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ABSTRACT

This paper is concerned with estimating the predictable variation of extratropical daily weather statistics
(‘‘storm tracks’’) associated with global sea surface temperature (SST) changes on interannual to interdecadal
scales, and its magnitude relative to the unpredictable noise. The SST-forced storm track signal in each northern
winter in 1950–99 is estimated as the mean storm track anomaly in an ensemble of atmospheric general circulation
model (AGCM) integrations for that winter with prescribed observed SSTs. Two sets of ensembles available
from two modeling centers, with anomalous SSTs prescribed either globally or only in the Tropics, are used.
Since the storm track signals cannot be derived directly from the archived monthly AGCM output, they are
diagnosed from the SST-forced winter-mean 200-mb height signals using an empirical linear storm track model
(STM). For two particular winters, the El Niño of January–February–March (JFM) 1987 and the La Niña of
JFM 1989, the storm track signals and noise are estimated directly, and more accurately, from additional large
ensembles of AGCM integrations. The linear STM is remarkably successful at capturing the AGCM’s storm
track signal in these two winters, and is thus also suitable for estimating the signal in other winters.

The principal conclusions from this analysis are as follows. A predictable SST-forced storm track signal exists
in many winters, but its strength and pattern can change substantially from winter to winter. The correlation of
the SST-forced and observed storm track anomalies is high enough in the Pacific–North America (PNA) sector
to be of practical use. Most of the SST-forced signal is associated with tropical Pacific SST forcing; the central
Pacific (Niño-4) is somewhat more important than the eastern Pacific (Niño-3) in this regard. Variations of the
pattern correlation of the SST-forced and observed storm track anomaly fields from winter to winter, and among
five-winter averages, are generally consistent with variations of the signal strength, and to that extent are
identifiable a priori. Larger pattern correlations for the five-winter averages found in the second half of the 50-
yr record are consistent with the stronger El Niño SST forcing in the second half. None of these conclusions,
however, apply in the Euro-Atlantic sector, where the correlations of the SST-forced and observed storm track
anomalies are found to be much smaller. Given also that they are inconsistent with the estimated signal-to-noise
ratios in this region, substantial AGCM error in representing the regional response to tropical SST forcing, rather
than intrinsically lower Euro-Atlantic storm track predictability, is argued to be behind these lower correlations.

1. Introduction

It is well known that the statistics of extratropical
daily weather (‘‘storm tracks’’) averaged over individual
winter seasons, decades, or even longer intervals are not
constant but vary substantially from one interval to the
next. These variations have a random part associated
with sampling fluctuations, and a potentially predictable
part associated with slow changes of atmospheric
boundary conditions and atmospheric composition. This
paper addresses the problem of estimating the predict-
able signal associated specifically with sea surface tem-
perature (SST) changes, and its magnitude relative to
the random noise.

The ratio S of the predictable signal of any quantity
(such as a storm track anomaly) to its random noise has
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a simple relationship to the expected correlation of the
predicted and observed values of that quantity (e.g.,
Sardeshmukh et al. 2000), and is thus a useful measure
of potential predictability. As discussed in the appendix,
the expected correlation skill rn of an n-member en-
semble-mean forecast made by a ‘‘perfect’’ model is

2 2 2 21 1/2r 5 S /[(S 1 1)(S 1 n )] .n (1)

The thin curves in Fig. 1 illustrate this relationship for
a few values of n. The outermost r` curve shows how
predictability is limited if S is small; this limitation can-
not be overcome even using infinite-member ensembles
of a perfect model. The expected skill rn using n-mem-
ber ensembles is lower than r`, and model error (see
appendix) leads to even lower actual skill r. In this
framework, the problem of estimating predictability be-
comes essentially one of estimating S. As illustrated by
the thickened portions of the curves, using n-member
ensembles introduces errors in estimating S, and hence
in estimating rn. For low n this uncertainty in rn is much
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FIG. 1. Expected anomaly correlation skill rn of ensemble-mean
forecasts for n 5 1, 12, 25, 60, and infinite member ensembles as a
function of the signal-to-noise ratio S [Eq. (1)]. Thickened portions
of curves illustrate uncertainty in expected skill rn for S 5 0.7 due
to uncertainty from estimating S using an n-member ensemble, as-
suming that S is distributed as a Student’s t statistic. (Adapted from
Sardeshmukh et al. 2000.)

larger than the difference between r` and rn, and can
lead to spuriously low (or high) predictability estimates.

With these considerations in mind, we will examine
the evidence for potentially predictable storm track sig-
nals. Observational studies suggest the existence of an
interannual storm track signal arising from SST changes
associated with the El Niño–Southern Oscillation
(ENSO) phenomenon. Previous work has shown that
this signal extends eastward from the central North Pa-
cific across North America and the Atlantic to Europe
(e.g., Fraedrich and Muller 1992; Fraedrich 1994; Hoer-
ling and Ting 1994; Straus and Shukla 1997; May and
Bengtsson 1998; Matthews and Kiladis 1999; Smith and
Sardeshmukh 2000; Sardeshmukh et al. 2000; Carillo
et al. 2000; Compo et al. 2001). The observations also
suggest somewhat different effects for El Niño and La
Niña forcing, thus hinting that the signal may vary from
ENSO case to case, with obvious implications for storm
track predictability. The limited observational record,
however, compromises estimating such case-dependent
and/or nonlinear signals with statistical significance, and
also compromises estimating the storm track noise es-

sential for assessing predictability. A similar remark ap-
plies to most previous assessments of these effects made
using small atmospheric general circulation model
(AGCM) ensembles. To remedy this situation, Compo
et al. (2001) examined much larger 60-member ensem-
bles of seasonal integrations of the National Centers for
Environmental Prediction (NCEP) AGCM with pre-
scribed observed global SSTs for one El Niño [January–
February–March (JFM) 1987] and one La Niña (JFM
1989) case, and were able to conclude with much greater
confidence that the SST-forced storm track signal may
indeed vary substantially from case to case, especially
over the North Atlantic and Europe. Interestingly, they
could also demonstrate a statistically significant storm
track signal in many regions not usually associated with
an ENSO effect.

Demonstrating the existence of a signal is, of course,
not the same as demonstrating its predictability, or use-
fulness. As illustrated in Fig. 1, what matters for pre-
dictability and usefulness is the size of the signal relative
to the noise. Compo et al. did not consider this question
explicitly; it is our principal concern here.

The signal-to-noise ratio S for any quantity may be
estimated from ensemble integrations as the ratio of the
ensemble-mean anomaly to the ensemble spread. Figure
2b shows S for the SST-forced 500-mb vertical velocity
(omega) storm track anomalies in JFM 1987 estimated
from the 60-member NCEP AGCM ensembles consid-
ered by Compo et al. To generate this plot, an ensemble
member’s winter storm track value was defined at each
grid point, as in Compo et al., as the 2–7-day bandpass-
filtered variance of 500-mb omega. Storm track anom-
alies for each member were computed with respect to
the ensemble-mean storm track in a separate 90-member
ensemble with climatological SST boundary forcing.
The storm track signal associated with anomalous JFM
1987 SSTs was then computed as the ensemble mean
of the 60 storm track anomaly values, and the noise as
the rms deviation of the 60 values from this mean. Fig-
ure 2 also shows the S values for the SST-forced winter-
mean 500-mb omega and precipitation anomalies cal-
culated in a similar manner. As suspected, the storm
track S values are modest, but comparable in magnitude
to the S values for 500-mb omega and precipitation. The
figure nevertheless strongly suggests that the predict-
ability of winter-mean precipitation is as much tied to
the predictability of the winter-mean 500-mb omega
storm track as it is to that of the winter-mean 500-mb
omega. Mainly for this reason, we will restrict ourselves
to the predictability of the ‘‘500-mb omega storm track’’
in this paper, as opposed to many other interesting mea-
sures of synoptic variability.

