
Hydro-‐climatic	  extremes	  and	  ecosystem	  servicesHow do climate disasters in wheat growing 
regions affect global wheat trade network?

Kasturi Shah, Indrani Pal, Upmanu Lall
CWC Research Meeting Presentation

1 March 2017

Drought-stricken field Flooded wheat field  Wildfire sets wheat field ablaze
Texas, 2011 Mississippi River Flood, 2011                                    Oregon, 2015

How do climate disasters in wheat growing 
regions affect global wheat trade network?

Kasturi Shah, Indrani Pal, Upmanu Lall
CWC Research Meeting Presentation

1 March 2017

Drought-stricken field Flooded wheat field  Wildfire sets wheat field ablaze
Texas, 2011 Mississippi River Flood, 2011                                    Oregon, 2015

Visualising the Global Export Wheat Trade Network

Indrani	  Pal,	  PhD

NOAA	  Center	  for	  Earth	  System	  Sciences	  and	  Remote	  Sensing	  
Technologies,	   CUNY	  CREST	  Institute,	  New	  York	  



Ongoing	  ResearchHow do climate disasters in wheat growing 
regions affect global wheat trade network?

Kasturi Shah, Indrani Pal, Upmanu Lall
CWC Research Meeting Presentation

1 March 2017

Drought-stricken field Flooded wheat field  Wildfire sets wheat field ablaze
Texas, 2011 Mississippi River Flood, 2011                                    Oregon, 2015

How do climate disasters in wheat growing 
regions affect global wheat trade network?

Kasturi Shah, Indrani Pal, Upmanu Lall
CWC Research Meeting Presentation

1 March 2017

Drought-stricken field Flooded wheat field  Wildfire sets wheat field ablaze
Texas, 2011 Mississippi River Flood, 2011                                    Oregon, 2015

Visualising the Global Export Wheat Trade Network

• Impacts	  of	  meteorological	   droughts	  on	  surface	  water	  
resources	  and	  fish	  productivity:	   Diagnostics	   and	  
Predictability	   analyses	  of	  low	  flow	  incidence	   and	  fish	  
productivity	   in	  the	  U.S.	  streams	  

•Characterizing	  the	  larger-‐scale	  climate	  connections	  to	  
concurrent	  hydro-‐climatic	   disasters	  and	  crop	  
productivity	   across	  the	  growing	   regions	  of	  the	  world



StreamflowDroughts:	  Low	  river	  flow	  incidence	  and	  
fish	  productivity

A dead fish on the dry bed of the Rio Grande in Albuquerque, N.M., emphasizes the risks posed 
by low river flows. Credit: Dagmar Llewellyn

• Develop	  indices	  relevant	  for	  ecosystem	  services	  (sustaining	  minimum	   flow	  of	  rivers)
• Assess	  trends	  and	  attribution
• Characterize	  the	  larger-‐scale	   climate	   influence	   (e.g.	  ENSO,	  AMO,	  PDO),	   vegetation	  

influence,	  and	  human	  influence	   (e.g.	  dams,	  urban	  vs	  agricultural	  watersheds)	  on	  low	  
flow	   incidence	  in	  rivers

• Impact	  analyses	  on	  fish	  productivity



Streamflow Droughts:	  Low	  river	  flow	  diagnostics	  and	  fish	  productivity

Locations	   of	   stream	   systems	   that	  are	  experiencing	   significantly	   low	   flows.	   Color	   bubbles	  
indicate	   location	   of	   the	  stations	   and	   loss-‐of-‐flow	   estimates	   in	  cubic	   feet	  per	   second	   per	  
day	  per	  year.	  The	  size	   of	  the	  bubble	   is	  proportional	   to	   the	  magnitude	   of	   trend	  value.	  

Three	  clusters	   where	   solid	   triangles	   display	   medoid locations.	   All	   the	  stations	   are	   attached	   to	   their	   corresponding	  
medoids by	  light	   gray	   lines.	   Gray	  circles	   correspond	   to	   the	  stations	   those	   are	  not	  well	   classified	   for	  not	  crossing	   the	  95th
percentile	   significance	   levels	   of	  SCs.

Trends Clusters

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

SST	  TeleconnectionEnvironmental	   factors	   affecting	   Hilsa fish	  
productivity	   in	  Bangladesh	   (Source:	   various).

