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Punch Lines

e A positive impact of land surface initialization on
numerical forecasts out to several months has been
demonstrated. There should be a real effort to
exploit this for operational forecasting.

— However, not all of the potential predictability is being
harvested — land and atmosphere models need to be
developed and improved together and not treated as
independent plug-and-play pieces.

— There is not an adequate observing system to provide real-
time observations of the land surface state that can be
assimilated into analyses for operational forecast
initialization.
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JJA Land-Atmnsphere Coupling Strength, Averaged Across AGCMs

Seminal L-A Result

The Global Land-Atmosphere Coupling
Experiment (GLACE) : A joint GEWEX/
CLIVAR modeling study

Koster et al., 2004: Science, 305, 1138-1140. mﬂ m

 Multi-model results indicate that there are geographic “hot
spots” where the atmosphere is responsive to the state of the
land surface (soil moisture).

 There have been many subsequent studies using models,
analyses and observations that corroborate and help explain
this result.

e Similar “cold spots” have been found for snow in at least one
GCM.
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Location of Hot Spots

Arid regime:

ET (mostly surface
evaporation) very
sensitive to soil

Coupled Feedback Loop
P

ET

wetness variations,

W1

but the dry
atmosphere is
unresponsive to small
inputs of water vapor.
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In between, soil wetness sensitivity
and conditional instability both have

some effect.

Humid regime:

Small variations in ET
affect the conditionally
unstable atmosphere
(high moist static energy),
but deep-rooted
vegetation (transpiration)
is not responsive to
nominal soil wetness
variations.

ET->P

— Humid
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Avg. Precipitation Rate (mm/d)

Spatially averaged gain in skill G, for JIAS categorized by
mean model precipitation rate. Bars indicate the
percentage of total land area (between 60°S and 80°N)
in each category.
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Feedback Stands on 2 Legs

-

AP = QSM — AE - AP

Feedback path: Terrestrial leg

* Weak signal in ET (LH) over ?
humid regions.

*Precip signal gain maximizes in
between - in the transition zone .
between arid and humid.
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landiandiatmosphereothicontribute™

modelediastarcoupledisystem) not
separately. Thislisthot done currently,

especially’in'model development.
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Avg. Precipitation Rate (mm/d)

Spatially averaged gain in skill G, for JJAS categorized by
mean model precipitation rate. Bars indicate the
percentage of total land area (between 60°S and 80°N)

in each category.
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Dirmeyer, 2006: JHM, 7, 857-867.
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Terrestrial Part
ASM — AF

 |ndex: local SD of soil

moisture times linear
fit slope E(SM):
OE

IE = Oy

oSM
e Units are same as the flux (can be applied to energy too).

e Bears strong resemblance to hot-spots.

* Negative = evaporation drives soil moisture
 Masked where correlation(SM:E) not signif (99%)
* Based on GSWP-2 multi-model analysis.

Dirmeyer, 2011: GRL, 38, L16702.
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Noah LSM — 12 June 2002
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* Land surface is important driver where the surface flux
impacts are large compared to entrainment.

e cfr Alan Betts’ analyses.

Santanello et al., 2011: JHM, (early release).
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L+A

e Substituting land
index into the
Santanello et al.
“Mixing Diagram”
formulation, we get
a total coupling.
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* Figure shows strength of complete feedback path (left).

* Positive = strong SM control of ET, and shallow PBL.

* Right panels — climate change (late 20C to late 21C) from
IFS simulations (Athena HPC Project).

* Could be applied to observations, network deployment.*
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la. PRECIPITATION FORECAST SKILL (r® with land ICs minus r* w/o land ICs)
All Extreme 1/3s
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1b. AIR TEMPERATURE FORECAST SKILL (r* with land ICs minus r* w/o land 1Cs)
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Koster et al., 2010: GRL, 37, L02402. OLA
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— LA/O case — LA/O case

Predictability - .« .«

* Seasonality over R NN * AT
CONUS in predicta- e - ()() P
bility from the land oe) ;
surface state kicks in =" I
at the end of May, -

erodes by September. "¢ c e ¢ v R TeE e e

* Predictability is linked to the land-atmosphere coupling
— it appears when the correlation(SM:ET) becomes high.

* Thereis a “rebound” of predictability for the spring
forecasts (arrows) — land ICs are “stored” and then later

“released” to the atmosphere when coupling occurs.
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Guo et al., 2011: NatureGeo, (submitted). ‘\CCQ,—A
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Non-Local Sourc

* Rainfall anomalies (mm) for JJ1993 | 0.
and MJ2008 (top) for two recent o S
Midwest flood years.

 The moisture source anomalies
(middle) show reduced source
from the west, and enhanced

¥ 2008

sources from the south (“Maya 'y ~I? | 7/{//////,11
Express”), all the way from the - ¢
Caribbean Sea. 2000

[@2008 I

* Both 1993 and 2008 were characterized | _io | mcimatoiogy
by above average rainfall during the
preceding months (bottom) and
anomalously high soil moisture
consistent with a local positive feedback
from the land surface.
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Streamlines show wind anomalies in the | Dirmeyer & Brubaker, 1999: JGR, 104, 19383-19397.
lowest 30 hPa that exceeded T ms!. Dirmeyer & Brubaker, 2007: JHM, 8, 20-37.
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Dirmeyer & Kinter, 2009: Eos, 90, 101-102. ‘\\_\g@m J

N BilEr Cydie Crslienge Wens eE Dirmeyer & Kinter, 2010: JHM, 11, 1172-1181. .
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LDAS needs the A

e ...For operational application of land surface initial
states in numerical forecasts to improve weather,
climate, and ultimately hydrologic prediction.

e Currently, LDAS is a real-time GSWP, not well
constrained by observations of the land surface state.

A combination of in situ anchoring observations, and
remote sensing to provide spatial coverage, is needed.

e Slowly-varying red-spectrum variability of land surface
is well suited to periodic remote sensing.
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Remote Sensing

* SMOS and later SMAP can provide
surface soil moisture measurements
where vegetation is not dense.

* MODIS can monitor snow coverage,
vegetation state, etc.

‘Operational land analyses will
require robust real-time monitoring
“and preferably redundancy.
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: i8N,
In Situ Measurements -

* National networks like USDA/
SCAN could be fleshed out,
made operational.

e Mesonets could be linked
together, put on GTS.

e COSMOS provides a way to
measure deeper than satellite,
broader than probes.

* Very large numbers of cheap
sensors?
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Recap

* |t has now been shown with high confidence that
sub-seasonal to seasonal forecasts can be improved
by initializing the land surface of weather/climate

models with realistic anomalies.
 Research is needed to understand how to exploit

fully this source of predictability, and how to best
transfer this to operations.

* This requires development on two fronts:
— Improved simulation of the coupled L-A system (models)

— A robust real-time observing system (in situ + satellite)
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