 

events, we examine the Brier skill scores (BSS; Wilks 2011; Hamill et al. 2015) computed for 332 

four daily accumulation thresholds, namely 0.254-, 10-, 25-, and 50-mm. Fig. 2 shows the 333 

resulting BSS from the six forecast sources. At the two lowest thresholds here, it is evident that 334 

raw GEFS forecast (11-member ensemble) from the center point are the most poorly 335 

performing forecast of all. Similar to CRPSS, quantile mapping appreciably improves PoP 336 

forecasts without and with the expanded domain (Fig. 2a). However, the gap between raw 337 

ensemble and quantile mapped PQPFs diminishes at higher thresholds. It appears that quantile 338 

mapping mainly improves BSS of PQPF from raw forecast at the lowest thresholds, which have 339 

disproportionate impacts on its overall prediction performance as shown in CRPSS results (Fig. 340 

1). In fact, quantile mapped PQPFs broadly underperform raw ensemble forecasts at the highest 341 

threshold (50 mm; Fig. 2d). In addition, without domain expansion, PQPF from quantile 342 

mapping center point underperforms climatology across lead times (Fig. 2d). Postprocessed 343 

PQPFs via the two DL schemes manage to improve the forecast skill from raw and quantile 344 

mapped sources across all thresholds and throughout the lead times.  It is also worth noting that 345 

ANN-CSGD and ANN-Mclass both improve the skill of raw forecast at longer lead times 346 

where raw and quantile mapped forecasts are unskillful relative to climatology. Between the 347 
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two DL schemes, ANN-CSGD slightly outperforms ANN-Mclass, and this performance 348 

differential is the most evident at the highest threshold of 50 mm (Fig. 2d).   349 

  

  

Fig. 2. Brier skill scores (BSSs) for exceeding events (a) > 0.254 mm (PoP), (b) > 10 mm, (c) > 25 mm, and 350 
(d) > 50 mm, computed over the CONUS and shown as a function of lead time. Climatological forecasts are 351 
used as the reference. 352 

Figs. 3-5 characterize the geographically dependent skills of raw ensemble and three 353 

postprocessed PQPFs, obtained by applying QMAP, ANN-Mclass, and ANN-CSGD, within 354 

the CONUS, where the skills are again characterized by BSS with climatology as the reference. 355 

We retain only the forecasts generated using 5 × 5 stencil as these tend to outperform those 356 

without domain expansion and focus on +48 to +72h lead times as the results for this lead time 357 

range are broadly representative of the performance differentials of postprocessing schemes.  358 

  (a) 

  (d) 

  (b) 

  (c) 
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Brier skill score for lead time +48h to +72h, PoP ( > 0.254 mm/24h) 

  

  

Fig. 3. Maps of Brier skill scores values of PoP forecasts aggregated over all days and for lead time +48h to 359 
+72h over the CONUS. Climatology is used as the reference. Forecasts are generated from (a) raw GEFS 360 
forecast using 5 × 5 stencil of grid points. (b) quantile mapped forecast using 5 × 5 stencil of grid points. 361 
(c) ANN-Mclass and (d) ANN-CSGD. 362 

Fig. 3 shows the maps of BSS computed with 0.254mm threshold (PoP). Some of the 363 

prominent features mirror those noted in past studies. In particular, of all regions in the 364 

CONUS, the skill of raw GEFS ensemble appears highest along the Pacific coast to the west 365 

of the Cascade and the Sierra-Nevada Mountain ranges (Fig. 3a). This reflects the high 366 

predictability of orographically induced, synoptically forced precipitation systems that are 367 

predominant rainfall producers in these regions (Brown et al. 2014; Hamill et al. 2015; 368 

Scheuerer and Hamill 2015).  By contrast, forecast skills of GEFS are the lowest over parts of 369 

Texas and southern Florida, where BSS is overwhelming negative (Fig. 3a). The region of low 370 

BSS values extends northward to cover much of the Great Plains, whereas clusters of areas 371 

with high BSS values are found along the windward side of the Appalachians, and between the 372 

Cascades and the Rockies (Fig. 3a). QMAP drastically improves the skills with respect to the 373 

forecast of PoP for nearly all regions in CONUS (Fig. 3b), though negative remains in small 374 

  (a)   (b) 

