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than any individual model, thereby correcting for the sys-
tematic over-confidence (under-dispersion) of predictions 
from an individual model. Probability forecasts, including 
tercile predictions from the NMME, are used frequently in 
seasonal forecasts for atmospheric variables and may have 
many uses in marine resource management.
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forecast

1  Introduction

Numerical weather and climate forecasts have greatly 
improved over the last 30  years and now have the capabil-
ity to provide useful seasonal forecasts (National Research 
Council 2010). Coupled global climate models (CGCMs), 
originally developed to study climate variability and change 
over centennial scales, are now being used to make fore-
casts on seasonal and even decadal timescales (e.g. Stock-
dale et al. 1998; Wang et al. 2009; Yang et al. 2012; Siedle-
cki et al. 2016). Due to the much lower frequency variability 
of the ocean compared to the atmosphere, seasonal forecast 
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systems are expected to have more skill in predicting ocean 
variables (Goddard et al. 2001). Initially, CGCMs were pri-
marily used to predict sea surface temperature (SST) anom-
alies in the tropical Pacific associated with El Niño and the 
Southern Oscillation (ENSO; Anderson et  al. 2003; Latif 
et al. 1994; Kirtman and Zebiak 1997) but they have recently 
been shown to have skill in other regions (Becker et al. 2014; 
Kirtman et al. 2014; Stock et al. 2015). In addition to being a 
critical measure of the climate system, SST is one of the few 
ocean variables for which we have the extensive data cover-
age in space and time that is necessary for a broad evaluation 
of forecast skill. SST predictions can also be used readily in 
fisheries management applications due to the strong influence 
of temperature on the distribution and abundance of marine 
organisms. For example, SST forecasts are currently being 
used by managers to protect fish stocks and reduce the cost 
of fishing (Hobday et  al. 2011; Eveson et  al. 2015). Stock 
et al. (2015) highlighted the potential utility of CGCM-based 
forecast systems for SST prediction in coastal ecosystems 
and subsequent application to marine resources. Predictions 
of the marine environment may be even more critical in the 
future as the climate changes (Hobday and Hartog 2014).

Utility of predictions to the marine resource sector is not 
only dependent on achieving adequate forecast skill at the 
temporal and spatial scales of relevance to decision-makers, 
but also on reliably representing the uncertainty of the pre-
dictions. Prediction uncertainties arise from two types of 
error: uncertainties in model initialization and inadequa-
cies in a model’s formulation (resolution, parameterizations, 
etc.; e.g. Ji et al. 1998; Rosati et al. 1997). An ensemble of 
simulations with the same model but different initial condi-
tions can be used to assess the former, while a multimodel 
ensemble strategy can be used for the latter (Jin et al. 2008; 
Palmer et al. 2004). The multimodel mean (MMM), includ-
ing models with a wide range of skill, often outperforms all 
individual models or a subset of “better” models (Hagedorn 
et al. 2005; Weigel et al. 2008). Stock et al. (2015) assessed 
the SST forecast skill in coastal regions and mechanisms that 
underlie it using two state-of-the-art forecast systems. Here 
we evaluate SST predictions from the 14 individual models 
participating in Phase I of the North American Multimodel 
Ensemble (NMME; Kirtman et  al. 2014) project, greatly 
expanding on the two CGCMs used by Stock et al. (2015). 
Using a suite of models to assess forecast skill is relatively 
new with the release of the North American Multimodel 
Ensemble data occurring within the last 2 years. While cli-
mate models have been used to make SST forecasts in the 

Nino region for more than a decade there are fewer papers 
that explore the prediction skill elsewhere over the global 
oceans, especially in coastal regions. Traditionally the coarse 
resolution of seasonal prediction models has been a barrier 
to their use for marine ecosystems applications. This work 
demonstrates not only that multimodel coastal SST predic-
tions are skillful, but also that multimodel predictions greatly 
improve the probabilistic skills and provide a more reliable 
estimate of uncertainty.

In the following, we focus our analysis on whether using 
multiple models consistently improves skill relative to indi-
vidual models across coastal regions, even when individual 
models within the ensemble may have notable deficiencies 
at the regional scale. Furthermore, we ask whether this 
improvement is reflected in both deterministic and proba-
bilistic skill metrics.

