Theme 3: Modeling the Physical System

Improving Model Processes - Summary

Rob Cifelli

Science Review
12-14 May 2015
Boulder, Colorado
Science Issues Addressed

• Use-inspired research addressing PSD science goals

 ▪ Rigorously characterize and predict weather, water, and climate extremes and their uncertainties to inform decision-making

 ▪ Develop new process understanding, observational and modeling capabilities to predict conditions associated with too much or too little water for improved early warnings, preparedness and resource management
Notable Successes

- PSD research is improving model predictions
 - Provide increased confidence in forecasts across time scales
 - Inform policy makers on regional to global variability and trends
What You Heard

• Addressing PSD goals to **understand** and **predict** extremes across the weather-climate continuum

 ▪ Accurate projections of future global climate require improved understanding of model uncertainty (R. Pincus)

 ▪ Increased complexity in model physics doesn’t necessarily translate to improved prediction (J.-W. Bao)
What You Heard

• Addressing PSD goals to understand and predict extremes across the weather-climate continuum
 ▪ Using models with sophisticated parameterizations to inform models with simpler parameterizations, targeted at key weather-climate phenomena (S. Tulich)
 ▪ High resolution modeling of extreme events to inform flood risk management (K. Mahoney)
Future Directions

• Apply lessons learned to produce “seamless water prediction”
 ▪ Support NOAA concept for an Integrated Water Information System
 ▪ PSD contributions are extensive
 • Characterization of forecast uncertainty from flash floods to global climate change
 ▪ Provide policy makers with actionable information over a range of time scales
 • Flood risk
 • Water supply

An integrated information system for decision support on water-related risks and impacts

Examples of potential PSD Contributions

Past to Present: Reanalyses, attribution, and assessments of past and ongoing conditions and their impacts. Improved real-time observations and monitoring.

Future: Seamless forecasts of water-related risks across time scales

Needs for observations, process understanding and user interactions extend across all time scales
Session Speakers

- Robert Pincus: *Radiative Forcing in CMIP6*
- Jian-Wen Bao: *Evaluation of Microphysics Schemes for Numerical Weather Prediction*
- Stefan Tulich: *Improving Weather and Climate Prediction Models Through the Super-Parameterization Approach*
- Kelly Mahoney: *High Resolution Modeling to Understand Flood Risk and Hail Impacts in Future Climates*