The modest values of S for the omega storm track in
Fig. 2 apparently imply only modest storm track pre-
dictability associated with SST changes. It is important
to keep in mind, however, that these estimates are based
on one specific winter case and one particular AGCM.
It is unclear to what extent they are affected by the
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FIG. 2. Signal-to-noise ratio S from the JFM 1987 El Niño for (a) seasonal-mean 500-mb vertical velocity, (b) seasonal
2–7-day bandpass variance of vertical velocity (v), and (c) seasonal-mean precipitation. The contour interval is 0.2.
The zero contour has been suppressed. Thick (thin) contours indicate positive (negative) values. The 10% significance
level is 0.22 using a two-sided t test. All plots are field significant at the 5% level assuming at least 15 esdof. Pattern
correlations between the respective fields are indicated next to the arrows.

specifics of that case and/or model error. Comparing the
AGCM’s ensemble-mean predicted storm track anomaly
with the observed anomaly in JFM 1987 (not shown)
does not settle the issue, because the AGCM’s prediction
is only the expected anomaly. The prediction problem
is inherently probabilistic, so the reliability of model-
generated predictability estimates can only be assessed
by examining prediction skill over a large number of
cases.

To make a more general assessment of wintertime

storm track predictability, we will therefore compare
predictability estimates obtained using Eq. (1) with ac-
tual correlations of the SST-forced and observed storm
track variations over the last half century. To this end,
we will use two sets of relatively small (9 to 13 mem-
bers) ensemble runs for the last half century available
from two modeling centers [NCEP and National Center
for Atmospheric Research (NCAR)], with anomalous
observed SSTs prescribed either globally or only in the
Tropics, to estimate the SST-forced signal in each winter.
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TABLE 1. Details and time periods of the integrations of atmospheric general circulation models available at twice-daily and monthly
resolution used in the present study. Here, T refers to the spectral truncation of the model, and L refers to the number of model levels. T40
(T42) corresponds to a spatial resolution of approximately 38 lat 3 38 lon (2.88 3 2.88).

Model Boundary condition Time period No. of members Reference

NCEP MRF9 T40L18 (570
JFM, twice daily)

Global SSTs Climatological
Jan–Mar 1987
Jan–Mar 1989

90
60
60

Sardeshmukh et al.
(2000)

Compo et al. (2001)
Niño-4 anomaly 61 Jan–Mar

63, 65 Jan–Mar
90 each
45 each

This study

NCEP MRF9 T40L18
(AMIP style, monthly)

Global SSTs (GOGA) 1950–95 13 Livezey et al. (1997)

Pacific SST anomaly
(POGA)

1950–95 9 Kumar and Hoerling
(1998)

NCAR CCM3 T42L18
(AMIP style, monthly)

Global SSTs (GOGA)
Tropical SST anomaly
(TOGA)

1950–99
1950–99

12
11

Kiehl et al. (1998)

Since the storm track signals cannot be obtained directly
from the archived monthly AGCM output, we will di-
agnose them from the winter-mean 200-mb-height sig-
nals using an empirical linear storm track model (STM)
developed specifically for this purpose. We will present
the correlations r of these STM-diagnosed storm track
signals with the observed storm track anomalies, both
as maps of the temporal correlation of the SST-forced
and observed anomaly values over 50 winters at each
grid point, and as 50-winter time series of the pattern
correlation of the SST-forced and observed anomaly
fields in each winter over the Pacific–North American
(PNA) and North Atlantic–Europe (NATL-EUR) sec-
tors. The latter, in comparison with the time series of
tropical SST indices, will help us assess the case de-
pendence of storm track predictability.

Our main interest in this paper is in extracting the
predictable component of storm track variations. The
words predictable and SST forced may be used almost
interchangeably for interannual storm track variations,
given the importance of the potentially predictable in-
terannual tropical SST variations in forcing them. Sev-
eral studies have also found substantial decadal storm
track variations and trends over the last 50–100 yr
(e.g., Hurrell and van Loon 1997; WASA Group 1998;
Graham and Diaz 2001; Chang and Fu 2002, 2003;
Gulev et al. 2002; Harnik and Chang 2003). The decadal
variations of the omega storm track, with its more direct
link to precipitation variations noted earlier, have not
been previously studied, and the degree to which they
are SST-forced has also not been addressed. Acknowl-
edging that the existence of an SST-forced component
does not by itself imply storm track predictability on
decadal scales, we will nevertheless also present cor-
relations of five-winter averages of the SST-forced and
observed storm track anomalies, and explore to what
extent they are associated with anomalous five-winter-
average tropical SSTs.

The paper is organized as follows. The data and model
integrations are discussed in section 2. In section 3, the
linear STM is developed and tested for its ability to
reproduce the NCEP AGCM’s (60 member) SST-forced

storm track signals in JFM 1987 and 1989, given only
the AGCM’s ensemble-mean 200-mb-height signals in
those winters. In section 4, the STM is used to diagnose
the SST-forced storm track signals in 1950–99, given
the NCEP and NCAR AGCMs’ ensemble-mean 200-
mb-height responses to observed global and tropical
SST forcing. The AGCMs’ skill in simulating the ob-
served storm track anomalies is then evaluated through
the correlation measures discussed earlier. This average
skill is compared with that expected from Eq. (1) for
the 1987 and 1989 events to illustrate the case depen-
dence of expected forecast skill. In section 5, the STM
is used to address the important issue of decadal storm
track variations. In section 6, we show that the actual
AGCM skill in predicting storm tracks is close to the
expected skill over the Pacific–North American sector,
but that a substantial systematic error may be present
over the North Atlantic–European sector. A discussion
and concluding remarks follow in section 7.

2. Data

This section provides details of the data sources and
data analysis procedures to facilitate the reproducibility
of our results by other investigators. Those not inter-
ested in such details may proceed to section 3 without
loss.

Both observational and AGCM datasets were used in
our analysis. Observed geopotential height and vertical
velocity fields were obtained from 50 yr (1950–99) of
NCEP–NCAR reanalyses (Kistler et al. 2001) at twice-
daily resolution. SST indices for the Niño-3 (58N–58S,
1508–908W) and Niño-4 (58N–58S, 1608E–1508W) re-
gions were constructed from the monthly Hadley Centre
Sea Ice and Sea Surface Temperature (HadISST) dataset
(Rayner et al. 2003).

Several different sets of NCEP Medium-Range Fore-
cast (MRF9) and NCAR Community Climate Model
(CCM3) AGCM integrations were also used (Table 1).
A detailed description of the MRF9 model may be found
in Kumar et al. (1996) and references therein, and of
the CCM3 model in Kiehl et al. (1998).
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One set of seasonal MRF9 integrations was made by
Sardeshmukh et al. (2000) and Compo et al. (2001).
These large ensembles were generated with prescribed
observed monthly global climatological JFM SSTs (90
members) and observed monthly global SSTs for JFM
1987 and JFM 1989 (60 members each). A second set
of 360 seasonal integrations, not previously reported,
was generated with observed monthly global climato-
logical JFM SSTs specified everywhere except in the
Niño-4 region, where anomalies of 618, 638, and 658C
were specified. Selected variables from both of these
sets were archived at twice-daily resolution.

