Water Cycle Challenges:

Controls on Precipitation and Clouds

NOAA Water Cycle Challenge Workshop
Aug. 30-Sep. 1, 2011
Boulder, CO
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Motivation:

Opinion piece published Aug. 27, 2011 (lain Murray and
David Bier — “Do we really need a National Weather
Service?”): http://www.foxnews.com/opinion/2011/08/27/do-
really-need-national-weather-service/#ixzz1\WSWe3M60

“the truth is that the National Hurricane Center and its parent
agency, the National Weather Service, are relics from
America’s past that have actually outlived their usefulness.”

“Last year the Service failed to predict major flooding in
Nashville because it miscalculated the rate at which water
was releasing from dams there. The NWS continued to rely
on bad information, even after forecasters knew the data
were inaccurate. The flooding resulted in 22 deaths.”
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Ovel’al’Ching QueStionS: (atmospheric branch...)

Water Cycle Science Mandate: To make the ‘best’ (in
terms of quantifiable skill and reliability) weather, climate
and streamflow predictions in the world while
dramatically reducing uncertainty in and increasing the
credibility of future climate projections of the principal
ydrologic variables (precip., ET, runoff).

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

2. How do/how will anthropogenic activities including
land use change, water management and
atmospheric composition change impact the
structure and evolution of clouds and precipitation?
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge

mechanisms for atmospheric water vapor?

« Oceanic sources.... Fundamental biases in
coupled SST predictions and gaps in
understanding and ‘modeling’ of oceans and
ocean-atmospheric coupling as related to moisture
source regions

 Land sources...How will timescales of land fluxes
and ‘'memory’ (soil moisture residence times)
change/accelerate?
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

‘Low Level Jets’ :

» Principal, ‘stationary’ (i.e. time-mean vs. transient)
pathways for moisture transport

» EXxit regions are tied to persistent convection (and
flooding) regimes
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

‘Low Level Jets’ :

» Principal, ‘stationary’ (i.e. time-mean vs. transient)
pathways for moisture transport

* EXxit regions are tied to persistent convection regimes

« Often most evident during warm season and on
westward (poleward) branch of sub-tropical
circulations

* Quasi-stationarity in behavior offers significant
potential predictability of precipitation if controlling
mechanisms of jets can be properly depicted
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

How IS LLJ behawor tled to Iarger scale

modes of variability?
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Fua. 1. Regions where low-level jots are known or suspected to occur with some regularity (shaded) and where mesoscale convective complexes
arc known 0 occur freguently during the summer (open boxes), Squares denote locations where low-level jets have been ohserved.
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Issues for Water Vapor Cycling:
1.

What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

How is LLJ behawor tled to larger scale
modes of varlablllty’?
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge

mechanisms for atmospheric water vapor?

‘Low Level Jets’

‘Atmospheric Rivers’: (Ralph and Dettinger, Eos, 2011)

« Key ‘transient’ mode of synoptic moisture flux
variability

« EXxit regions often tied to precipitation extremes

* Observability offers significant potential for
Improved predictions depending on assimilation

* Frequency of occurrence as tied to larger-scale,
longer-lived climate modes may offer additional
potential predictability
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge

mechanisms for atmospheric water vapor?

« Discharge = Precipitation
« Atmospheric ‘convergence’ zones: (e.g. S. Atlantic

convergence zone, U.S. Great Plains, Mei-Yu front
as well as monsoons)

« Quasi-stationary jet exit regimes
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge
mechanisms for atmospheric water vapor?
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Figure 4. Relationship among mesoscale convective complex (MCC) population centres, elevated terrain, and
prevailing mid-level flow.

NCAR Lainc



Issues for Water Vapor Cycling:

What are the key source, transport and discharge
mechanisms for atmospheric water vapor?

« Discharge = Precipitation

« Atmospheric ‘convergence’ zones: (e.g. S. Atlantic
convergence zone, U.S. Great Plains, Mei-Yu
front)
* Quasi-stationary jet exit regimes
« Stationarity of regime often results in substantial flooding

« Source regions for persistent and/or long-lived deep
convection (carbone et al., 2001)

« Dynamics are complicated (multi-scale convective
initiation-feedback mechanisms) and quite difficult to
predict on longer timescales

« Climate variability/change controls often unclear
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Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge

mechanisms for atmospheric water vapor?