  (d)   (c) 
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areas over the southern tip of Texas. Both DL schemes broadly outperform QMAP, and the 375 

outperformance is the most conspicuous to east of the Rockies (Figs 3c and d).  Between the 376 

two schemes, ANN-CSGD extends the skill of PQPF over the upper Midwest, the South, and 377 

the Southeast. Nonetheless, it is worth noting that the two DL schemes slightly underperform 378 

QMAP along the Pacific coast where skills of raw GEFS are high.  379 

Brier skill score for lead time +48h to +72h, ( > 25 mm/24h) 

  

  

Fig. 4. As in Fig. 3, except for the events > 25 mm. 380 

Similar comparisons of BSS but for two higher thresholds, namely 25 and 50 mm, are 381 

shown in Figs. 4 and 5 respectively. Notable features are summarized as follows. First, raw 382 

GEFS ensemble remains skillful relative to climatology along the Pacific Coast, eastern portion 383 

of the Southern Great Plains, much of the Midwest, South, Southeast, and along the Mid-384 

Northeast Atlantic coast, but it underperforms climatology over the upper Midwest, the 385 

Rockies, and the western portion of the Great Plains (Figs 4a and 5a).  Second, the performance 386 

of QMAP is mixed across the nation, in direct contrast to the wide skill improvements evident 387 

at the 0.254mm threshold (Figs. 4b and 5b).  The improvement is still appreciable over a few 388 

  (b)   (a) 

  (d)   (c) 
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regions including the Sierra Nevada, but over other parts of the country, e.g., South and 389 

Southeast, QMAP appears to degrade the skills of raw ensemble. Third, both DL schemes are 390 

able to bring modest skill improvements for regions east of the Rockies. Between the two 391 

schemes, ANN-CSGD results in skill improvements over wider geographic regions, consistent 392 

with the earlier observation that it offers the best overall performance for CONUS (Fig. 2c and 393 

d).  394 

Brier skill score for lead time +48h to +72h, PoP ( > 50 mm/24h) 

  

  

Fig. 5. As in Fig. 3, except for the events > 50 mm. 395 

Another subtle, yet important observation in Figs 4 and 5 is that, despite the broad 396 

outperformance of DL schemes, in a few regions the schemes conspicuously underperform the 397 

QMAP.  Examples include the Sierra Nevada, southeast Texas, and the Carolinas. In each of 398 

these regions, raw GEFS ensemble offers good skills (BSS > 0.35); the skills are retained in 399 

QMAP-ed results, but are clearly degraded in the postprocessed PQPFs produced by applying 400 

the two DL schemes. Therefore, it appears that the CONUS-wide skill gains associated with 401 

the application of the DL schemes are mostly a result of improvements over domains where 402 

  (c) 

  (a)   (b) 

  (d) 



18 

File generated with AMS Word template 2.0 

raw ensemble forecasts are marginally or modestly skillful. These improvements, however, are 403 

achieved at the expense of reduced skills for a few regions where raw ensemble forecasts are 404 

particularly accurate. As the former regions are far larger in size, the improvements seen therein 405 

tend to overshadow degradations observed over latter locations. It is heretofore unclear what 406 

contributes to QMAP’s outperformance over the latter regions, but QMAP's reliance on a 407 

restricted set of supplemental locations most likely plays a critical role. This practice, as we 408 

surmise, may have limited overdispersion caused by the use of an unduly large amount of grid 409 

points with heterogenous predictor-predictand relationships.   410 

c. Reliability diagrams 411 

Figs 6-8 show reliability diagrams computed for the raw GEFS ensemble and three sets of 412 

postprocessed PQPFs for three thresholds, i.e., 0.254, 25 and 50mm, again for 48-72 h lead 413 

time, with corresponding histograms of relative frequency of usage (sharpness histograms) 414 

superimposed. The reliability diagrams allow us to assess forecast attributes including 415 

reliability and resolution (see, Brocker and Smith 2007; Wilks 2011). In constructing the 416 

reliability diagrams, for raw and quantile mapped forecasts based on center point only (11-417 

member ensemble) we use 12 equally spaced probability categories within the ranges of [0,1] 418 