2 � Data and methods

2.1 � Large marine ecosystems (LMEs)

Large marine ecosystems (LMEs, http://lme.edc.uri.edu/) 
are coherent ocean areas primarily located along conti-
nental margins where primary productivity is generally 
higher than in open ocean areas. LMEs have been defined 
based on ecological criteria, bathymetry, hydrography, 
productivity and trophic relationships (Sherman and Duda 
1999). The LMEs are ~200,000 square kilometers or larger 
and produce ~80% of the catch of global marine fisheries 
(Sherman et al. 2009). We focus on the 11 LMEs located 
around the US and Canada including: East Bering Sea, 
Gulf of Alaska, California Current, Gulf of California, 
Gulf of Mexico, Southeast and Northeast US Continental 
Shelf, Scotian Shelf, Newfoundland-Labrador Shelf, Insu-
lar Pacific-Hawaiian and Aleutian Islands (Fig. 1).

2.2 � North American multimodel ensemble (NMME)

The North American Multimodel Ensemble (NMME) is 
a collaborative effort based on seasonal forecast systems 
using coupled atmosphere–ocean–sea ice-land models from 
US and Canadian modeling centers (Kirtman et al. 2014). 
In addition to having different model formulations, the var-
ious forecast systems use different initialization methods. 
Our results are based on hindcasts (i.e., retrospective fore-
cast experiments predicting what happened during the past) 
to validate the forecast system over a common 28-year 
period (1982–2009) for all the models from the NMME 
phase 1. Additional information about the forecast systems 
is provided in Table 1. While the 14 models have varying 
native resolution, all of the output has been interpolated to 
a 1° latitude by 1° longitude grid. The number of forecast 
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ensemble members for the individual models varies from 
6 to 24, and the forecast length varies from 8 to 12 months 
(Table 1). Model drift is removed using a method similar 
to Stock et al. (2015), whereby a bias correction estimate, 

computed as the difference between the lead-dependent 
forecast and climatology of the forecast month, is sub-
tracted from each forecast. However, here a cross-valida-
tion methodology is applied (e.g. Stockdale 1997) where 

Fig. 1   Large marine ecosystems studied. 1 East Bering Sea 
(EBS; 1,193,601  km2 or 179 grid pts), 2 Gulf of Alaska 
(GoA; 1,491,252  km2 or 187 grid pts), 3 California Cur-
rent (CC; 2,224,665  km2 or 210 grid pts), 4 Gulf of Califor-
nia (GoC; 216,344  km2 or 16 grid pts), 5 Gulf of Mexico (GoM; 
1,530,387  km2 or 135 grid pts), 6 Southeast US Continental Shelf 
(SEUS; 303,029  km2 or 28 grid pts), 7 Northeast US Continen-

tal Shelf (NEUS; 308,554 km2 or 30 grid pts), 8 Scotian Shelf (SS; 
412,676  km2 or 26 grid pts), 9 Labrador-Newfoundland (LN; 
674,862  km2 or 114 grid pts), 10 Insular Pacific Hawaiian (IPH; 
975,493 km2 or 89 grid pts), 11 Aleutian Islands (AI; 220,000 km2 
or 27 grid pts), which is numbered as 65 in the list of LME regions 
(http://www.lme.noaa.gov)

Table 1   NMME models for phase 1

Model Organization Hindcast period Ensemble size Lead times 
(month)

References

Active
 NCEP-CFSv2 NCEP 1982–2010 24 0–8 Saha et al. (2014)
 GFDL-CM2p1 GFDL 1982–2012 10 0–11 Delworth (2006)
 GFDL-CM2p1-aer04 GFDL 1982–2015 10 0–11 Delworth (2006)
 GFDL-CM2p5-FLOR-A06 GFDL 1980–2015 12 0–11 Vecchi et al. (2014)
 GFDL-CM2p5-FLOR-B01 GFDL 1980–2015 12 0–11 Vecchi et al. (2014)
 CMC1-CanCM3 Canadian Meteorolog-

ical Center (CMC)
1981–2011 10 0–11 Merryfield et al. (2013)

 CMC2-CanCM4 CMC 1981–2011 10 0–11 Merryfield et al. (2013)
 COLA-RSMAS-CCSM4 NCAR 1982–2015 10 0–11 Infanti and Kirtman 

(2016)
 NASA-GMAO-062012 NASA 1981–2015 10 0–8 Vernieres et al. (2012)

Retired
 NCEP-CFSv1 NCEP 1981–2009 15 0–8 Saha et al. (2006)
 COLA-RSMAS-CCSM3 NCAR 1982–2015 6 0–11 Kirtman and Min (2009)
 IRI-ECHAM4p5-AnomalyCoupled IRI 1982–2012 12 0–7 DeWitt (2005)
 IRI-ECHAM4p5-DirectCoupled IRI 1982–2012 12 0–7 DeWitt (2005)
 NASA-GMAO NASA 1981–2009 8 0–8 Vernieres et al. (2012)

http://www.lme.noaa.gov
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the value for the forecast being evaluated is excluded from 
the bias correction estimate. For those models that are not 
initialized on the first of the month (i.e. NCEP-CFS and 
NASA-GEOSS), we chose to use the ensemble members 
that started within 15–20 days prior to the first lead month.