« Orographic barriers:

« |mportant ‘stationary’ forcing mechanism for
clouds and precipitation

« Source regions for terrestrial hydrology

« Sharp ecosystem gradients that are potentially
vulnerable to small scale climatic change (e.qg.
changing freezing levels, snowpack)
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 How will orographic precipitation regimes
evolve in a changing climate? (dynamics and
surface coupling)




Advances in High Resolution Simulation of
Wintertime Orographic Precipitation
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Model resolution imact on wintertime
precipitation:
Comparisons at SNOTEL sites

Accum. Precipitation at SNOTEL sites : 2007-2008
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Sub-domain and domain average precipitation
accumulation

Sub-domain Average Total Precipitation
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Scale Impacts:

= Crux of ‘stable’
orographic precipitation
is the nexus of moisture
and vertical motion

rtical motions are
emely sensitive to

Jel terrain resolution
ing by ~ 1 order of
itude

ever, stability regime
S also critical in

ing blocking and

cal motion
|but|on and |ntenS|ty

‘height drive non-linear
responses in vertical
velocities and releag
potential instability
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. Why statistical downscaling methods are limited
(see Gutmann et aI.,.J. Climate, In Press)
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6-mo. Total Precipitation (mm) Comparison
1 Nov. 2007-1 May 2008
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Difference in total precipitation : 6 month period

2001-2002 2003-2004

00-30 Apr.2004 0800 .
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* Precipitation increases by 13.7 % consistent with the average increase of water vapor

mixing ratio by ~10 % in the sub-domain.

n Significant inter-annual variability in the distribution of the changes between ent and
ncarRPGW simulations. Suggests that precipitation response to warn
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6-mo. total precipitation map from PGW and Current

Climate simulations and differences
1Nov. 2007 - 1 May 2008

Total precipitation D(Precipitation) D(Snow) D(Rain)
= PGW-Current

——

%

Curent Climate

40" N

38" N

0 100 200 300 400 500 600 700 800 -60 -40 -20 0 20 40 60 80 100
Total precipitation (mm) PGW - Current Climate fmm)

Freezing level height increased by ~173 m, leading to a decrease of the area covered by snow by ~10%.
Fraction of snow decreased by ~10% of the total grid cell precip. Fraction of rain increased by a similar
amount.

= The PGW run indicates higher snowfall intensity at the mountain peaks.
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NCAR lkeda et al., 2010 Atmo. Res.; Rasmuss



Issues for Water Vapor Cycling:

1. What are the key source, transport and discharge

mechanisms for atmospheric water vapor?

* Cloud processes have significant impact on
simulation fidelity:

Accum. Precipitation at SNOTEL sites : 2007-2008
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Sulfates (all bins) atk =0

Jan avg aerosols (GOCART_mon_mean.nc)
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Aerosol test: clean vs. polluted airmasses
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Maritime

fewer drops

imuch larger mean size
less liquid water content
more drizzle/light rain

Continental

more drops

much smaller mean size
more liquid water
delayed drizzle/rain
alters upper cloud

NCAR
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Cloud median volume diameter (microns)
18-hour forecast valid 18:00:00 !JTC 13 Dec 2001

Aerosol test: clean vs. polluted airmasses
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Conclusions: (atmospheric emphasis...)

Mandate:
1.

Improving the fidelity of weather and climate
predictions and future climate projections...

a.

Enhance the observational foundation of the water cycle
(precipitation and clouds, transport mechanisms, land
surface storage, surface-atmosphere fluxes)

Rapidly advance the development and implementation of
multi-scale modeling tools for prediction of source
transport and discharge mechanisms...

Capitalize on quasi-stationary hydroclimatic regimes (i.e.
LLJ/AR exit regions) for more targeted studies on
precipitation processes at the weather-climate interface

Improve understanding and modeling of convective-
feedback processes

Address observational modeling uncertainties in cloud-
aerosol interactions
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TRACE Mtg: 1-order activity

Science Goal:

* Improve understanding of internal feedbacks for
improving understanding of climate variability at
intra-seasonal to inter-decadal timescales:

» Land forcing of climate anomalies

> Land responses to extreme events

> Manifestations of SST forcing
>

‘Change’ as a mode of climate variability

Variability is where billions are lost each year,
RIGHT NOW

gn of a long-term (5-10yr) integrated
rvation, analysis, modeling program

Focusing on diagnosis and attribution of /long-term
hydrologic sensitivities

Improvement of land surface model parameterizations
Coupled model prediction systems

With application to water management groups...
Quantification and representation of coupling

Deliverable: A new climate system reanalysis...
A new R20 paradigm...

A new set of diagnostics for operational and climate
system models...expanded concept of benchmarking.
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