(see supplemental materials for center point results and results for additional threshold).  The 419 

reliability diagrams for DL-based PQPFs, as well as raw and quantile mapped using 5 × 5 420 

stencil, are computed by stratifying probabilities into 21 bins. We further perform 421 

decomposition of Brier score (Brier 1950) into reliability, resolution and uncertainty as 422 

proposed by Murphy (1973) and assess the contribution of each component to PQPF skill in 423 

predicting specific events. Among these, resolution characterizes the forecast’s ability to 424 

discriminate between different events and is identical to sharpness for perfectly reliable 425 

forecasts (see Jolliffe and Stephenson 2012). The resulting BSS, reliability (REL) and 426 

resolution (RES) are superimposed on each reliability diagram. We choose to leave out 427 

uncertainty as it is independent of forecast source.   428 

For the PoP forecasts (Fig. 6), it is clear that the raw ensemble is unreliable and tends to 429 

over-forecast across the entire probability range (Fig. 6a). Quantile mapping improves both 430 

reliability and resolution of raw forecast which in aggregate helps improve the forecast skill as 431 

measured in BSS (Fig. 6b).  Nevertheless, it is evident that the QMAP scheme yields under-432 

/overforecast at low/high probability categories, and this feature is consistent with the findings 433 

of Hamill et al. (2017).   434 
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Reliability diagrams (PoP) for lead time +48h to +72h 

  

  

Fig. 6. Reliability diagrams (PoP) for lead time +48h to +72h over the CONUS. Histograms show relative 435 
frequency of forecast issuance for each of 21 forecast probability bins in log10 scale. BSSs and Brier score 436 
decompositions are shown in each panel. (a) raw forecast using 5 × 5 stencil of grid points. (b) quantile 437 
mapped forecast using 5 × 5 stencil of grid points. (c) ANN-Mclass and (d) ANN-CSGD. 438 

ANN-Mclass produces PQPFs with further improved reliability and resolution, but tends 439 

to consistently overforecast (Fig. 6c). ANN-CSGD PQPFs outperform the rest in terms of 440 

reliability and resolution, and there is no conspicuous tendency to over/underforecast (Fig. 6d).  441 

That said, it is worth noting that ANN-CSGD PQPFs exhibit the lowest sharpness as judged 442 

by the sharpness histogram. At the 25 mm threshold (Fig. 7), raw and quantile mapped forecasts 443 

perform comparably, though the latter is slightly more skillful due to its improvement in 444 

resolution (Figs. 7a-b).  PQPFs generated by DL schemes on the other hand are much more 445 

reliable and skillful than the former two forecast sources, but they are not as sharp: these PQPFs 446 

feature lower frequencies for high probability categories (Figs. 7c and d).  447 

  (a)   (b) 

  (c)   (d) 
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Reliability diagrams ( > 25 mm) for lead time +48h to +72h 

  

  

Fig. 7. As in Fig. 6 except for > 25 mm events. 448 

As previously shown in the comparisons of BSS,  the performance gap between raw ensemble 449 

and QMAP PQPFs tends to narrow at higher thresholds.  From Fig. 7b, it appears that QMAP 450 

slightly degrades the reliability but improves the resolution and, to a limited extent, the 451 

sharpness. This divergent outcome is rooted in the mismatch between forecast and analysis.  452 

As noted by Hamill and Whitaker (2006), the raw GEFS ensemble has a strong tendency to 453 

overpredict precipitation amounts for events with light-to-moderate intensity over for much of 454 

CONUS, and meanwhile it contains a small, but substantial number of instances where it 455 

underpredicts precipitation amounts for events associated with larger accumulations. For larger 456 

forecast amounts, quantile adjustment tends to increase the forecast amounts. But due to the 457 

forecast-analysis mismatch, this increase serves to inflate the amounts for a vast majority of 458 

  (b)   (a) 

  (d)   (c) 
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events where analyzed accumulations are actually lower than the forecasted, thus amplifying 459 

the wet bias that is already existent in the raw forecast (Fig. 7b). At the highest threshold, i.e., 460 

50 mm (Fig. 8), the relative performance of three schemes broadly echoes those at the 25mm 461 

threshold but a few distinctions are apparent.   462 

Reliability diagrams ( > 50 mm) for lead time +48h to +72h 

  

  