El	  Year La	  Year

Positive 37.93% 68.97%

Negative 62.07% 31.03%



Visualising the Global Export Wheat Trade NetworkCrop	  Productivity	  in	  a	  Highly	  Connected	  World:	  
Assessing	  the	  role	  of	  larger-‐scale	  climate

• Larger-‐scale	  climate	   connections	   (e.g.	  ENSO,	  AMO,	   PDO)	   influencing	   crop	  productivity	  
in	  many	   regions	   at	  a	  time	  (via	   parallel	   local	  climate	   influence)
• Global	   and	   regional	   crop	   yield	   volatility	   diagnostics	  
• Shifts	   in	  the	  growing	   seasons	  

Wheat	   trade	  connections



Concurrent	  extreme	  events	  and	  global	  crop	  yield	  volatility:	   e.g.	  Wheat

Crop	  Yield	   and	  Climate	   Volatility	   Ex	  Years SST	  Teleconnection	  (PC1	   correlation)

Fig 1: Maps showing global wheat grain productivity and trade, local climate status, and occurrence of societal conflicts in two specific years. (a) 1998-1999 is favorable and (b) 2007-
2008 is vicious. Major producers having surplus (1998) or deficit (2007) productivity are contoured in black color. Countries having decreased imports in 1999, as a result of productivity
surpluses in 2007, are designated by purple circles. Countries having decreased exports in 2008, as a result of productivity deficits in 2007 are designated by green circles. Reported food
riots and/or crisis locations are marked as solid black squares. Crop lands experiencing extreme flooding events with more than 100,000 square kilometer coverage are marked as red
triangles. Colored grid points depict annual PDSI anomalies over crop growing regions where negative indicates drier, and positive indicates wetter conditions with variable magnitudes.
(c) Map showing the difference in average local growing season temperatures between 2007 and 1998. (d)Map showing the differences in average growing degree days above 30 degree
Celsius between 2007 and 1998. The growing season in some regions start in the fall. Turkey, Ukraine, South and Central parts of Canada, Northern U.S., and Zimbabwe grow both winter
and spring wheat.

Global wheat grain productivity and trade, local climate status, 
and occurrence of societal conflicts in two specific years. (a) 
1998-1999 is favorable and (b) 2007-2008 is vicious.

SST	  Teleconnection	  (composites	  with	  
most	  yield	   volatile	  years	  – deficit-‐led)

%	  cropland	  area	  impacted	  by	  climate	   in	  PC1



Shifting	  Seasons

Flooding	  Disasters,	  assessing	  and	  mapping	  
vulnerability:	  Hindu-‐Kush	  Himalaya	   as	  an	  e.g.

seem to be showing high vulnerability to disaster occurrence, as
well as north of India and Nepal, and some locations within China
and Bangladesh in the east of HKH. Decadal patterns are illustrated
in Fig. 2(B), which indicates that most disaster cases are reported
in the recent decade (2001–2013) as compared to the earlier
decades. Most notably, the 2013 Uttarakhand flooding event in
India and 2010 Pakistan flooding event, those made world head-
lines, fall within this decade.

The country specific yearly and decadal trends of frequency of
disasters are in Fig. S1(A) and (B) in the supplementary informa-
tion. These figures depict that there is a clear time trend in the
reported frequency of flooding disasters over the entirety of the
HKH region, of which most disasters recorded are for Afghanistan,
China, India, Nepal, and Pakistan.

The positive time trends (annual and decadal) in frequency of
reported disasters, as noted in Fig. 2(B) and Fig. S1, might be due to
several reasons—one prominent and perhaps the most significant
one for our case is that more number of events are reported in the
recent decades due to better communication systems available. In
addition, the agencies like CRED and the US Agency for Interna-
tional Development (USAID) began to record the disasters since
the 1980s (Than, 2005). However, we do not at all rule out of the
significant possibility of the impacts of socio-economic changes
and climatic changes on the frequency of extreme weather events
and resultant disasters (NAS, 2012), nor the institutional dysfunc-
tions. We need to conduct further research in this area, using other
publicly available databases (e.g. Dartmouth Flood Observatory,
MunichRe, and others) to identify whether there are any

