Measurements from the RV *Ronald H. Brown* and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)

Patricia K. Quinn¹, Elizabeth J. Thompson¹, Derek J. Coffman¹, Sunil Baidar^{3,4}, Ludovic Bariteau², Timothy S. Bates^{1,5}, Sebastien Bigorre⁶, Alan Brewer⁴, Gijs de Boer^{2,3}, Simon P. de Szoeke⁷, Kyla Drushka⁸, Gregory R. Foltz⁹, Janet Intrieri², Suneil Iyer⁸, Chris W. Fairall², Cassandra J. Gaston¹⁰, Friedhelm Jansen¹¹, James E. Johnson^{1,5}, Ovid O. Krüger¹², Richard D. Marchbanks^{3,4}, Kenneth P. Moran^{2,3}, David Noone¹³, Sergio Pezoa², Robert Pincus^{2,3}, Albert J. Plueddemann⁶, Mira L. Pöhlker¹², Ulrich Pöschl¹⁰, Estefania Quinones Melendez⁷, Haley M. Royer¹⁰, Malgorzata Szczodrak¹⁰, Jim Thomson⁸, Lucia M. Upchurch^{1,5}, Chidong Zhang¹⁰, Dongxiao Zhang^{1,5}, and Paquita Zuidema¹⁰

¹NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, WA, USA

²NOAA Physical Sciences Laboratory (PSL), Boulder, CO, USA

³Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA

⁴NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA

⁵Cooperative Institute for Climate Ocean and Ecosystem Studies (CICOES), University of Washington, Seattle, WA, USA

⁶Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA, USA

⁷College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

⁸Department of Air-Sea Interaction and Remote Sensing, University of Washington, Applied Physics Laboratory (APL), Seattle, WA, USA

⁹NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA

¹⁰Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

¹¹Max Planck Institute for Meteorology, Hamburg, Germany

12 Max Planck Institute for Chemistry, Mainz, Germany

¹³Department of Physics, University of Auckland, Auckland, New Zealand

Earth Syst. Sci. Data, 13, 1759–1790, 2021 https://doi.org/10.5194/essd-13-1759-2021

Tracks of RHB, Wave Gliders, and SWIFTS colored by seawater skin temperature

Paper includes:

- Tables of dates and positions of deployment and recovery of NTAS moorings, two Wave Gliders, and six SWIFTs.
- Times when platforms were within close proximity providing opportunities for inter-platform comparisons.

Instrumentation onboard RHB for the measurement of atmospheric and oceanic parameters and assets deployed. Not shown are the disdrometers on the port O3 deck and sky camera on the starboard O3 deck.

Paper includes:

- Table of the timeline of sampling events including coordination with other platforms, NTAS operations, downwind transits, and periods at each station.
- Details of instrumentation onboard RHB, deployed assets, NOAA operated Saildrones, RAAVEN UAS, SVPS drifters, and at the BACO and BCO.

Comparison of upper ocean temperature and salinity from the NTAS-18 mooring and RHB (solid lines are RHB, markers are NTAS).

RHB CTD and NTAS mooring were within 0.5 to 3 NM of each other.

Jan. 12 and 13 comparisons agreed well.

Jan 15. comparison showed significant differences for temperature and salinity due to horizontal gradients in a frontal region.

Paper also includes comparisons between:

- NTAS RHB met parameters,
- BCO RHB met parameters,
- Saildrone RHB met parameters,
- BACO RHB aerosol parameters,
- RHB, BCO, RAAVEN cloud base height.

Aerosol CN and CCN concentrations measured onboard RHB and at BACO The rectangle indicates the comparison period when RHB was 20 NM due east of BACO

- Both platforms sampled clean, marine conditions until ~Jan 29.
- Subsequent enhanced concentrations correspond to periods when dust and biomass burning reached the study area after transport from Africa.
- The coherence of CN and CCN concentrations between the platforms, even when separated by 4 degrees of longitude, indicates a broad-scale dust event.

How typical were winter time dust concentrations during ATOMIC? Comparison to monthly average values from BACO.

Cloud base height from RHB (radiosonde LCL, lidar, ceilometer), BCO (radisonde LCL, ceilometer), RAAVEN

13.35						
13.30						
Ê 13.25						
pn 13.20 -	BCO					
^{TE} 13.15	BACO	• R	HB			
13.10	\backslash					
13.05	~					
13.00						
-59.8 -59.6 -59.4 -59.2 -59.0 Longitude (W)						
Comparison	Absolute	rmsd	N			
to KHB hdar	(m)	(m)				
RHB crui						
RHB-BCO	-137	15	197			
LCL from						
sondes						
RHB ceil	0.66	360 73*	3139			
BCO com						
BCO LCL from sondes	-37	88	6			
RHB ceil	68	81	91			
BCO ceilometer	35	200	56			
RAAVEN	110	32	6			

13.40 T

Lowest values from the lidar and ceilometers track well with LCL values derived from the radiosondes.