Fig. 8. As in Fig. 6 except for > 50 mm events. 463 

First, QMAP scheme tends to more severely degrade the reliability that it does at the 25mm 464 

threshold, resulting in a conspicuous overforecast across probability categories, though there 465 

is a sign that it improves the sharpness (Fig. 8b).  Second, while both DL schemes (Figs. 8c 466 

and d) again yield PQPFs with improved reliability relative to the raw ensemble, but the margin 467 

of improvements narrows somewhat, and at the two highest probability categories both 468 

  (a)   (b) 

  (d)   (c) 
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schemes underperform the QMAP by featuring more severe positive bias (overforecast). 469 

Between the two DL schemes, ANN-CSGD clearly outperforms in terms of calibration but at 470 

the cost of reduced sharpness.   471 

d. Case study 472 

To further illustrate the skills of PQPFs and shed light on their geographic and 473 

precipitation-regime dependence, we construct forecast guidance from raw ensemble and 474 

postprocessed PQPFs in a way that mimics the NBM operation and compared these against 475 

areas where corresponding thresholds are exceeded in the analysis. Such a practice is widely 476 

adopted in NWS forecast verifications (see e.g., WPC 2019). This verification exercise focuses 477 

on a one-day window ending at 00 UTC on 4 January 2017. As shown in Fig. 9, this window 478 

was so chosen that there were several large precipitation clusters simultaneously present over 479 

the west coast (Northern California), between the Midwest and Mid-Atlantic coast, and over 480 

the southeast (Alabama, Georgia, South Carolina, and part of northern Florida).  Maximum 1-481 

day accumulations for these clusters all exceeded 50mm.  482 

 483 

 Fig. 9. CCPA precipitation analysis for 24h accumulated data ending at 00 UTC 4 January 2017.  484 

We computed exceedance probabilities from Day 2 (+24h to +48h) GEFS ensemble 485 

forecasts for the valid date ending at 00 UTC 4 January 2017.  Fig.  10 displays maps of PoP 486 

(> 0.254mm) computed based on raw ensemble (with 5 × 5 stencil) and derived from three 487 

suites of postprocessed PQPFs, namely those produced by QMAP (with 5 × 5  stencil), ANN-488 

Mclass, and ANN-CSGD.  489 
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Fig. 10. POP forecast guidance for +24h to +48h lead time over CONUS for valid date ending at 00 UTC 4 490 
January 2017. (a) Raw ensemble forecast using 5 × 5  stencil, (b) quantile mapped forecasts using 5 × 5 491 
stencil, (c) forecasts generated using ANN-Mclass and (d) forecasts generated using ANN-CSGD. Areas 492 
inside dark green contours show that event > 0.254 mm has been observed by CCPA. 493 

Average values of Brier score (averaged over all grid points for this day) are overlaid on 494 

each map to gauge the CONUS-wide performance of each product.  The following features are 495 

evident. First, PoP from raw ensemble is broadly higher (close to 1) and there is a conspicuous 496 

lack of spatial details (Fig. 10a).  Second, in many parts of the CONUS, the PoP is close to one 497 

despite a lack of precipitation in CCPA, consistent with the severe overforecast seen in earlier 498 

reliability diagrams for the raw ensemble (Fig. 6a). Quantile mapping drastically improves 499 

locational precision by reducing the areas where raw ensemble produces high PoP (Fig. 10b).  500 

This reduction is particularly noticeable over the intermountain west to the east of the Sierra 501 

Nevada, where gradients in PoP values emerge after quantile mapping. The BS is much 502 

reduced, corresponding to this reduction in areas with overforecasted PoP. The two DL 503 

schemes produce further improvements for the Intermountain West, by suppressing the PoP 504 

values outside the areas where CCPA indicates wet conditions (Figs. 10c and d). The 505 

postprocessed PoPs from the two schemes feature much lower overforecast errors over this 506 

region, thus allowing the actual precipitation clusters to be more precisely defined. 507 

  (a)   (b) 

  (c)   (d) 
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Nonetheless, application of these schemes leads to sharp expansions of areas with low, but 508 

positive PoP (< 0.2) to regions where no precipitation was observed (e.g., Wyoming).  Between 509 

the two DL schemes, ANN-CSGD produces the most skillful PoP that exhibits the least spatial 510 

mismatch with the analysis, and its PoP features the lowest BS among the four sets of products.  511 