2.3 � Historical SST anomaly estimates

Following Stock et  al. (2015), the observed SSTs are 
obtained from the NOAA Optimum Interpolation Sea 
Surface Temperature version 2 (OISSTv2; Reynolds et  al. 
2007), which has a nominal resolution of 0.25°. Stock et al. 
compared OISSTv2 SST anomalies with individual obser-
vations from the NOAA World Ocean Database (WOD13, 
Boyer et al. 2013) over 7 LMEs around the US. They found 
the two datasets to be consistent with each other with 
monthly correlations of the SST anomalies exceeding 0.75 
for all but one LME. Individual in situ measurements can 
have RMS errors on the order of 1 °C and biases of several 
tenths of a degree (Reynolds et  al. 2007). The OISSTv2 
is a blended analysis that includes satellite measurements 
as well as observations from ships and buoys, where the 
data are weighted by their signal-to-noise ratio as well as 
the distance to the grid point. In addition, the uniform grid 
of the analysis enables a consistent comparison between 
model and observations across the disparate LMEs.

OISST data are averaged over individual LMEs to gen-
erate persistence forecasts and evaluate model skill. Fol-
lowing Stock et al. (2015) persistence forecasts are initiated 
using the SST anomaly in the month immediately preced-
ing the first month’s forecast. For comparison with the 
model predictions (which are mainly initialized on the first 
of the month), this is termed the “zero” month persistence 
forecast.

2.4 � Skill metrics

We evaluate forecast skill using two common determinis-
tic skill metrics, the anomaly correlation coefficient (ACC) 
and root mean square error (RMSE). The ensemble mem-
bers from each model are averaged together and the ensem-
ble mean is used to estimate the ACC and the RMSE. We 
also evaluate predictions using the Brier Score (BrS), a 
probabilistic forecast metric. The BrS is a measure of the 
mean-square error of probability forecasts for whether or 
not an event will occur, which can be relative to a prob-
ability category. In this study, the BrS is used to measure 
the forecast probability error in SST anomaly terciles, 
where the forecast probability ranges from 0 to 1, and the 
observed probability is either 0 or 1. For the BrS, we use 
the individual ensemble members for each model to esti-
mate the forecast probability of an event occurring in a 
given tercile.

2.5 � Anomaly correlation coefficient (ACC)

The ACC, a widely used measure for forecast verifica-
tion (Jolliffe and Stephenson 2003), indicates the relative 
association between the predicted and observed anoma-
lies but not the magnitude of their differences. If the pre-
dicted and observed anomalies are perfectly coincident 
then the ACC will have the maximum value of 1 and if 
they are 180° out-of-phase, the ACC will have a mini-
mum value of −1.

The ACC as a function of initialization month (m) and 
lead time (t) can be written as

where F′ is the forecast anomaly, O′ is the verification field 
anomaly, and ACC is calculated over the period 1982–2009 
(N = 28).

2.6 � Root mean square error (RMSE)

The RMSE is also a common measure of forecast accuracy 
and indicates the magnitude of forecast error. The RMSE is 
0 for perfect forecasts and increases with the amplitude of 
the difference between forecasts and observations.

The RMSE as a function of initialization month (m) and 
lead time (t) can be written as

where F′ is the forecast anomaly, O′ is the verification 
field anomaly, the RMSE is calculated over the period 
1982–2009 (N = 28).

2.7 � The Brier score (BrS)

Brier scores (BrS; Brier 1950; Wilks 1995) measure the 
average squared forecast probability error. The probability 
forecast is computed by the fraction of ensemble members 
exceeding a given threshold. Here the thresholds are the 
upper and lower terciles of the distribution, representing 
warmer and colder than average temperature, respectively; 
the BrS for the middle tercile is not presented as forecasts 
for “near-normal” conditions often exhibit little skill (e.g., 
see van den Dool and Toth 1991).