Four additional sets of Atmospheric Model Intercom-
parison Project (AMIP)-style AGCM integrations (i.e.,
runs with prescribed observed SSTs), available from two
modeling centers at monthly resolution, were also used
(Table 1). These include a 13-member MRF9 ensemble
generated at NCEP for the period February 1950–Feb-
ruary 1995 with observed monthly SSTs specified glob-
ally (commonly referred to as GOGA), and a similar
nine-member ensemble with the observed monthly SSTs
specified only in the tropical Pacific and climatological
SSTs specified elsewhere (POGA). We also used a 12-
member GOGA ensemble of CCM3 integrations made
at NCAR for the period January 1950–December 1999,
and a similar 11-member ensemble with the observed
monthly SSTs specified only in the Tropics (308N–308S)
and climatological SSTs specified elsewhere (TOGA).

To prepare these data for analysis, anomalies were
calculated as departures from a least squares fit to the
first three harmonics of the mean annual cycle over the
1950–79 period. For the AMIP-style integrations, the
anomalies were computed separately for the POGA,
TOGA, and two GOGA integrations as departures from
their respective annual cycles. This base period was
chosen to minimize the effects of the 1979 satellite dis-
continuity in the reanalysis dataset (Kistler et al. 2001),
while utilizing the 30 years overlapping the AGCM da-
tasets available for this study. Anomalies for the twice-
daily MRF9 ensemble integrations were derived relative
to the daily ensemble mean of the (90 member) cli-
matological-SST integrations. All reanalysis and
AGCM anomaly fields were then spatially smoothed to
triangular truncation 31 using the spectral smoothing
filter of Sardeshmukh and Hoskins (1984, hereafter SH).

Using the twice-daily data for each ensemble member
(or each calendar year of the reanalysis), storm track
values were defined at each grid point as the 2–7-day
bandpass-filtered variance, and computed directly from
the Fourier power spectrum of the 90-day JFM anomaly
segments (Compo et al. 2001). These variance fields
were then smoothed to triangular truncation 12 with the
SH filter to facilitate comparison with other studies us-
ing similar truncations (e.g., Whitaker and Sardeshmukh
1998; Chang and Fu 2002, 2003). Our spatial smoothing
retains about 70% of the original standard deviation, but
the pattern is preserved. For example, the pattern cor-
relation of the smoothed and unsmoothed reanalysis

storm tracks is 0.98. In the following, the smoothed 2–
7-day 500-mb vertical velocity variance fields are re-
ferred to as the omega storm track or simply as the storm
track where there is no possibility of confusion.

All storm track anomaly fields were calculated after
the spatial smoothing. Omega storm track anomalies for
each JFM season in the reanalysis dataset were con-
structed by removing the 1950–79 JFM average storm
track from each winter’s storm track. For the MRF9
storm track anomalies, the JFM ensemble-mean storm
track of the MRF9 climatological-SST ensemble was
removed from each ensemble member’s storm track.

Empirical orthogonal functions (EOFs) of the 570
MRF9 JFM storm track and 200-mb-height anomaly
fields were computed separately for the Northern Hemi-
sphere (208–908N), the Pacific–North American region
(208–908N, 1808–608W), and the North Atlantic–Eu-
ropean region (208–908N, 608W–608E) using the co-
variance matrix area-weighted by the cosine of latitude.
From the EOFs, the equivalent spatial degrees of free-
dom (esdof ) for all three domains (relevant in assessing
statistical significance) were calculated using the meth-
od of Bretherton et al. (1999).

To orient the reader to the climatological pattern and
interannual variance of the omega storm tracks com-
pared to the 500-mb-height storm tracks, the top half
of Fig. 3 shows the 1950–79 averages of these measures
of synoptic variability, and the bottom half shows their
standard deviation over the period 1950–99. The mean
omega storm track field in the top left is in excellent
agreement with that determined by Hoskins and Hodges
(2002) from the European Centre for Medium-Range
Weather Forecasts (ECMWF) data for 1979–2000. This
is consistent with Compo et al.’s earlier finding that the
synoptic time-scale vertical velocity variance is similar
between various observational estimates in the Northern
Hemisphere extratropics. As illustrated by the shading
in Fig. 3, the omega storm track field captures the well-
known maxima in the Pacific and Atlantic, and also has
a well-defined Mediterranean maximum seen in cyclone
feature-tracking studies but not in climatologies of sev-
eral other bandpass-filtered quantities such as 500-mb
heights (Hoskins and Hodges 2002).

3. Empirical storm track model

a. Description of the empirical storm track model

Understanding the connection between a background
flow and the behavior of individual synoptic eddies
evolving on it has long been a core problem in dynam-
ical meteorology. The shift of focus to the link between
a mean flow and the general statistics of the synoptic
eddies associated with it—storm tracks—is a relatively
recent development (e.g., Blackmon et al. 1977; Lau
1988; Wallace et al. 1988; Farrell and Ioannou 1994,
1995; Branstator 1995; Whitaker and Sardeshmukh
1998; Zhang and Held 1999). Using a stochastically
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FIG. 3. (top) Climatological winter mean and (bottom) interannual standard deviation of 2–7-day bandpass variance of (left) 500-mb
vertical velocity (omega) and (right) 500-mb height from NCEP–NCAR reanalyses. Note that the square root of each field is plotted. Contour
intervals are (top left) 0.01 Pa s21, (top right) 5 m, (bottom left) 0.005 Pa s21, and (bottom right) 2.5 m. Shading highlights regions greater
than (top left) 0.07 Pa s21, (top right) 40 m, (bottom left) 0.03 Pa s21, and (bottom right) 20 m.

forced two-layer quasigeostrophic model linearized
about a specified climatological-mean flow, Whitaker
and Sardeshmukh (1998) were able to simulate many
aspects of the observed climatological Pacific and At-
lantic storm tracks. Encouraged by this, they put their
model to a harder test: to predict the anomalous storm
tracks for individual winters given the anomalous win-
ter-mean flow. Overall, they had only limited skill at
this, raising the questions of whether this was due to
the neglected nonlinearity of the mean-flow–storm track
relationship, the relative simplicity of their model, the
imprecise link between an individual winter’s mean flow
and storm tracks (i.e., intrinsically limited predictabil-
ity), or some other factor.

Whitaker and Sardeshmukh used a dynamical storm
track model linearized about a specified mean flow to
deduce the storm tracks associated with that flow. One
can also think of constructing an empirical storm track
model that uses a multiple linear regression operator
estimated from independent data to predict the anom-
alous storm tracks associated with an anomalous mean
flow. The prediction equation may formally be written
as

y 5 Gx 1 «, (2)

where G is the linear regression operator, x (the pre-
dictor) is the anomalous mean flow, y (the predictand)
is the anomalous storm track field, and « is the error.
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FIG. 4. Cross-validated skill of the empirical storm track model as
a function of the number of retained EOFs of Jan–Mar 200-mb height
seasonal mean and 500-mb vertical velocity bandpass variance sea-
sonal anomalies. (a) Normalized error. (b) Anomaly pattern corre-
lation. Contour interval is 0.05 with the addition of (a) 0.623, 0.625
and (b) 0.595, 0.598 contours. Shading begins at (a) 0.625 and (b)
0.595. Horizontal and vertical lines show the truncation used for the
storm track model described in the text.