On the other hand, however, it tends to produce wider expansion of PoP, and suppress the high 512 

probability values in regions where precipitation was observed (Fig. 10d). One possible 513 

explanation for this apparent tradeoff lies in DL schemes’ inclusion of training samples over 514 

wider areas where the precipitation amounts are dissimilar to those near the target.  While this 515 

practice improves the overall skills for CONUS, it introduces diffusion in areal coverage and 516 

reduces the sharpness. This phenomenon is analogous to the dilution effect noted in regression 517 

literature (Fuller, 1987; Hughes, 1993; Frost and Thompson, 2000; and Jozaghi et al., 2021).       518 

At the threshold of 25 mm (P25, Figure 11), raw ensemble fails to detect the precipitation 519 

clusters in northern California while all three schemes help recover these. Over this region, P25 520 

produced by quantile mapping exhibits the highest locational precision and sharpness, a feature 521 

consistent with the earlier observation shown in Fig. 4. By contrast, over the eastern part of the 522 

country, quantile mapping broadly degrades the skills – it produces excessively high P25 over 523 

broader areas where accumulations per CCPA are much below 25mm. This introduces 524 

additional wet biases and contributes to a reduction in overall reliability relative to raw as 525 

shown in reliability diagrams (Fig. 7b).  Both DL schemes improve the overall accuracy of 526 

guidance for CONUS and over major precipitation clusters (Figs. 11b and c).  Over northern 527 

California, both yield higher P25 that overlap with the observed clusters, but with lower spatial 528 

precision. ANN-CSGD, for example, populates the entire northern California with positive 529 

P25, grossly exaggerating the areal coverage of rainfall risks.  ANN-Mclass fares somewhat 530 

better with more subdued areal coverage bias. Along the eastern US, the most notable feature 531 

is that both DL schemes perform well in capturing the rainfall risks over the cluster that 532 

encompasses parts of Georgia, Alabama, Tennessee, Florida, and South Carolina. The 533 

performance of the two techniques is mixed. ANN-Mclass excels by creating higher P25 within 534 

the cluster, yet it in the meantime inflates the P25 outside the cluster.  By comparison, the P25 535 

produced by ANN-CSGD is nearly uniformly lower over the region, either inside or outside 536 

the cluster. The BS of the DL-based PQPFs is broadly comparable at this threshold and is 537 

slightly better than that for QMAP.   538 
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Fig. 11. As in Figure 9 except for > 25 mm. Areas inside red contours show that event > 25 mm has been 539 
observed by CCPA. 540 

Fig. 12 shows the relative performance of the three schemes at the highest threshold, i.e., 541 

50mm (P50). Heavy rainfall exceeding the threshold is concentrated over smaller clusters along 542 

the Sierra Nevada, in central Georgia, and over the northern Florida Panhandle. Raw ensemble 543 

is apparently unable to capture any of these clusters. All three schemes create areas with 544 

positive P50.  Among these, QMAP and ANN-CSGD perform comparably by creating small 545 

P50 values that marginally overlap with the clusters in central Georgia and Florida Panhandle.  546 

By comparison, ANN-Mclass creates positive P50 over a wider area over the southeast with 547 

more substantial overlap with all clusters in the region. This improved detection, however, is 548 

offset by the false coverage elsewhere. The BS values for all four products are nearly identical, 549 

most likely a result of the limited sample size for computing the metric. The ability of the two 550 

DL schemes in mitigating the overforecast as seen in Fig. 8 is not confirmed by the spatial 551 

verification for possibly the same reason.   552 

 553 

  (a)   (b) 

  (c)   (d) 
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Fig. 12. As in Fig.10 except for > 50 mm. Areas inside red contours show that event > 50 mm has been 554 
observed by CCPA. 555 

4. Summary and Conclusions 556 

This study marks one of the first attempts to explore the use of unified deep learning 557 

mechanisms for postprocessing medium-range (1- to 8- days) ensemble QPFs over a large 558 

domain using short training datasets. Chosen for the experimentation are two recent DL 559 

postprocessing schemes. The first approach (ANN-Mclass) creates probabilities for discrete 560 

precipitation categories, and then interpolates/extrapolates these probabilities to construct full 561 

CDF (Scheuerer et al. 2020). The second one is the ANN-CSGD, a newly developed, hybrid 562 