A perfect BrS is 0. As the difference between the fore-
cast probability and the observed frequency increases, BrS 
increases to a maximum value of 1. The BrS weights larger 
errors more than smaller ones.
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The BrS as a function of initialization month (m) and 
lead time (t) can be written as

where f is the forecast anomaly probability of an event, o is 
the verification field anomaly probability of an event, the 
BrS is calculated over the period 1982–2009 (N = 28).

The BrS can be decomposed into three components 
(Murphy 1973) for K probability categories: Reliability 
(REL), Resolution (RES) and Uncertainty (UNC).

where ō =
N
∑

t=1

ot

N
 is the climatological base rate for the 

event to occur, nk is the number of forecast with the same 
probability category, ōk is the relative observed frequency 
for a forecast probability fk in the k probability class.

The reliability indicates how well the a priori predicted 
probability forecast of an event coincides with the poste-
riori observed frequency of the event. As defined here the 
reliability increases as REL decreases and approaches zero 
for good forecasts. The resolution indicates how well fore-
casts distinguish situations with distinctly different frequen-
cies of occurrence; larger values indicate higher resolution. 
In the worst case, when the climatic probability is always 
forecast, the resolution is zero. In the best case, when the 
conditional probabilities are either zero or one, the resolu-
tion is equal to the uncertainty. The uncertainty measures 
the variability of the observations, and is independent of 
the forecast. It indicates the degree to which situations are 
easy or difficult to predict; its minimal value is zero when 
the event never or always occurs and its maximum value is 
reached when the event occurs 50% of the time. The uncer-
tainty only depends on the observed frequency; since we 
are computing the BrS for terciles, the observed frequency 
is 1/3 and the uncertainty is 1∕3 × (1 − 1∕3) = 0.22.

3 � Assessment of SST anomaly forecasts

Forecast skill of the NMME ensemble mean predictions 
for the 11 LMEs, as indicated by the ACC, is shown in 
Fig.  2. The multimodel mean (MMM) ACC values are 

(3)BrS(t, m) =
1

N

N
∑

�=1

(f∝(t,m) − o∝(t,m))
2
,

(4)BrS = REL − RES + UNC,

(5)REL =
1

N

K
∑

k=1

nk(fk − ōk)
2
,

(6)RES =
1

N

K
∑

k=1

nk(ōk − ō)2,

(7)UNC = ō(1 − ō),

shown as a matrix with initialization month on the x-axis 
and forecast lead on the y-axis. As found by Stock et al. 
(2015), the ACC varies widely by LME. ACC values are 
mostly positive and significantly above zero at the 95% 
level, except in the cases of the Southeast and North-
east US Continental Shelf and the Scotian Shelf. Skill-
ful MMM forecasts that also exceed persistence occur 
in most regions at varying leads, including forecasts of 
more than 6 months. However, for very short lead times, 
the skill of persistence forecasts (see Figs. S1 and S2 
in the supporting material) is often as good as or better 
than dynamical forecasts. This is not unexpected in most 
regions, as considerable skill derives from the large ther-
mal inertia of the ocean surface mixed layer. ACCs are 
significantly above persistence for multiple initialization 
months and forecast leads in the Gulf of Alaska and the 
Insular Pacific-Hawaiian regions. While the ACCs are 
consistently high for all initialization months and leads 
in the Labrador-Newfoundland region, only a few exceed 
those based on persistence.

Many of the matrices in Fig.  2 exhibit higher (lower) 
ACC values along a diagonal, which occurs when there 
is more (less) skill for the month being predicted regard-
less of lead. For example, in the Gulf of Alaska region, the 
forecasts for February and March (e.g. 7–8 month forecasts 
initialized in July) have higher skill than forecasts for other 
months, resulting in higher ACC values from the upper left 
to lower right across the matrix. Enhanced ACCs for a pre-
dicted month tend to occur when the skill arises from reli-
able impacts that depend on the season, including: ENSO 
teleconnections (e.g. Barnston 1994; Jacox et  al. 2017), 
the reemergence of winter temperature anomalies that per-
sist below the mixed layer in summer (e.g. Alexander and 
Deser 1995) or Arctic sea ice extent conveying the imprint 
of fall SST anomalies over the winter season (Blanchard-
Wrigglesworth et al. 2011). Diagonals of higher/lower skill 
are also apparent in Fig. 3, which shows the RMSE of the 
MMM as a function of initialization month and lead. For 
RMSE, however, it is harder to interpret the diagonals in 
terms of skill as the magnitude of the error may also reflect 
seasonal variability with higher RMSE during months of 
greater variance.