Note that « includes contributions from model trunca-
tion error and neglected nonlinearities, as well as sam-
pling fluctuations; the latter can be made relatively small
by ensemble and/or time averaging.

For the Northern Hemisphere winter (JFM), we have
constructed such a model in a truncated EOF space, with
x as the anomalous winter-mean 200-mb height and y
as the anomalous winter-mean omega storm track, using
the 570 NCEP AGCM integrations listed in Table 1.
The optimal G was determined by cross-validation, se-
quentially removing 30 members of the set of 570 at a
time, computing G from the remaining 540, and then
predicting the storm track anomalies in the excluded 30.
All EOF truncations from 2 to 60 for the 200-mb-height
anomalies, and 2 to 70 for the storm track anomalies,
were considered. The cross-validated root-mean-square
error and average pattern correlation as a function of
truncation are shown in Fig. 4. Although the cross-val-
idated STM skill is not particularly sensitive to EOF
truncation, we chose the truncation yielding the largest
average pattern correlation: 40 EOFs of 200-mb heights
and 51 EOFs of storm tracks. In EOF space, G is then
a 40 3 51 matrix.

b. Validating the STM

To establish our linear STM’s utility, we demonstrate
its ability to deduce a nonlinear AGCM’s SST-forced
omega storm track signal given the AGCM’s 200-mb
height signal. Note that because our empirical STM is
trained on an AGCM’s noise, that is, on unpredictable
storm track and mean-flow variations, its ability to pre-
dict SST-forced storm track variations is not guaranteed
a priori, because 1) to the extent that the SST-forced
mean-flow signal is weaker than the noise, one is putting
the storm track model to an even harder test than the
cross-validation test in Fig. 4; and more importantly, 2)
the SST-forced 200-mb-height signal may have features
not captured in the truncated EOF space in which G
operates. Figure 5 shows that the STM is nevertheless
able to predict the principal elements of the AGCM’s
storm track signal given the AGCM’s 200-mb-height sig-
nal in (left) the El Niño winter of JFM 1987 and (right)
the La Niña winter of JFM 1989. (To ensure that the
verifications were performed on independent data, the
EOFs and G for each of these two tests were rederived
excluding the respective 60 members of the 1987 and
1989 AGCM integrations.) In both cases the hemispher-
ic pattern correlation between the linear STM’s diag-
nosed storm track anomalies and the nonlinear AGCM’s
ensemble-mean storm track anomalies is 0.9.

Our STM is complementary to that developed by
Chang and Fu (2003), and also to that by Peng et al.
(2003). Our approach is to construct the STM from
much larger samples of independent AGCM statistics
and use it to diagnose storm track anomalies from
AGCM-simulated and observational 200-mb-height
anomalies. Chang and Fu used a canonical correlation
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FIG. 5. Ensemble-mean seasonal anomalies for (left) Jan–Mar 1987 and (right) Jan–Mar 1989 AGCM ensemble of
60 members forced with 1987 and 1989 observed SSTs, respectively. (top) The 200-mb height anomaly; (middle)
500-mb storm track (vertical velocity 2–7-day bandpass variance anomaly) diagnosed using the empirical storm track
model; (bottom) the 500-mb storm track. (middle and bottom) The plotted quantity is the signed square root of the
variance anomaly. Contour intervals are (top) 20 m and (middle and bottom) 0.01 Pa s21 with the zero contour
suppressed. (top) Light shading indicates negative anomalies. (middle and bottom) Dark (light) shading indicates
positive (negative) anomalies.

analysis (CCA) model of the anomalous mean flow and
eddy statistics derived from a more recent part of the
NCEP reanalysis dataset to assess the quality and de-
cadal variability of eddy statistics in an earlier part.
While successful in many respects, their model had sub-
stantial difficulty in capturing the amplitude of the ob-

served storm track anomalies. Peng et al. (2003) used
multiple linear regression on an NCEP AGCM dataset
to construct a linear operator linking monthly mean geo-
potential heights and synoptic eddy vorticity fluxes to
diagnose mean-flow/eddy feedbacks in that AGCM.
Neither the storm track model of Peng et al. nor the
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STM used here (Fig. 5) has the amplitude problem of
Chang and Fu, which probably arises from sample size
limitations of the observed record.

For the remainder of the paper, the STM used is that
derived from all 570 members of the twice-daily MRF9
integrations (Table 1).

4. Skill in predicting interannual storm track
variations

a. Local correlations

Having demonstrated that the STM can successfully
diagnose an AGCM’s ensemble-mean storm track anom-
alies in specific cases, we now use it to diagnose the
Northern Hemisphere storm track anomalies in the past
50 winters from the observed winter-mean 200-mb-
height anomalies, and also from the SST-forced 200-
mb-height signals in each of those winters in four in-
dependent sets of AGCM integrations. The former will
allow us to evaluate the average diagnostic skill of the
STM in individual winters; the latter to estimate the
predictability of interannual storm track variations, as-
suming perfect predictability of the SST variations.

Figure 6 shows, at each Northern Hemispheric grid
point, the local temporal correlation of the observed and
STM-diagnosed storm track anomalies. The contours
begin at 0.25 (which is also the local 5% significance
level) and are plotted every 0.15 thereafter. In Fig. 6
(top) the observed 200-mb-height anomalies are given
to the STM to diagnose the storm track anomalies. In
the other parts of Fig. 6, AGCM ensemble-mean 200-
mb-height anomalies are given to the STM to estimate
the AGCMs’ ensemble-mean storm track anomalies.
Figure 6 (top) shows that the STM’s diagnostic skill is
high over a large portion of the Northern Hemisphere,
with correlations above 0.7 in regions of large storm
track variability (Fig. 3). Its failure over the western
Pacific and south Asia is consistent with a similar weak-
ness in Fig. 5.

The bottom two rows of Fig. 6 show the actual skill
in predicting the interannual storm track anomalies, us-
ing our STM-derived estimates of the AGCMs’ ensem-
ble-mean storm track anomalies as the prediction. Each
panel shows the temporal correlation of the observed
and predicted storm track anomalies. The correlations
are very similar for the GOGA, TOGA, and POGA
integrations, although a tendency for lower values in
the latter two is apparent over the Gulf of Alaska and
Europe. The results for the two AGCMs are generally
consistent. The Pacific-only SST forcing reproduces al-
most all of the skill of the other integrations, suggesting
that most of the storm track predictability arises from
the tropical Pacific sector.

Figure 7 shows the expected skill r60 for the JFM
1987 and JFM 1989 storm track anomalies computed
directly from Eq. (1) using the AGCM-predicted signal-
to-noise ratio S from each 60-member ensemble. Com-

paring with the average skill over 50 winters in Fig. 6,
it is evident that the expected forecast skill can be sig-
nificantly different from the average skill and can also
differ between El Niño and La Niña. Note, for example,
that the expected skill over northern Europe is greater
than 0.55 for the 1987 El Niño but less than 0.25 for
the 1989 La Niña. (All differences of ;0.3 or more are
significant above the 5% level, assuming S is distributed
as a Student’s t statistic.) Consistent with the altered
atmospheric seasonal noise in response to ENSO found
by Sardeshmukh et al. (2000), it is also interesting that
the overall expected skill is higher in the La Niña case
than the El Niño case over many regions not usually
associated with a strong ENSO effect, such as the At-
lantic, Africa, the Middle East, and south Asia. Con-
sidering only average skill masks such substantial—and
potentially important—expected skill variations from
case to case.

