Forecast Evaluation and User-Focused Verification

Barbara Brown

Joint Numerical Testbed Program Research Applications Laboratory NCAR Boulder, Colorado USA

Sea-Ice Prediction Workshop 14 May 2014

Why forecast verification?

- Monitor performance
- Improve forecasts
- Communicate meaningful information to users
 - Requires identifying users' information needs

Hence we need approaches that can do all of these things...

Different approaches for

- different purposes
- different types of forecasts

Tailoring verification approaches

Different types of forecasts

- Forecast "element" characteristics
 - Continuous (e.g., RMSE)
 - Categorical (e.g., Yes/No; POD, FAR)
 - Probabilistic

Temporal characteristics

- Time series?
- Spatial attributes
 - Gridded vs. Point
 - Spatial approaches

Different purposes

- Monitoring
 - Use basic easy-tounderstand metrics
- Forecast improvement
 - Diagnostic approaches
- Users
 - Diagnostic
 - User-relevant

Identifying users' needs

- Defining events:
 - What elements are needed? Time and space scales?
- What are the important decisions that are made relative to the events?
- What aspects are important?
 - Timing? Spatial location?
 - Intensity?
- How do we measure the "quality of these aspects?

Choices of events and metrics impact model optimization

Example events

- Decadal ice extent (building ships)
- Spatial extent of ice on a particular date (e.g., Sep 1) (seasonal prediction)
- Ice extent on specific dates and particular locations (ship movements)

Community Tools for Forecast Evaluation

- Traditional and new tools
- Initial version released in 2008
- Includes
 - Traditional approaches
 - Spatial methods (MODE, Scale, Neighborhood)
 - Confidence Intervals
 - Ensemble methods
- Supported to the community
 - More than 2,400 users (50% university)
 - Regular tutorials
 - Email help

Spatial distribution of Gilbert Skill Score

http://www.dtcenter.org/met/users/

Traditional spatial verification

- Requires an exact match between forecasts and observations at every grid point
 - Problem of "double penalty" event predicted where it did not occur, no event predicted where it did occur
- Traditional scores do not say very much about the source or nature of the errors

Hi res forecast RMS ~ 4.7 POD=0, FAR=1 TS=0

Low res forecast RMS ~ 2.7 POD~1, FAR~0.7 TS~0.3

Impacts of spatial variability

Grid-to-grid results: POD = 0.40 FAR = 0.56 CSI = 0.27

(Poor Scores)

- Traditional approaches ignore spatial structure in the forecasts
 - Spatial correlations
- Small errors lead to poor scores (squared errors... smooth forecasts are rewarded)
- Methods for evaluation are not diagnostic
- Spatial methods can identify particular features of interest to evaluate

New Spatial Verification Approaches

Neighborhood

Successive smoothing of forecasts/obs Gives credit to "close" forecasts

Scale separation

Measure scale-dependent error

Field deformation

Measure distortion and displacement (phase error) for

whole field

How should the forecast be adjusted to make the best match with the observed field?

Object- and featurebased

Evaluate attributes of identifiable features

http://www.ral.ucar.edu/projects/icp/

Method for Object-based Diagnostic Evaluation (MODE)

Traditional verification results: *Forecast has very little skill*

MODE quantitative results:

- Most forecast areas too large
- Forecast areas slightly displaced
- Median and extreme intensities too large
- BUT overall forecast is pretty good

Applications to sea-ice and polar prediction problems

- Many tools exist for evaluation of time series (e.g., in MET)
- New spatial methods may be beneficial for evaluation of sea ice and other polar predictions to provide
 - Diagnostic information
 - More specific information tailored to evaluate meaningful events for users

Resources

- Model Evaluation Tools
- WMO verification Working Group
 - Connected to WWRP, WGNE, PPP, S2S, HIW
 - web page
- R verification package
- Verification discussion group

http://www.dtcenter.org/met/users/

http://www.cawcr.gov.au/projects/verification/

BACK-UP SLIDES

Object/Feature-based

<u>Goals</u>: Measure and compare (user-) relevant features in the forecast and observed fields

Examples:

feature-based

- Contiguous Rain Area (CRA)
- Method for Object-based Diagnostic Evaluation (MODE)
- Procrustes
- Cluster analysis
- Structure Amplitude and Location (SAL)
- Composite
- Gaussian mixtures

CRA: Ebert and Gallus 2009

Neighborhood methods

- <u>Goal</u>: Examine forecast performance in a region; don't require exact matches
- Also called "fuzzy" verification
- Example: Upscaling
 - Put observations and/or forecast on coarser grid
 - Calculate traditional metrics
- Provide information about scales where the forecasts have skill
- <u>Examples</u>: Roberts and Lean (2008) – Fractions Skill Score; Ebert (2008); Atger (2001); Marsigli et al. (2006)

From Mittermaier 2008

Scale separation methods

• <u>Goal</u>:

Examine performance as a function of spatial scale

- Examples:
 - Power spectra
 - Does it look real?
 - Harris et al. (2001)
 - Intensity-scale
 Casati et al. (2004)
 - Multi-scale variability (Zapeda-Arce et al. 2000; Harris et al. 2001; Mittermaier 2006)
 - Variogram (Marzban and Sandgathe 2009)

Field deformation

- <u>Goal</u>: Examine how much a forecast field needs to be transformed in order to match the observed field
- Examples:
- Forecast Quality Index (Venugopal *et al.* 2005)
- Forecast Quality Measure/ Displacement Amplitude Score (Keil and Craig 2007, 2009)
- Image Warping (Gilleland et al. 2009; Lindström *et al.* 2009; Engel 2009)
- Optical Flow (Marzban et al. 2009)