The ACCs averaged over all of the initialized months 
as a function of forecast lead-time for all 14 models, the 
MMM and persistence are shown in Fig.  4. The MMM 
generally gives the best forecast, even in cases where some 
models in the ensemble perform poorly. Exceptions are the 
Northeast US Continental Shelf and Scotian Shelf regions 
where the overall forecast skill is low and persistence is 
generally better than all of the model forecasts including 
the MMM. The forecast skill decreases with lead, although 
the rate of decline varies between regions; e.g., there is sig-
nificant skill out to a year in the Labrador-Newfoundland 
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Fig. 2   Anomaly correlation coefficients (ACCs) between observa-
tions and the multimodel mean monthly forecasts as a function of the 
initialization month and lead time for the 11 LMEs. Gray dots indi-
cate ACCs significantly above 0 at 95% level; White upward trian-

gles indicate ACCs significantly above persistence at 90% level with 
ACC >0.5; White downward triangles indicate ACCs significantly 
above persistence at 90% level with ACC <0.5
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Fig. 3   Root mean square error (RMSE) of the multimodel mean as a function of forecast initialization month and lead time for each of the 11 
LMEs



	 G. Hervieux et al.

1 3

region largely due to the strong persistence of SST anoma-
lies in that LME.

The RMSE averaged over the initialization months as a 
function of forecast lead-time (Fig. 5) suggests that errors 
could be introduced when the model is initialized. For 
three models, COLA-RSMAS-CCSM3, IRI-ECHAM4p5-
AnomalyCoupled and IRI-ECHAM4p5-DirectCoupled, the 
value of the RMSE is sometimes largest at the start of the 
forecast, which is opposite of what one would expect—that 
forecast errors would grow with time. The initialization 
errors are largest for higher latitude LMEs including the 
Aleutian Islands, East Bering Sea, Gulf of Alaska, Scotian 
Shelf and Labrador-Newfoundland. These three models 

all use the variational optimal interpolation scheme, an 
early ocean assimilation developed by Derber and Rosati 
(1989), to initialize the ocean component of the forecast 
system (Kirtman and Min 2009; DeWitt 2005). The sea-ice 
is not initialized from observations but is taken randomly 
from the free running model, meaning that the initial ice 
conditions can be far from the actual state. These ocean 
assimilation and prediction systems, along with the CFSv1 
layed a foundation from which to build but have since been 
replaced with improved approaches.

To provide an overall evaluation of the individual models 
and the MMM forecast skill, we have computed the ACC, 
RMSE and BrS averaged over all initialization months and 

Fig. 4   Average of the ACCs over all 12 initialization months as a function of forecast lead time for each LME



More reliable coastal SST forecasts from the North American multimodel ensemble﻿	

1 3

leads (Fig.  6). There is general agreement between these 
three metrics, which indicate that: (1) in most cases the 
MMM forecast has better deterministic skill than any of the 
individual models, (2) in all cases the MMM forecast has 
much better probabilistic skill than any of the individual 
models (3) in most cases individual models are more skill-
ful than persistence, (4) different models have fairly similar 
behavior in each LME.

The best individual models often vary by system. Four 
models, CFS-v1, CCSM3, and the IRI-Anomaly and 
IRI Direct-Coupled, have lower skill within the Hawai-
ian region and LMEs situated in the Atlantic Ocean as 

indicated by the ACC values (Fig.  6, top left). Neverthe-
less, the two IRI models that have less skill in the Insu-
lar Pacific-Hawaiian LME have better skill in the Gulf of 
Alaska and California Current relative to other models. 
Variations in skill may offer process level insights into the 
relative strengths and weaknesses of the individual models.

The mean RMSE ranges from approximately 0.3° to 
1.0 °C for the different LMEs and forecast systems when 
averaged over both lead and initialization month (Fig.  6, 
top right). In general, the ACC and RMSE provide simi-
lar assessments of the relative forecast skill; e.g., that fore-
casts are poor in the northeast US and Scotian Shelf and 

Fig. 5   Average of RMSEs over all initialized months as a function of forecast lead time for each LME. The abscises have been inverted to facili-
tate comparison with ACC plots
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relatively skillful for the Hawaiian and Aleutian Island 
LMEs. The relatively low RMS errors in the Gulf of 
Mexico, the Southeast U.S. Continental Shelf, the Insular 
Pacific-Hawaiian, and the Aleutian Islands are partly due to 
the limited SST variability in those four regions (Table 2), 
which results in smaller departures between the predicted 
and observed SST. Forecasts for low-amplitude anoma-
lies can have both small ACC and RMSE values (Koh 
et al. 2012), as is the case for forecasts of December-Jan-
uary SSTs in the Gulf of Mexico region (see Figs.  2, 3). 