Comparing the expected skill maps in Fig. 7 for two
particular forcing fields with any of the four AGCM
actual average skill maps in Fig. 6 for 50 different forc-
ing fields further illustrates the case dependence of skill.
Given that Fig. 6 does not make the perfect model as-
sumption, it is not surprising that all four actual skill
maps have generally lower values than the expected skill
maps in Fig. 7. What is perhaps more surprising is that
in some regions (such as the Gulf of Mexico) the average
actual skill in all four maps is actually higher than the
expected skill in either map of Fig. 7. Clearly, once one
goes beyond the broadbrush similarities of Figs. 6 and
7, substantial regional differences become apparent.
They highlight the case-to-case dependence of storm
track predictability, with important implications for the
local precipitation predictability stressed previously
(e.g., Fig. 2).

b. Time series of pattern correlation skill

To further characterize the interannual storm track
variations, in Fig. 8 we examine the pattern correlation
of the observed and predicted storm track anomalies for
each winter in 1950–99 over the PNA and NATL-EUR
sectors in Figs. 8c and 8d. In these panels the black,
green, and blue bars indicate the pattern correlation be-
tween the observed storm track anomaly and that di-
agnosed from the STM using the observed, the ensem-
ble-mean CCM3 GOGA, and the ensemble-mean CCM3
TOGA 200-mb-height anomalies, respectively. Results
for the NCEP MRF9 (not shown) are similar. The high
correlations obtained using the observed 200-mb-height
field as the predictor show that the STM’s diagnostic
skill is substantial in both regions.

Figure 8 further supports the possibility of case-de-
pendent storm track skill suggested in Fig. 7. The
GOGA and TOGA integrations both simulate storm
track anomalies with significant skill in many years over
the PNA and NATL-EUR sectors. The case-to-case skill
variations are large, and not entirely attributable to sam-
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FIG. 6. Predictability of storm tracks estimated using the storm track model. Green shading begins at the
5% significance level of 0.25. Contour interval is 0.15 thereafter. The 0.4 and 0.7 contours are thickened
for emphasis.

pling fluctuations. To establish this, we considered the
null hypothesis that the simulated storm track anomalies
are independent and bear no relationship to the observed
anomalies. Conducting an extensive two-step Monte
Carlo procedure using resampling with replacement, we
first determined the distribution of skills arising from
chance in 5000 Monte Carlo simulations of pattern cor-
relations over the PNA and NATL-EUR sectors. For

each realization in each sector, randomly selected
GOGA and TOGA maps were correlated with the same
randomly selected observed map to produce two random
pattern correlations. From the distribution of pattern cor-
relations, we found that both correlations simultaneously
exceeded ;0.2 in only 5% of the 5000 simulations; this
is indicated by the thin horizontal lines in Figs. 8c and
8d. We then performed a second and harder test [similar
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FIG. 7. Case dependence of the predictability of storm tracks. Com-
parison of expected local anomaly correlation skill for (a) Jan–Mar
1987 and (b) Jan–Mar 1989 storm track anomalies estimated using
60-member AGCM ensembles forced with observed SSTs to calculate
the signal-to-noise ratio S and then applying Eq. (1) to calculate r60.
Contour interval is 0.15 starting at 0.25. The 0.4 and 0.7 contours
are thickened for emphasis.

in spirit to the ‘‘field significance’’ test of Livezey and
Chen (1983)], by determining the distribution of the
number of times this ;0.2 correlation threshold was
exceeded in 5000 simulations of 50-yr sets. We found

that over the PNA and NATL-EUR sectors, 11 and 9
yr, respectively, out of 50 randomly passed the ;0.2
correlation threshold in 5% (250) of the 50-yr sets. In
Fig. 8, 26 pairs of GOGA and TOGA integrations si-
multaneously exceed the correlation threshold in the
PNA sector, and 12 pairs exceed the threshold in the
NATL-EUR sector. The CCM3 skills in Fig. 8 over the
PNA and NATL-EUR regions are thus significant above
the 5% level.

Further investigation of these time series suggests that
tropical Pacific SST variations are responsible at least
partly for the storm track skill variations over the PNA
and (to a lesser degree) the NATL-EUR sectors. Figure
8e shows the time series of winter-mean-standardized
SST anomalies in the Niño-3 and Niño-4 regions. It is
interesting that the PNA storm track anomalies are skill-
fully simulated in several years not usually classified as
moderate to strong El Niño or La Niña events [e.g.,
National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center’s subjective clas-
sification scheme at http://www.cpc.noaa.gov]. For ex-
ample, in JFM 1970 and 1991 both the GOGA and
TOGA runs have high skill, and yet both winters are
classified as weak El Niño winters at CPC. Overall, the
AGCM has significant skill in the PNA sector in 26
winters. This in itself is inconsistent with the idea that
predictable signals occur only during moderate to strong
ENSO events.

Barsugli and Sardeshmukh (2002) recently provided
evidence that the extratropical circulation is relatively
more sensitive to SST anomalies in Niño-4 than else-
where in the tropical Indo-Pacific region. In particular,
they found many aspects of the extratropical response
to be nearly twice as sensitive to a Niño-4 anomaly as
to a Niño-3 anomaly of the same magnitude. The de-
pendence of the storm track skill in Fig. 8 on Niño-3
and Niño-4 anomalies is quantified in Table 2. The table
shows, not surprisingly, that the largest average storm
track skill in both the PNA and NATL-EUR sectors is
obtained when both Niño-3 and Niño-4 anomalies are
large. But interestingly, significant skill is also obtained
in the PNA sector when the Niño-4 anomalies are large
but the Niño-3 anomalies are not. These nine cases dem-
onstrate that the predictable storm track signals do not
arise solely from anomalous SST forcing in the clas-
sically defined regions of largest tropical SST variability
(Niño-3 or Niño-3.4).

The results for the NATL-EUR sector in Table 2 are
also interesting. As might perhaps have been anticipated
from the top panel of Fig 6, the diagnostic skill is quite
high throughout the record. The prediction skill, how-
ever, is generally low, consistent with some previous
studies (e.g., Pavan and Doblas-Reyes 2000). Nonethe-
less, the unexpected moderate skill when both Niño-3
and Niño-4 anomalies are large suggests some sensitiv-
ity to tropical Pacific SST forcing.

