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Is reanalysis sufficient to learn a global forecasting system?

Simple problem framing.

— Given state of ERAS at a random point in time, x(t).

— Construct a model F, a neural network parametrised by weights.
— Predict a future state of ERAS5, x(t+dt ) = F( x).

— Seek to minimise [ x(t+dt) - F( x(t) ) ] 2using gradient descent.

* i.e. change the weights in such a way to decrease the MSE.

— Randomly draw a new x and repeat.
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Some first questions

 Can we duplicate scores?

— How big of an advantage is long-window DA?
— How good is performance from operational analysis?

— Are tropical cyclone results reproducible?

* Do data-driven models behave like physical NWP systems?

— What do the spectra look like?
— Do these models behave like an ensemble mean?

— How physically consistent are they?

« \What about precipitation?

* \What about extreme events?
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What the analysis is showing: an undeniable skill

Anomaly correlation | 500hPa geopotential Anomaly correlation | 850hPa wind speed
NHem Extratropics Tropics

20220101 00z to 20221231 12z 20220101 00z to 20221231 12z

100 95

90 .......... ............ .......... .......... ........... ............. ............ ............

90 -EXRNITEIEIE R SRR RIRE N5 oo N S T S S e e

80 22205003000 dadvasacsasaciie: ....... Bocoockbios Weoccpoozco: Zcosconaocaoc Sooocancsncnc AAAAAAAAAAAA

N e R | | | : _ | | : : :
. « . N . K . . 9 75 gl - R nc e SN ey £ e S

70 .......... ............. ............ ............

%

70 ............. ............ ............ ......... ........... ............ ............ : : : : : : 3 : : :
: : : : : : : 65 R T D, e S L .

5 ; ; 5 ; ; 5 5 50 T . N Ey T - ST N A S
60 99059 9590990000030020500055 000000 cocoooog oG o C I s 00 555555%555500200050000000¢ SRELARRY - - - . . = 2 . 9

: - : - : : == PanguWeather : : : : :
—— PanguWeather 55 L guvveatner - ............. ............ ............. N RN . ............

: .
—e— ECMWF High resolution ‘ECMWF H'?“ reso'”t'oﬁ

50 RS — E— - ... ferarnanat . S Ty 50

45 [ Soaaooa0ssag0basasanccooas Zoocscooconay Sy . . VECRL ) TERER fooocoosaooas Zoco0ccaoony ;

40 40

1 2 3 4 5] 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Day Forecast Day

CECMWF = I == += _ 2 1 = E 35 Wl 1 = = 55 ¢ I ™ D #= [+ ] B = EkEeeE =M ] I E 6



Power (m*)

=
Q

Power Spectra of single Analysis and Forecast: z250

Approximate scale (km)
25000 5000 1000

Total wavenumber (n

Physical consistency

Ratio of ageostrophic and
geostrophic winds

— ERAS analysis

— . Pangu t+12h
Pangu t+24h

— . Pangu t+120h

Pressure (hPa)

— ERAS analysis

+= IFSt+12h
IFS t+24h

+ = IFS t+120h

Pressure (hPa)




Tropical cyclone verification

Position error Intensity bias
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Precipitation

Stable Equitable Error in Probability Space | total precipitation
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Time-series of day 6, RMSE over Europe

Same starting point....similar results
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Cold snap over northern Europe Feb 2023
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Now available on charts.ecmwf.int




What the ML forecasts are showing: potential gain in time and energy

ECMWF HRES: Pangu:
" b_nl_ERA5- . 180 000 ($90) 0.3 (<¢1)
illion (one off) per forecast per forecast

($7.4Mio (compute only))

_opernicus

Europe’s eyes on Earth
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Embracing
the

technology...

building the
AIFS




Why?

» We view that this will be a component of how medium-range forecasts are made.

— Still unclear the balance between physics and data-driven forecasts.

* Further work is still required.
— Building reliable ensembles.
— Improving representation of extreme winds/precip.
— Utilise knowledge of data strengths.

— Oceans and extended range predictions

* Need to learn to develop these systems ourselves.

— Like conventional modelling, there will be a regular cycle of regular model upgrades.




Project overview: different paths towards a ML ensemble prediction at ECMWF

\

he hybrid mode
ensemble forecast

A whole system reinventing the path
from observations to predictions.

A scientific challenge
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Resourcing

« All three project aspects are important.

« Utilise existing ML talent.

— Aot of enthusiasm to work in this area. Computing is key
To train, and particularly develop

data-driven models will require
 Using skills from across the centre. significant numbers of GPUs.

— Verification.
— Building ensembles.
— Data pipelines.

— Production.

« ~15FTEs.

— Based on available resources, hard decisions on slowing development in some areas.




The AIFS

 Particularly inspired by Keisler & GraphCast.
— GNNs naturally encode the sphere and allow use of optimal grids.

— Several innovations, to be submitted for publication soon.

* Only 1° but rivals atmospheric scores of others.

— Significantly cheaper to train, useful for exploring ensemble approaches.

 Already running daily and producing live and open forecasts.

— As with other ML models, we want as many eyes on forecasts as possible.




The AIFS

FourCastNetv2-small

Anomaly correlation | 500hPa geopotential GraphCast
NHem EXtratrOpiCS -_-IF::aSngu-Weather FourCastNet
20220601 00z to 20220831 00z | oper mean_fair —AlFS | Pangu-Weather

: : : ' : : ' : GraphCast
AIFS

HRES

S
Y2
—
o
—
—
o
c
e
=
(%)
o
<3
c
©
o
=

535 401 307 270 244 215 202 188 174 163 147 138 128 116 108 102 92 80 72 64 62
r T T T T T

0 24 48 72 96 120
Forecast step [h]

Forecast Day

Caveats: reduced number of TC (resolution induced)
and underestimation of intensity.
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UK heatwave 2022
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Observation — green hourglass
IFS HRES - red dot
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PanguWeather — cyan dot
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Climatology — red box plot
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Storm Eunice (2.5-day forecasts valid18t" Feb 2022 12UTC)
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