Furthermore, the MMM forecasts generally under-predict 
the observed variability (compare Table  3 with Table  2), 
which results in an underestimate of the RMSE (e.g. Taylor 
2001; Koh et al. 2012).

The mean Brier Scores, presented for the probability 
forecasts for SST anomalies in the upper and lower ter-
ciles, are shown in the bottom of Fig.  6. The BrS esti-
mated from all models in the NMME is substantially bet-
ter (lower values) than the BrS of any individual model. 
The probabilistic skill depends on the spread among 

Fig. 6   Skill metrics averaged over all initialization months and lead 
times for each LME as well as all LMEs combined (all) (x-axis) and 
for each model as well as persistence and the ensemble mean (y-axis). 
(top left) ACC, (top right) RMSE, (bottom) BrS for (left) lower or 

cold tercile and (right) upper or warm tercile. The color scale for all 
metrics is arrayed so that higher skill is shown in red and lower skill 
in blue
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ensemble members (Sooraj et al. 2012). The multimodel 
ensemble better represents the actual range of predicted 
values as the total number of members is higher but also 
because different models provide a wider diversity of out-
comes that is more consistent with observed ranges than 
any individual model.

The Brier score depends on the reliability (agreement 
between the forecast and observed probability of an event 
occurring), the resolution (ability to separate situations into 
different categories), and the uncertainty (a measure of the 
observed variability). As illustrated by reliability diagrams 
for forecasts of the probability of an SST anomaly in the 
upper or lower tercile at 0 and 4 month leads, the individual 
models are under-dispersed (“over confident”), especially 
when compared with the multimodel ensemble, as the for-
mer under-forecast rare events and over-forecast events 
with high frequency of occurrence (Fig. 7). In contrast, the 
MME forecast is very similar to the actual probability of 
an SST anomaly being in the upper or lower tercile over 
nearly the full range of probabilities. For example, when 
the multimodel ensemble predicts an 80% probability of 
the 4-month forecast being in the upper tercile the actual 
probability of occurrence was ~83% but when the individ-
ual models forecast a probability of 80% the observed SST 
anomalies occurred in the upper tercile only about 40–60% 
of the time (Fig. 7, 3rd panel).

For a reliable prediction system, which has on average 
the correct amount of spread given its skill, the RMSE 
should be equal to the spread (Buizza 1997). We estimate 
the spread using the standard deviation across the ensem-
ble members of the individual ensemble members or for 
all in the NMME and plot SST spread normalized by the 
RMSE as a function of forecast lead (Fig. 8). The spread 
of all of the individual NMME models is smaller than the 
RMSE (Fig.  8), which is typical of under-dispersive or 

overconfident prediction systems. By this measure the mul-
timodel ensemble is somewhat over-dispersive.

Skill matrices for the reliability and resolution com-
ponents of the BrS for all LMEs and prediction systems 
including the multimodel ensemble are shown in Fig.  9. 
The values are based on all forecasts irrespective of the 
initialization month and lead. The results indicate that 
the higher BrS skill of the multimodel ensemble forecasts 
come from improved resolution as well as better reliability.

4 � Summary and discussion

We have analyzed the forecast skill of the North Ameri-
can Multimodel Ensemble using three different metrics: 
anomaly correlation, root mean square error and the Brier 
score. The results indicate that current global climate fore-
cast systems with relatively coarse oceanic and atmos-
pheric resolution have skill in forecasting SST anomalies in 
many coastal LME-scale regions, confirming the findings 
of Stock et  al. (2015). Forecast skill is highly dependent 
on the month being predicted, with certain months pro-
ducing higher or lower seasonal predictability regardless 
of the initialization time and duration of the forecast. The 
forecast skill varied widely by region, with relatively high 
skill in the Pacific, especially in the Bering Sea and Gulf 
of Alaska, and in the vicinity of Newfoundland, but limited 
skill in regions along the US east coast.