Figures 7 and 8 and Table 2 suggest that storm track
anomaly predictions will be more or less skillful de-
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FIG. 8. Time series of anomaly pattern correlation for Jan–Mar (JFM) storm track anomalies. (a),(b)
Regions used in subsequent panels. (c),(d) Pattern correlation over (c) the PNA and (d) NATL–EUR sectors
between observed and STM-diagnosed storm track anomalies using 200-mb-height JFM anomalies from
observed (black bars), CCM3 AGCM forced with global SSTs (green bars), CCM3 AGCM forced with
tropical SSTs (blue bars). Thin horizontal line shows the 5% significance levels for both AGCM integrations
having skill. (e) Time series of JFM Niño-3 (orange and light blue) and Niño-4 (red and dark blue) normalized
by their respective standard deviations.
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TABLE 2. Average storm track pattern correlation between the ob-
served winter-mean storm track and that predicted by the STM given
200-mb-height anomaly fields from NCEP–NCAR reanalysis (OBS)
and ensemble-mean anomalies of CCM3 tropical SST–forced
(TOGA) and global SST–forced (GOGA) integrations from 1950–
99. The skill is stratified by the magnitude of Niño-3 and Niño-4
indices and averaged separately over the PNA and NATL-EUR re-
gions. Average correlations significant at or above the 5% level are
indicated by bold italics.

|Niño-3|
$ 1s

|Niño-4|
$ 1s

|Niño-3|
, 1s

|Niño-4|
$ 1s

|Niño-3|
$ 1s

|Niño-4|
, 1s

|Niño-3|
, 1s

|Niño-4|
, 1s

No. of cases 11 9 2 28

PNA
TOGA
GOGA
OBS

0.68
0.61
0.72

0.39
0.36
0.57

0.13
0.23
0.65

0.11
0.25
0.50

NATL-EUR
TOGA
GOGA
OBS

0.29
0.30
0.57

0.11
0.19
0.57

20.12
20.24

0.27

0.05
0.13
0.57

pending on the details of the SST forcing. To exploit
this dependence in an operational setting, it will be im-
portant to anticipate such skill variations and issue them
as part of the forecast. We will return to this point in
section 6.

5. Skill in predicting decadal storm track
variations

Perhaps we can push our empirical linear storm track
model harder still, and ask it to diagnose decadal storm
track variations (discussed, e.g., in Hurrell and van Loon
1997; Chang and Fu 2002) from the observed decadal
mean flow changes. Chang and Fu (2003) had some
success in this regard with their CCA storm track model
derived from observed statistics, although the amplitude
of the variations was weaker than observed. One would
like to know how an STM such as ours derived from a
much larger sample of AGCM statistics performs in this
context. It is also important to quantify how much of
the observed decadal storm track variations are linked
to SST variations. These issues are addressed

The top section of Fig. 9 shows, similar to Fig. 6,
the local temporal correlation of the observed five-win-
ter-average storm track anomalies with those diagnosed
by the STM given the observed anomalous five-winter-
average 200-mb heights. Note that the contouring now
begins at 0.4 (the local 5% significance level). The hemi-
spheric coverage of significant five-winter-average di-
agnostic skill is much less than that for single winters.
Nonetheless, most of the decadal variations over the
North Atlantic and Europe are accurately diagnosed,
with correlations over 0.85 in several regions. The STM
also successfully diagnoses the five-winter-average var-
iations over the eastern Pacific, but fails over large por-
tions of western North America.

The bottom two rows of Fig. 9 show, again similar
to Fig. 6, the actual skill in ‘‘predicting’’ the five-winter-
mean storm track anomalies, using our STM-derived
estimates of the AGCMs’ ensemble-mean storm track
anomalies as the ‘‘prediction.’’ Overall, these skill maps
are very similar to each other and largely consistent
with the interannual skill in Fig. 6, but with lower skill
over the southern United States and higher skill over
northern Canada. The TOGA SST forcing reproduces
almost all of the skill of the other integrations, sug-
gesting that most of the ‘‘predictable’’ decadal storm
track signal arises from tropical SST forcing. A notable
difference is the significant skill in the southern United
States and western Atlantic in the CCM3 panels com-
pared to the MRF9. This was also hinted in Fig. 6, and
is perhaps related to the MRF9’s known difficulty in
reproducing observed upper-level features over the
North Atlantic. A known slow mass leak at upper levels
(Livezey et al. 1997) possibly also contributes to the
lower MRF9 skill at this longer time scale.

The time series of pattern correlations of the observed
and simulated five-winter-mean storm track anomalies
over the PNA and NATL-EUR sectors are shown in Fig.
10, using the CCM3 GOGA and TOGA integrations as
in Fig. 8. Also shown are the standardized five-winter-
mean JFM values of the Niño-3 and Niño-4 SST anom-
alies. The GOGA and TOGA storm tracks have similar
variations of skill over the PNA sector, strengthening
the suggestion from Fig. 9 that the anomalous five-win-
ter averages in much of the record are being forced by
anomalous tropical SSTs. Comparing with the SSTs in
Fig. 9 (bottom), periods of relatively high skill in the
PNA sector correspond well with those of large Niño-
3 and Niño-4 anomalies, leading one to suspect that the
decadal variability of ENSO itself is driving most of
this skill variation.

The STM’s diagnostic skill has some noteworthy var-
iations over the PNA sector, being consistently low in
the mid-1960s and relatively high in the last 20 yr of
the record. In contrast, except for a dip in the late 1960s,
its diagnostic skill in the NATL-EUR sector is relatively
high throughout the record, and generally much higher
than the skill of the CCM3 integrations in the region.

While these variations of the diagnostic skill are in-
teresting, it is difficult to ascertain if they are real, the
result of STM deficiencies, inaccuracies in the obser-
vational 200-mb input heights, and/or in the verifying
storm track output fields. It is easy to rationalize these
sources of error: 1) The STM is trained on seasonal
AGCM statistics whose EOFs may not adequately re-
solve decadal structures; 2) inhomogeneities in the re-
analysis input data sources degrade the quality of the
verifying synoptic variances (Chang and Fu 2003); and
equally likely, 3) radiosonde discontinuities (e.g., Kis-
tler et al. 2001; Harnik and Chang 2003), satellite dis-
continuities (Kistler et al. 2001), and changes in satellite
retrieval methods over the period of record (Basist and
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FIG. 9. Skill for five-winter averages. Green shading begins at the 5% significance level of 0.4. Contour
interval is 0.15 thereafter.

Chelliah 1997) affect the quality of the decadal upper-
tropospheric anomaly fields themselves.

Despite these concerns about the accuracy of the ‘‘ob-
served’’ decadal storm track variations, there is evidence
in Fig. 10 of the SST forcing of those variations over
both the PNA and NATL-EUR sectors. However, where-
as the skill is statistically significant over the record in
the PNA sector (in the ‘‘field significant’’ sense dis-
cussed earlier), it is not so over the NATL-EUR sector.

To determine the significance, we performed, as for Fig.
8, a Monte Carlo procedure in each sector to test the
null hypothesis that the five-winter averages of both the
GOGA and TOGA integrations are independent and
have no relationship to the observed anomalies. From
5000 resamplings with replacement of the observed and
predicted five-winter-mean storm tracks, we found that
only 5% of both integrations simultaneously exceeded
pattern correlations of ;0.3, shown by the thin hori-
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FIG. 10. As in Fig. 8, but for five-winter averages.

zontal lines in Figs. 10c and 10d. In a 46-yr sample of
five-winter averages, an additional 5000 resamplings
showed that 14 and 10 yr would randomly pass the
threshold more than 5% of the time in the PNA and
NATL-EUR sectors, respectively. The GOGA and
TOGA skills in Fig. 10 simultaneously exceed the
threshold 27 times over the PNA sector, but only 4 times
over the NATL-EUR sector.