ANN-parametric postprocessing scheme that uses ANN to relate set of predictors to parameters 563 

of predictive censored, shifted gamma distribution (Ghazvinian et al. 2021). Both networks 564 

have rather simple structure (dense) and shared similar predictors, yet they differ in the 565 

specification of predictive distribution and loss function. In fact, these two schemes were so 566 

chosen to identify potential merits of retaining the parametric form of the predictive distribution 567 

in the prediction of rare, heavy rainfall events.    568 

  (a) 

  (c) 
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  (d) 
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To assess the performance of the DL schemes, we designed hindcast experiments to 569 

postprocess 24-h accumulated GEFS reforecast data using a rolling training scheme and with 570 

previous 60 day’s forecast and analyzed data. As the benchmark statistical postprocessing 571 

technique we implemented QMAP stencil (Hamill et al. 2017) method that is used to produce 572 

probabilistic guidance that populates the National Digital Forecast Database (NDFD; Glahn 573 

and Ruth 2003). Note that a key difference between the QMAP approach and the DL schemes 574 

concerns the mechanism of augmenting the spatial sampling domain to compensate for the 575 

limited time window. QMAP does so by incorporating so-called supplemental locations, i.e., 576 

locations that share similar elevation and topographic facets, and, presumably, may share 577 

similar precipitation climatology (Daly et al., 1994). By contrast, the DL schemes leverage data 578 

at all grid points within the domain and infusing geographical information including latitude 579 

and longitude as ancillary predictors.    580 

When aggregated over the entire CONUS, as the results demonstrate, PQPFs from DL 581 

schemes broadly outperform the raw and quantile mapped forecasts in terms of reliability and 582 

overall skill. This outperformance is seen for a range of thresholds and across all lead times, 583 

but it tends to be more pronounced at higher precipitation thresholds (e.g., 25 and 50 mm) – 584 

thresholds that are closely relevant to flood forecasting and real time reservoir management. It 585 

was also found that while quantile mapping broadly improves upon raw forecasts in predicting 586 

PoP, its performance declines at higher thresholds. At the highest threshold (50mm/day), the 587 

PQPFs from QMAP underperforms the raw ensemble.   588 

The two DL schemes perform comparably at low-middle thresholds in terms of calibration, 589 

but the performance differentials widen at higher thresholds with ANN-CSGD conspicuously 590 

outperforming. A major weakness of ANN-Mclass is the lack of reliability of its PQPFs at the 591 

highest threshold (50mm/day): when compared to ANN-CSGD, it tends to produce more 592 

severe overforecasts and is broadly incapable of enhancing the skills of raw ensemble at this 593 

threshold. This underperformance of ANN-Mclass is potentially related to the inadequate 594 

number of output categories implemented in the study. Note that the selection of optimal 595 

number of output categories is not a straightforward task - as high observed precipitation values 596 

are much less frequent than lighter precipitation values, empirical quantiles cannot be easily 597 

extended to large amounts without incurring substantial uncertainties. In this regard, ANN-598 

CSGD’s explicit use of a parametric distribution proves advantageous as it offers a more 599 

consistent way of estimating higher forecast quantiles.   600 



28 

File generated with AMS Word template 2.0 

Our validation experiments also reveal a distinctive geographic dependence of the relative 601 

performance of different schemes. QMAP, while broadly underperforming the DL schemes for 602 

the entire CONUS, outperforms the latter competitors along the West Coast and over the Sierra-603 

Nevada. Its overall underperformance is mostly a result of its inability to produce skill gains 604 

for much of the central and eastern US. Closer examinations suggest that variations in the skill 605 

of the raw ensemble for different precipitation regimes, along with the spatial variability of 606 

rainfall brought by these regimes, may have played pivotal roles in shaping the geographic 607 

disparity. To elaborate, over the Pacific coast-Sierra Nevada, landfalling Atmospheric River 608 

events dominate large precipitation amounts over the region. The GEFS ensemble exhibits 609 

good skills in predicting the occurrence of these events as well as the associated geographic 610 

distribution of precipitation. QMAP’s use of limited, prescribed supplemental locations prove 611 

effective in correcting forecast biases, whereas the DL schemes’ simultaneous use of samples 612 

across locations may have over-expanded the training sample and thereby impaired the 613 

robustness of predictor-predictand relationship derived therefrom. By contrast, heavy 614 

precipitation over the central and eastern US can arise from a mix of organized convection, 615 

frontal systems, as well as tropical cyclones, and predictability of these systems varies both by 616 