Several factors influence regional forecast skill, includ-
ing the ability of the models to simulate large-scale climate 
phenomena, such as ENSO and its teleconnections (e.g., 
Jacox et  al.  2017), ocean–ice interactions and gyre circu-
lations. Changes in monthly forecast skill can result from 
the capacity of models to simulate physical processes that 
evolve over the seasonal cycle. In the vicinity of Hawaii, 

Table 2   The monthly SST 
standard deviation averaged 
over all months or 3-month 
seasons for the 1982–2009 
period of OISSTv2 spatial 
average for each LME

LME EBS GoA CC GoC GoM SE US NE US SS LN IPH AI

Annual 0.53 0.59 0.54 0.71 0.39 0.43 0.65 0.66 0.54 0.41 0.37
D-J-F 0.43 0.51 0.51 0.92 0.39 0.53 0.70 0.52 0.35 0.44 0.30
M-A-M 0.44 0.56 0.60 0.68 0.51 0.48 0.60 0.53 0.40 0.45 0.30
J-J-A 0.75 0.74 0.54 0.72 0.31 0.33 0.63 0.81 0.86 0.44 0.48
S-O-N 0.50 0.55 0.52 0.52 0.36 0.39 0.68 0.73 0.64 0.31 0.41

Table 3   The monthly SST 
standard deviation averaged 
over all months or 3-month 
seasons for the 1982–2009 
period of of MMM spatial 
average for each LME at 
6-month lead

LME EBS GoA CC GoC GoM SE US NE US SS LN IPH AI

Annual 0.28 0.38 0.26 0.20 0.17 0.16 0.31 0.31 0.30 0.18 0.25
D-J-F 0.29 0.41 0.23 0.16 0.23 0.13 0.26 0.26 0.34 0.16 0.28
M-A-M 0.25 0.28 0.22 0.18 0.12 0.12 0.33 0.30 0.28 0.13 0.22
J-J-A 0.28 0.34 0.29 0.27 0.16 0.14 0.34 0.42 0.29 0.20 0.23
S-O-N 0.30 0.49 0.30 0.19 0.17 0.25 0.31 0.29 0.29 0.23 0.27
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skill has been linked to accurate simulation of the sea-
sonal latitudinal migration of SST fronts across the North 
Pacific, while along the west coast of North America, skill 
has been linked to accurate simulation of the emergence 
of the signatures of Pacific basin scale variability above 
less predictable local variability (Stock et  al. 2015; Jacox 
et al. 2017). In midlatitude areas with pronounced seasonal 
cycles in mixed layer depth, SST anomalies can recur from 
one winter to the next fall/winter due to the “reemergence 
mechanism” (e.g. Alexander and Deser 1995), where SST 
anomalies created by surface flux anomalies during winter 
persist below the seasonal thermocline in summer and are 
re-entrained into the surface mixed layer in the following 

fall and winter. In regions with seasonal ice cover, fall SST 
anomalies influence the winter sea ice thickness and sea-ice 
can serve as a reservoir for transmitting fall SST anomalies 
to the following summer (Blanchard-Wrigglesworth et  al. 
2011). In addition, sea ice melt during the spring season 
influences ocean temperature anomalies that persist dur-
ing summer and impact sea ice and SST in the following 
ice growth season (Blanchard-Wrigglesworth et  al. 2011). 
These two sea-ice mediated mechanisms may enhance 
SST forecast skill in the East Bering Sea and Newfound-
land Labrador shelf from fall to the following spring and 
from spring to the following winter, resulting in higher 
ACC values for forecasts ending in July and December, 

Fig. 7   Reliability diagrams for SST anomaly forecasts for the upper 
and lower terciles at 0-month lead (top, the first month forecast) and 
4-month lead (bottom) from the individual NMME models and the 
ensemble mean. The values are obtained using all LMEs. The reli-
ability diagram groups the forecasts into bins according to the issued 
probability (horizontal axis). The frequency with which the event 
was observed to occur for this sub-group of forecasts is then plotted 
against the vertical axis. For perfect reliability the forecast probability 

and the frequency of occurrence should be equal (thick dashed line 
along the diagonal). The horizontal dash line is the climatological 
forecast probability, by definition of a value of 1/3. A forecast clima-
tology does not discriminate at all between events and non-events, 
and thus has no resolution. The grey shaded area defines the skill 
region (positive Brier skill score). An overconfident forecast system is 
where the forecast probability is greater than the observed frequency
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although these processes also contribute to skill in persis-
tence forecasts.