6. Reliability of storm track predictability
estimates

The demonstration of predictable SST-forced storm
track signals on interannual scales is a central result of
this paper. The general similarity of the pattern of av-
erage skill in the AGCM parts of Fig. 6 with that of the
expected (i.e., the potential) skill in two individual cases
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FIG. 11. Pattern anomaly correlation skill of storm track forecasts
made using the CCM3 and MRF9 diagnosed storm tracks for the
Jan–Mar season. Solid curve shows the expected correlation skill rn

of forecasts made from the mean of n 5 12 member ensembles as a
function of the signal-to-noise ratio S based on Eq. (1). Dotted curve
shows the expected skill r12 when a systematic error Se 5 2S is present
in the forecast based on Eq. (3). Symbols show the actual skill of
storm track forecasts for the PNA region (filled circles) and NATL-
EUR region (diamonds) binned over similar S values. Bin widths are
0.25 from S 5 0 to S 5 1 and 0.5 thereafter. Percentage of cases in
each bin is indicated. Error bars show the 95% confidence interval
using the Fisher z transformation and assuming 6 esdof.

in Fig. 7 is reassuring. But how realistic and represen-
tative are the expected skills in Fig. 7? The issue is
important, since the gap between actual and potential
skill sets targets for AGCM improvement. At the same
time, it is important to recognize that all estimates of
potential skill are ultimately model dependent, since
they assume that the particular imperfect model used to
make them is ‘‘perfect.’’ As discussed earlier in Fig. 1,
they can also be compromised by using inadequate en-
semble sizes, although this is much less of a concern
in Fig. 7.

One way to address this issue would be to repeat the
60-member ensemble integrations of Fig. 7 for all the
501 winters in the record with a large number of dif-
ferent AGCMs. This would make it possible to construct
an average potential skill plot in which one might have
more faith. However, errors common to the models
would still compromise such a plot.

Here we pursue an alternative strategy to assess the
reliability of our predictability estimates. In principle,
this strategy should be applicable even to estimates gen-
erated using a single AGCM. The basic idea is to assess
the degree to which the variations of actual skill are
consistent with the variations of expected skill, that is,
with variations of the signal-to-noise ratio S. Given S
and the actual skill r for each winter, one could examine
the extent to which a scatterplot of r against S follows
the r` curve (or more appropriately, the r60 curve if
using 60-member ensembles) in Fig. 1. To that extent,
our predictions would be deemed ‘‘reliable’’ (in the
technical sense often used in probabilistic forecasting),
and so would our predictability estimates. Additionally,
if the variations of S from case to case are substantial,
(i.e., if our forecasts have ‘‘resolution’’ in the technical
sense), one would also have some skill in predicting the
variations of skill from case to case, and specifically,
in identifying highly skillful predictions a priori. If, on
the other hand, the scatter points fall well below the r60

curve, one would have to conclude that model error was
compromising our predictability estimates.

To our knowledge it is not yet possible to make such
scatterplots, because the necessary large ensemble in-
tegrations with archived daily output have not yet been
made at modeling centers. We have nevertheless at-
tempted with Fig. 11 to generate such a plot using the
smaller ;12 member ensemble runs of the NCEP and
NCAR AGCMs for 1950–99 available to us. This figure
provides perhaps the best overall assessment to date of
Northern Hemispheric storm track predictability, al-
though it will be clear from what follows that much else
remains to be done.

The thick curve in Fig. 11 shows the expected skill
for a 12-member ensemble as a function of S, assuming
a perfect model. It is also possible to calculate the ex-
pected skill of a model with a time-varying systematic
error [i.e., an error in representing the correct ensemble
mean in each forecast case; see Sardeshmukh et al.

(2000)]. As discussed in the appendix, the expected skill
in this scenario is

2 2 2 2 21 1/2r 5 S /[(S 1 1)(S 1 S 1 n )] ,n e (3)

where Se is the ratio of the ensemble-mean error to the
ensemble spread. The dotted curve illustrates the ex-
pected skill for a 12-member ensemble if Se 5 2S.

The plotted symbols in Fig. 11 show the average ac-
tual simulation skill of the storm track anomalies in the
four AMIP-style integrations. They represent averages
over neighboring S values in the PNA sector (filled cir-
cles) and the NATL-EUR sector (diamonds). To cal-
culate S, the signal in each winter was taken as the STM-
diagnosed ensemble-mean storm track anomaly. Unfor-
tunately, the ensemble size of ;12 was too small for
us to accurately deduce the storm track ensemble spread
from the spread of the 200-mb heights. To estimate the
noise, we therefore averaged the ensemble spreads in
our 60-member 1987, 60-member 1989, and 90-member
climatological SST MRF9 ensembles (Table 1), and
used this as a constant spread in all the S calculations.

The most important result in Fig. 11 is that the actual
storm track skill is generally consistent with the esti-
mated S values in the PNA sector, but not in the NATL–
EUR sector. A similar result is obtained for 5-yr aver-
ages, but with larger error bars (not shown). These re-
sults are insensitive to the inclusion or exclusion of the
tropically forced runs (not shown). They also hold when
the MRF9 and CCM3 runs are considered separately
(not shown).

The magnitude of the ensemble-mean error over the
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Atlantic sector appears to be about twice that of the
AGCMs’ predicted signals. Because the storm track sig-
nals are not obtained directly from the AGCMs but are
diagnosed from the AGCMs’ ensemble-mean 200-mb
heights using the STM, the error lies either in the STM
or the AGCMs’ 200-mb heights. We believe an error in
the latter is more likely, for two reasons: 1) The STM’s
diagnostic skill is quite high over the Atlantic sector
(Figs. 6 and 8), where it is about the same on average
as over the PNA sector (Table 2), and 2) the STM also
successfully recovers the MRF9 anomalous ensemble-
mean Atlantic storm track given the anomalous ensem-
ble-mean 200-mb heights in the 1987 and 1989 cases
(Fig. 5). These results suggest that both the MRF9 and
CCM3 may have substantial errors in their 200-mb-
height responses over the NATL-EUR region to spec-
ified global and tropical SSTs.

Many AGCMs have limited skill in predicting upper-
level circulation and precipitation anomalies over the
North Atlantic and Europe (e.g., Livezey et al. 1997;
Brankovic and Palmer 2000; Doblas-Reyes et al. 2000;
Graham et al. 2000; Peng et al. 2000; Shukla et al.
2000). The estimated S values in Fig. 11, as well as the
expected skill in Fig. 7, suggest that if this model error
were to be eliminated, the actual skill in this region
would be higher than found here for storm track anom-
alies, and possibly for other related quantities such as
winter-mean heights and precipitation as well. Note
again that the AGCM error diagnosed in Fig. 11 is not
a constant bias that can be linearly removed but varies
from forecast case to case, which complicates its di-
agnosis and elimination.

7. Conclusions

Our study shows that there is a predictable SST-forced
storm track signal over much of the Northern Hemi-
sphere in boreal winter, but whose magnitude and pat-
tern may differ substantially from case to case and be-
tween El Niño and La Niña events. The signal is modest
on average, but has large implications for the prediction
of seasonal precipitation. Our results further suggest that
some predictable storm track signal may exist over the
PNA sector even in weak and non-ENSO winters. These
predictable signals are largely associated with predict-
able anomalous tropical SSTs, with a minor but statis-
tically significant contribution by anomalous extratrop-
ical SSTs. The case-to-case variations of the signal are
sufficiently large to be useful in anticipating which
storm track forecasts are likely to be more (or less)
skillful than on average. We have also presented quan-
titative evidence that the decadal storm track variations
in the PNA sector are consistent with tropical SST var-
iations, particularly in the second half of the record. To
what degree those SST variations are themselves pre-
dictable is unknown at present.