location and season. The overall skills of GEFS ensemble are low over this region, and spatial 617 

displacement errors are a major contributor to the lack of skills.  For these locations, the ability 618 

of DL schemes in adaptively incorporating forecast-observation pairs over broader areas for 619 

training more effectively address the displacement errors. Another potential factor underlying 620 

the contrasting performance of QMAP, as the authors postulate, is the degree of similarity 621 

among supplemental locations. It is possible that forecast-observation relationships are broadly 622 

dissimilar among supplemental locations over central and eastern US as elevations and facets 623 

play lesser roles in modulating precipitation climatology. It is also worth pointing out that the 624 

gains in calibration for the higher thresholds as achieved by the DL schemes often come at the 625 

expense of subdued forecast sharpness – the exceedance probability in regions where 626 

precipitation was observed is often lower in the postprocessed guidance produced by these 627 

schemes, a feature reminiscent of the findings of Herman and Schumacher (2018). These issues 628 

warrant further, more thorough investigations to confirm and illuminate.  629 

As DL techniques are evolving rapidly, there are many emerging opportunities for further 630 

enhancing the DL postprocessing schemes illustrated in the study. Future research will be 631 

directed towards identifying and integrating mechanisms that will allow for i) more effective 632 

use of geographic information in the networks. Location embedding can be used to project 633 
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discrete pairs of each latitude and longitude values onto a continuous, larger vector of latent 634 

inputs using IDs specific for each CCPA grid. Embedding permit the model to optimize grid 635 

IDs representations by the training process and potentially help better capture local 636 

characteristics as shown in past postprocessing studies (see, Schulz and Lerch 2021; Chapman 637 

et al. 2021). Incorporating auxiliary predictors such as dot product of moisture advection with 638 

terrain gradient, total column precipitable water and CAPE might be another way of getting 639 

more terrain-related detail; ii) more efficient modeling of complex-arbitrary nonlinear 640 

predictor-predictand relationships such as use one dimensional convolution or attention layers 641 

(Collobert et al. 2011; Vaswani et al. 2017; Delvin et al. 2018) on top of an embedding layer 642 

to better capture predictor interactions with each other and with spatial features, and iii) more 643 

robust training of networks to avoiding overfitting. This work used a rather basic but popular 644 

and effective regularization technique to stop training, which is based on validation dataset loss 645 

(Goodfellow et al. 2016). It is possible that additional gains can be realized by simply 646 

increasing the validation window with lead time and introducing additional regularization 647 

parameters. 648 

 649 

Acknowledgments. 650 

The authors would like to acknowledge financial support for the first and second authors 651 

over the years provided by the faculty startup package for Dr. Yu Zhang from UT Arlington, 652 

NOAA Grant NA18OAR4590370-01, NSF Grant 1909367, and Texas Water Development 653 

Board Contract 1800012276. The work benefits from input from a large number of individuals 654 

within the National Weather Service, including Jeff Craven, David Rudack, and Eric Engle of 655 

the National Blended Model team, Kris Lander at the West Gulf River Forecast Center, Bruce 656 

Veenhuis at the Weather Prediction Center, and John J. Brost at the Operational Proving 657 

Ground. We would also like to thank Kevin He from the California Department of Water 658 

Resources for stimulating discussions that helped shape the work, and to members of the 659 

Unified Forecast System Steering Committee for critiques and suggestions.  660 

 661 

Data Availability Statement. 662 



30 

File generated with AMS Word template 2.0 

The analyses-forecasts and output dataset on which the results of this work are based are 663 

too large to be publicly archived with available resources. The codes to reproduce results can 664 

be made available based on individual requests and only for research purposes.  665 

 666 

APPENDIX 667 

Implementation details 668 

We used Python (Python Software Foundation 2018), R (R core team 2017) and Fortran in 669 

this project. Specifically, R was used for initial data processing. We implemented our deep 670 

learning codes in python using Google’s platform, Tensorflow (Abadi et al. 2016) and Keras 671 

API (Chollet et al. 2015). For quantile mapping a research version was implemented using 672 

python. Fortran routines to generate supplemental locations were provided by Dr. Tom Hamill 673 

from NOAA PSL and were tailored to our setting.  Other computations (verification, graphics, 674 

etc.) were performed with python. 675 
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