Errors may also be due in part to the coarse model 
resolution, particularly in the Northeast and Southeast 
US LMEs, entirely situated over the poorly resolved con-
tinental shelf. The Gulf Stream tends to extend too far 
north before separating from the coast in coarse resolution 
ocean models, potentially leading to inaccurate temperature 
anomaly forecasts along the eastern seaboard. Fine-scale 
resolution also appears to be necessary to represent flow 
along the continental shelf and its penetration into the Gulf 
of Maine and other areas with complex bathymetry (Saba 
et al. 2016). Fine resolution may also improve forecasts in 
other small regions such as the Scotian Shelf or the Gulf 
of California, whose SST dynamics are partially driven by 
small-scale processes not accurately represented in cur-
rent climate prediction systems, and in regions with coastal 
upwelling, including the California Current System (Jacox 
et al. 2017).

Three older models (COLA-RSMAS-CCSM3, IRI-
ECHAM4p5-AnomalyCoupled and IRI-ECHAM4p5-
DirectCoupled) had poor forecast accuracy (large RMSE) 
during the first few forecast months due to initialization 
errors in the LMEs at higher latitudes. Removing those 
three models in the computation of the MMM led to 
improvement in the initial forecast accuracy, with a reduc-
tion of the MMM RMSE by up to 17%, but degraded 
the forecast skill at longer leads. This illustrates that the 
method used for the model initialization, as well as the 
forecast model itself, can impact seasonal forecast skill.

The ACC and RMSE indicated that on average the mul-
timodel mean has higher deterministic skill than any single 
model, although an individual NMME model could provide 
a slightly better forecast than the MMM for a given LME, 
lead and month, especially in regions where forecasting 
was particularly challenging. Averaging over the ensem-
ble can improve forecasts due to error cancellation, i.e., 

the individual model biases vary with location, time of ini-
tialization, forecast lead, etc., and when they are averaged 
together the error is reduced (e.g. Hagedorn et  al. 2005). 
While including all of the individual models (even ones 
with more limited skill) contributed to the overall forecast 
skill of the NMME, more sophisticated methods such as 
Bayesian Model Averaging (BMA; Raftery et  al. 2005), 
where individual models in a multimodel average are first 
weighted based on their skill, could improve multimodel 
forecasts. In practice, however, it has proven difficult to 
exceed the skill of the ensemble mean where all ensemble 
members are weighted equally (Tippett and Barnston 2008; 
DelSole et al. 2013).

The improvement in skill using the multimodel ensem-
ble was especially pronounced for probability forecasts as 
indicated by the Brier score. Using a suite of models to 
assess forecast skill is relatively new with the release of 
the North American Multimodel Ensemble data occurring 
within the last 2 years (Kirtman et al. 2014). Given the cha-
otic nature of the climate system, very small differences in 
the initial condition can lead to a wide range of credible 
forecasts. The multimodel ensemble better represents this 
potential distribution of forecast values than any individual 
model. While increasing the number of simulations from a 
single model can partly ameliorate this problem, using sim-
ulations from multiple models often provides a better esti-
mate of the actual range of predicted values (e.g. Hagedorn 
et al. 2005; Becker and van den Dool 2016) and thus bet-
ter probability forecasts. Using a synthetic forecast genera-
tor, Weigel et al. (2008) found that multimodel ensembles 
outperform a ‘best-model’ approach if the single-model 
ensembles are under-dispersive, as occurred for the indi-
vidual models within the NMME.

The improvement in skill for the tercile metric using the 
NMME may translate to improvements to the application 
of seasonal forecasting for marine resource management. 
All organisms maximize their performance (e.g., growth or 

Fig. 8   SST spread normalized 
by the RMSE as a function of 
forecast lead averaged over all 
the LMEs. The spread is the 
standard deviation of all the 
members from an individual 
model or the standard devia-
tion of all of the forecasts in 
the multimodel ensemble. For a 
reliable prediction system, the 
RMSE should be equal to the 
spread; in under-dispersive or 
overconfident prediction sys-
tems the spread/RMSE <1
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reproductive success) at an optimal range of environmen-
tal conditions. Productivity of many fish species sharply 
declines outside of an optimal temperature range (Pörtner 
and Farrell 2008) and specific life stages, such as spawners 
and juveniles, generally display a narrower optimal thermal 
window, making them particularly vulnerable to extreme 
temperature fluctuations (Pörtner and Peck 2010). Hence, 
the probability of occurrence of warm (upper tercile) or 
cold (lower tercile) SST anomalies during specific seasonal 

windows may be very useful to marine resource managers 
(e.g. Spillman et al. 2015). To base decisions on a compre-
hensive assessment of risk, managers may be advised to 
use multimodel rather than single-model ensemble fore-
casts, as the former produce a better probabilistic forecast 
and a more reliable estimate of uncertainty.
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