We have not been able to establish these conclusions
in the North Atlantic–European sector. While a poten-

tially predictable storm track signal may exist there, a
substantial systematic error, on order twice the signal
strength, has been diagnosed in both the AGCMs used
in this study. If the error is eliminated, then judging by
the potential skill results in Figs. 7 and 11, the storm
track skill in this region could improve well beyond the
level shown here.

Our predictability study is founded on two relation-
ships. The first is Eq. (1), which relates the signal-to-
noise ratio S to the expected correlation skill rn for any
forecast variable at any grid point, or any combinations
of variables at any combinations of grid points, includ-
ing quadratic measures of bandpass-filtered quantities
such as storm tracks. The value S for the storm tracks
then serves as a useful simple measure of storm track
predictability.

The second foundation of this study, consistent with
the success of recent empirical STMs (Chang and Fu
2003) and our own calculations, is that the relationship
between anomalous mean flows and anomalous storm
tracks, expressed in Eq. (2), is essentially a linear one
in a relatively low-dimensional space. It is remarkable
how well our linear STM reproduces a nonlinear
AGCM’s storm track response to ENSO forcing given
only the AGCM’s 200-mb-height response. It is inter-
esting that this simple empirical STM is also signifi-
cantly better at replicating observed anomalous storm
tracks in individual winters than the dynamical STM of
Whitaker and Sardeshmukh (1998). This should prove
useful for diagnosing the errors of Whitaker and Sar-
deshmukh’s STM and other dynamical STMs.

We have relied heavily on these two relationships to
estimate the local and regional predictability of winter-
mean and five-winter-mean storm track anomalies. Per-
haps most importantly, they have enabled us to construct
Fig. 11, with its large implications for the potential for
improvement in AGCM storm track (and precipitation)
prediction skill over the North Atlantic and Europe. The
results in Fig. 11 for the PNA sector increase our con-
fidence in the reliability of our predictability estimates
in that sector. Figure 11 further suggests that at least
some of the time variation of actual skill in Fig. 8 may
itself be predictable via a priori estimation of S. As
discussed in the appendix, an ensemble size of order
128 members should be adequate to accurately estimate
winter-to-winter variations of S as small as 0.25, and
therefore variations of expected skill of a similar mag-
nitude.

Finally, it should be recognized that S is between 0.25
and 0.75 in about 65% of the 501 winters considered
in Fig. 11. As the theoretical curves in Fig. 11 (and Fig.
1) show, when S is small the skill of deterministic en-
semble-mean predictions is low, and is further compro-
mised by model error and the use of small ensembles.
With large ensembles and small model error, useful
probabilistic predictions, especially of the altered risks
of extreme anomalies, are however still possible, as
stressed by Sardeshmukh et al. (2000). It would there-
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fore be worthwhile to improve the actual storm track
prediction skill even for the low S situations in Fig. 11.
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APPENDIX

Derivation of Multivariate Predictability as a
Function of the Signal-to-Noise Ratio

One way to increase the value of climate predictions
is to issue the expected skill of the forecast as part of
the prediction. Van den Dool and Toth (1991) derived
the expected value of a forecast’s correlation skill when
predicting the ensemble-mean anomaly of any univar-
iate distribution using an infinite-member ensemble.
Rowell (1998) extended Van den Dool and Toth’s result

to the use of an n-member ensemble forecast. Kumar
and Hoerling (2000) derived the results of Rowell
(1998) for the specific case of forecasting the sign of
the mean anomaly of a Gaussian distribution.

Sardeshmukh et al. (2000) further developed the re-
sults of Rowell (1998) for a multivariate forecast with
errors. They derived the expected skill for an ensemble
forecasting system predicting any multivariate quantity
that has defined first and second moments. The forecast
model need not be perfect. Following Sardeshmukh et
al., consider a multivariate distribution Pm(^x 1 xe&,C0m)
that represents the altered model probability density
function (PDF) of some quantity x and P(^x&,C0) that
is the true PDF of that quantity, such as winter storm
track anomalies during an El Niño event. Here ^x& is
the population-mean anomaly-state vector, ^x 1 xe& is
the model’s population-mean anomaly-state vector, ^xe&
is the model’s error in predicting the population mean,
C0 is the covariance matrix of the variations x9 around
^x&, and C0m is the model’s covariance matrix of vari-
ations y9 about ^x 1 xe&. Note that P and Pm can be
any multivariate distributions with defined first and sec-
ond moments. Also, note that none of the parameters
of these distributions need necessarily be the same for
El Niño and La Niña or even from case to case. The
PDF of ensemble-mean forecasts issued from an n-mem-
ber ensemble with this model is Pm(^x 1 xe&,n21 C0m).
Assume that a vector y is issued as the ensemble-mean
forecast, and the real atmosphere picks a vector x 5 ^x&
1 x9 from P as its storm track anomaly field. The av-
erage anomaly correlation of the observed and predicted
vectors is then

^x · y& ^x& · ^x&
r 5 5 , (A1)n 1/2 21 1/2(^x · x&^y · y&) [(^x& · ^x& 1 ^x9 · x9&)(^x& · ^x& 1 ^x & · ^x & 1 n ^y9 · y9&)]e e

where we have assumed that ^x& · ^xe& 5 0. The dot prod-
uct here represents a general scalar product of the form
x · y 5 xT Wy, where W is any suitable positive-definite
weight matrix. Note that ^x9 · x9& 5 Tr[W1/2C0W1/2] and
^y9 · y9& 5 Tr[W1/2C0mW1/2]. The weight matrix W can be
chosen to emphasize a particular grid point (as in Fig.
7), a linear combination of variables over a region (as in
Fig. 11), or be set equal to identity to examine skill over
the entire atmosphere.

If we further assume that the model correctly repro-
duces the second moment, that is, C0m 5 C0, then (A1)
becomes (3):

2 2 2 2 21 1/2r 5 S /[(S 1 1)(S 1 S 1 n )] ,n e (A2)

where S 5 [^x& · ^x&/^x9 · x9&]1/2 and Se 5 [^xe& · ^xe&/^x9
· x9&]1/2. For a ‘‘perfect’’ model, both ^xe& 5 0 and C0m

5 C0, and (A1) leads to (1):

2 2 2 21 1/2r 5 S /[(S 1 1)(S 1 n )] .n (A3)

In the limit as the ensemble size goes to infinity, for a
perfect model r` 5 S/ . For univariate dis-2Ï(S 1 1)
tributions, is closely related to the predictability mea-2r`

sure examined by Koster et al. (2000).
Graham et al. (2000) found that increasing the number

of ensemble members did little to increase skill, even
in the context of a perfect model. This can be understood
directly in terms of rn in (A3) and graphically as illus-
trated in Fig. 1. Graham et al. (2000) empirically cal-
culated rn with n 5 9 and n 5 18 and compared it to
their actual anomaly correlation (their Figs. 13 and 14).
It is clear from (A3) and Fig. 1 that little is expected
to be gained by increasing ensemble size from 9 to 18
members. As reviewed in Sardeshmukh et al. (2000), if
the signal is considered the difference of two means
each of size n, then S is distributed as a Student t sta-
tistic, and the 95% confidence interval about S is ap-
proximately 62(2/n)1/2. The advantage, then, of using
much larger (n $ 128) ensemble sizes lies in improving
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the ability to forecast forecast skill by reducing the un-
certainty in S illustrated in Fig. 1. Note also from (A2)
that any advantage for actual skill can be lost from
model error, as illustrated by the dotted curve in Fig.
11.
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