Fig. 2. Spatio-temporal patterns of frequency of “reported” flooding disasters. (A) Total frequency of disasters over 1951–2013 showing high number of disasters recorded in
Afghanistan and Pakistan in the west, India and Nepal in the center, and China, Bangladesh, Bhutan and Myanmar in the east. (B) Decade-wise spatial frequency patterns
showing the highest number of disasters reported in the recent decade of 2001–2013.
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[Pryor and Schoof, 2008; Chou et al., 2013]. Further, the
use of any fixed season—such as calendar, growing, or
water season—does not allow us to analyze dynamic
changes in the timing of water availability. Therefore, to
better capture local and regional changes in the frequency
and timing of precipitation, we follow the lead of Chou
et al. [2013] and define the station-specific wet (dry)
season as the 91 day period at each station that has the
climatological maximum (minimum) number of wet (dry)
days (Figure 2 and the supporting information). Given
the climatology of the timing of the wet (dry) season at
a particular station, it is then possible to determine the
long-term change in precipitation characteristics during this
season. Further, we can examine trends in the year-to-year
variations in the timing of the wettest and driest 91 day
season about the climatological value. We note here that
substantial seasonality in precipitation occurrence—i.e.,
the difference in mean occurrence between the (climatolo-
gical) wet and dry seasons—does indeed exist across much
of the U.S. (Figure S3), and therefore investigating each
season separately is warranted.
[9] During both the wet and dry seasons, the trends in

frequency of precipitation are predominantly positive
(Figure 3), particularly during the dry season when signifi-
cant positive trends exceed significant negative trends by a
ratio of 8 to 1 (Figure 3b). As before, the observed trends
are expressed as normalized changes with respect to the mean
number (shown in Figure 2). Regionally, dry-season trends
show the largest fractional increases (of over 50%) across
the Central and Great Plains, as well as the Atlantic and
Gulf Plains, resulting in approximately 15 more precipitation
days (per 91 day season) over the course of the century
(Figure S4b). During the wet season, the trends in frequency
of precipitation are still predominantly positive (Figure 3a)
with significant positive trends exceeding significant

negative trends by a ratio of 2.6 to 1. Geographically, posi-
tive trends are largest in the Midwest and intermountain
regions, resulting in approximately 20 more wet-season pre-
cipitation days (per 91 day season) per century (Figure S4a).
However, coherent regions of negative trends are also
found over the Atlantic Plains, representing a drying of the
(summertime) wet season in this region.
[10] As a consequence, seasonality of precipitation fre-

quency trends as determined using the traditional calendar
seasons (Figure S5) is most pronounced over the Atlantic
Plains, with decreased frequency of precipitation occurring
during Spring (March–May) and Summer (June–August),
but increased frequency during Fall (September–October),
and marginal changes in winter (December–February).
Interestingly, shorter-term (1950–2009) trends identified by
Higgins and Kousky [2013] indicate decreased frequency
during winter across much of this region. Elsewhere, trends
are fairly robust across the seasons, with the smallest (per-
centage) changes generally occurring in Summer and largest
changes in Fall and Winter.
[11] Trends in extreme dry spell length—which again can be

an indicator of hydrologic and meteorological drought, as well
as an indicator of potential drought in later seasons—follow a
similar pattern, with the most prominent (negative) trends
occurring during the dry season itself, particularly over the
eastern two thirds of the U.S. (Figure 3d), representing a reduc-
tion in the length of extreme dry spells during the driest times
of year; in some cases, the reduction in extreme dry spell
length is on the order of 20 or more days over the course of a
century (Figure S4d), but even more moderate reductions
(at those stations with significant decreases) all exceed 5 days
per century. Further, significant negative trends exceed signif-
icant positive trends by a ratio of nearly 11 to 1. During the wet
season, continental-scale trends are less apparent. However,
regionally, negative wet-season trends are concentrated along

Figure 4. Trends of Julian days count from 1 January to the center of the (a) wettest and (b) driest 91 day period in a given
year (“shift in seasons”). Wettest (driest) period is defined as the center of the 91 day period with the maximum (minimum)
number of precipitating days, allowing for overlap with the preceding/following year. Color bubbles indicate location of the
stations, sign, and significance of the trend estimates. The size (as well as the shading) of the bubble is proportional to the
magnitude of the trend. The percentages in parentheses indicate fraction of the total number of stations having such trend cat-
egory. Background color is the same as in Figure 3. For example, in east New York, there has been a statistically significant
negative shift in wet season (red bubble, Figure 4a) of approximately 25 days in 100 years, and the wet season is centered on
approximately Julian day 20 (gray background), meaning that the wet season in east New York has shifted from approxi-
mately 1 February to 8 January.

PAL ET AL.: U.S. PRECIPITATION SEASONALITY CHANGE

4033

Pal I, Anderson BT, Salvucci GD and Gianotti DJ. (2013) Shifting Seasonality and Increasing Frequency of Precipitation 
Events in Wet and Dry Seasons Across the U.S. Geophysical Research Letters 40 : 4030-4035. 

ElAlem S# and Pal I. (2014) Mapping the vulnerability hotspots over Hindu-Kush Himalaya region to flooding disasters. 
Weather and Climate Extremes 8 (2015) : 46-58 doi:10.1016/j.wace.2014.12.001.


