On Trends in Very Wet Days Over the United States:
Coupled and Uncoupled Modeling Perspectives

Martin Hoerling, Jon Eischeid, Xiao-Wei Quan
Schematic of Daily Rainfall Distribution and Possible Change in Extremes

95th Percentile
Schematic of Daily Rainfall Distribution and Possible Change in Extremes
Changes in Very Wet Days*

* 95th Percentile Derived from 1921-1980 GHCN-Daily (Menne et al. 2012)
How to Characterize the Upward Trend in Extreme Precipitation?
A Largely Deterministic Response to Forcing?
A Largely Deterministic Response to Forcing?

“The mechanism driving these changes is well-understood. Warmer air can contain more water vapor than cooler air. Global analyses show that the amount of water in the atmosphere has in fact increased due to human-caused warming. This extra water vapor is available to storm systems, resulting in heavier rainfall” –

U.S. National Climate Assessment Report 2014
A Largely Deterministic Response to Forcing?

“The discrepancy between observed and GHG-forced rainfall changes (1977-2006) results mainly from the difference between observed and externally forced SST trends. Only weak rainfall sensitivity is found to occur in response to the uniform distribution of SST warming that is induced by GHG and aerosol forcing, whereas the particular pattern of the observed SST change was a key driver of regional rainfall trends” –

Hoerling et al. (2010, JClimate)
An “Extreme” Manifestation of Internal Coupled Variability?
“Intrinsic atmospheric circulation variability is mainly responsible for the spread in future climate trends, imparting regional coherence to the internally driven air temperature and precipitation trends. The results underscore the importance of conducting a large number of climate change projections with a given model, as each realization will contain a different superposition of unforced and forced trends”.

Deser et al. (2014, JClimate)
An “Extreme” Manifestation of Internal Variability---Superposed Upon a Strong Forced Signal?
Coupled and Uncoupled Climate Model Simulations 1979-2013

- CCSM4 (Coupled) 20 member
- CAM4 (C-AMIP) 20 member
 Specify varying SST/sea ice/radiative forcing from each CCSM4 trace
- CAM4 (O-AMIP) 20-member
- CAM4 (CCSM4 Trace 10)..... 20 member
- CAM4 (CCSM4 Trace 14)..... 20 member
Change in Very Wet Days (95%) 1979–2013

Observed

Total

Number of Events

Avg/Event

% Chng per Decade

-10 -8 -6 -4 -2 0 2 4 6 8 10

1.
Change in Very Wet Days (95%) 1979–2013

Observed

CCSM4

Total

Number of Events

Avg/Event

% Chng per Decade

-10 -8 -6 -4 -2 0 2 4 6 8 10

% Chng per Decade

-5 -4 -3 -2 -1 1 2 3 4 5
Interpretation of Simulations
vis-à-vis the Observed Upward Trend in Very Wet Days
Over the Northern US (1979-2013)

° There exists a forced signal toward increased pcpn falling in the upper 95th percentile
 Forced signal of extreme wetness mostly via increase # of events, a characteristic of observed changes.

° Coupled system noise ~ double the forced signal magnitude in very wet day trends
 Owing to large internal variability, observed changes are unlikely to have been strongly forced.

° Coupled system (CCSM4) statistics largely reproduced in uncoupled system (CAM4) runs
 AMIP approach to understanding the observed (coupled system) changes has merit.

° Statistics of change in extreme wet days for O-AMIP and C-AMIP are indistinguishable.
 Equally plausible that observed upward trend is a sample drawn from an externally-forced population as it is a sample drawn from a population forced by the particular trace of obs SST variation.
Annual SST Change: 1979–2013

Observed

CCSM4

CAM4 Trace 10

CAM4 Trace 14

Total Change in °C

1.5
1.25
1
0.75
0.5
0.25
-0.25
-0.5
-0.75
-1
-1.25
-1.5
CCSM4 Internal SST Change: 1979–2013

Trace 10

Trace 14
Change in Very Wet Days (95%) 1979–2013

Observed

CAM4 Trace 10

Total

Number of Events

Avg/Event

% Chng per Decade

% Chng per Decade
Change in Very Wet Days (95%) 1979–2013

- Observed
- CAM4 Trace 10
- CAM4–Trace 14
- CAM4–0

% Chng per Decade

- Total
- Number of Events
- Avg/Event
Some Closing Thoughts

On Trends in Very Wet Days Over the US (1979-2013)

° Different factors may be responsible for OBS regional differences in trends of very wet days.
 Contrast between the northern and southern US unlikely reconcilable with GHG forcing alone

° The particular SST trace may have been more relevant than the particular GHG trace.
 Contiguous US pattern of very wet day trends appears most congruent with CAM4 (O-AMIP) footprint.
Change in PPT at the 95% Level
South/Southwest Region

Total

% Change/Decade

Number of Events

% Change/Decade

Avg per Event

% Change/Decade
Some Closing Thoughts
On Trends in Very Wet Days Over the US (1979-2013)

° Concerning the particular SST trace: An extreme “event” of internal variability?
 No CMIP5 model (37) yields OBS strong increase in Indo-Pacific SST gradient during 1979-2013.

° Seasonality of trends in very wet days may provide important clues on contributing factors.
 NE US upward trend may be warm season---linked to land falling tropical disturbances.
 Far West US downward trend may be cold season---linked to reduced extratropical storms.