Higher values from the lidar and ceilometers are likely due to clouds aloft that are separated horizontally from the locations of cloud base.

Platform	Data set	Data links	Point of contact	Reference
All	ATOMIC	https://www.ncei.noaa.gov/archive/ accession/ATOMIC-2020	elizabeth.thompson@noaa.gov	NOAA (2020)
RHB	Air–sea fluxes, ship navigation/location information, meteorological parame- ters, solar and infrared radiation, rain rate, subskin seawater T , skin seawater T (NOAA PSL)	https://doi.org/10.25921/etxb-ht19	elizabeth.thompson@noaa.gov	Thompson et al. (2021a)
	ROSR skin seawater T (NOAA PSL)	https://doi.org/10.25921/nwx9-rd07	elizabeth.thompson@noaa.gov	Thompson (2021)
	Sky camera (University of Miami) Ceilometer (NOAA PSL)	https://doi.org/10.25921/7kpt-d764 https://doi.org/10.25921/jbz6-e918	pzuidema@rsmas.miami.edu elizabeth.thompson@noaa.gov	Thompson et al. (2021b)
Disdrom equivale sity of M W-band partnersl M-AER and temp Doppler Picarro (OSUM)	Disdrometer (rain rate, drop number, equivalent radar reflectivity) (Univer- sity of Miami)	https://doi.org/10.25921/pfgy-7530	pzuidema@rsmas.miami.edu	Zuidema (2021b)
	W-band radar (University of Miami in partnership with NOAA PSL)	https://doi.org/10.25921/44cy-kr53	pzuidema@rsmas.miami.edu elizabeth.thompson@noaa.gov	Thompson et al. (2021c)
	M-AERI skin seawater T , air humidity and temperature (University of Miami)	https://doi.org/10.25921/db6z-z646	pzuidema@rsmas.miami.edu gszczodrak@rsmas.miami.edu	Zuidema et al. (2021)
	Doppler lidar (NOAA CSL) Picarro water vapor isotopes (OSU/NCAR)	https://doi.org/10.25921/74pc-me66 https://doi.org/10.25921/s76r-1n85	alan.brewer@noaa.gov david.noone@auckland.ac.nz	Brewer (2021) Noone (2021)
	Meteorological and aerosol properties (NOAA PMEL)	https://doi.org/10.25921/yf54-2c81	derek.coffman@noaa.gov	Quinn and Coffman (2021)
H T S	Radiosondes (OSU)	https://doi.org/10.25326/62	simon.deszoeke@oregonstate.edu	Stephan et
	Underway CTD, uCTD (APL-UW)	https://doi.org/10.25921/nsmv-0c33	kdrushka@apl.uw.edu	Drushka (2021c)
	Ship rosette CTD (APL-UW)	https://doi.org/10.25921/zycs-th03	kdrushka@apl.uw.edu	Drushka (2021a)
	Ship ADCP (APL-UW)	https://doi.org/10.25921/b6wh-zr34	kdrushka@apl.uw.edu	Drushka (2021b)
NTAS mooring	Meteorological parameters, air-sea fluxes, solar and infrared radiation; ocean currents, waves, conductivity, salinity, and temperature (WHOI)	https://doi.org/10.25921/er1a-hq72	aplueddemann@whoi.edu	Plueddemann et al. (2021)
Wave Gliders	Air-sea fluxes, meteorological param- eters, radiation; ocean currents, turbu- lence, waves, conductivity, and temper- ature (APL-UW)	https://doi.org/10.25921/dvys-1f29	jthomson@apl.washington.edu	Thomson et al. (2021a)
SWIFT drifter	Air-sea fluxes, meteorological param- eters, radiation; ocean currents, turbu- lence, waves, conductivity, and temper- ature (APL-UW)	https://doi.org/10.25921/s5d7-tc07	jthomson@apl.washington.edu	Thomson et al. (2021b)
Saildrones (NOAA)	Air-sea fluxes, meteorological param- eters, radiation; ocean currents, waves, conductivity, and temperature (NOAA PMEL)	https://doi.org/10.25921/9km0-f614	dongxiao.zhang@noaa.gov	Zhang and Zhang (2021)
Saildrones (NASA)	Air-sea fluxes, meteorological param- eters, radiation; ocean currents, waves, conductivity, and temperature (NASA)	https://doi.org/10.5067/ SDRON-ATOM0	cgentemann@faralloninstitute.org	g Saildrone (2020)
SVPS drifters	Meteorological and ocean parameters, wind stress (NOAA AOML)	https://doi.org/10.25921/2pzq-4d52	greg.foltz@noaa.gov	NOAA (2021)
RAAVEN miniFlux	Met parameters (University of Col- orado)	https://doi.org/10.25921/jhnd-8e58	gijs.deboer@noaa.gov	de Boer et al. (2021a)

Summary of data sets and DOIs, point of contact information, and references for data collected onboard RHB, NTAS, Wave Gliders, SWIFTs, NOAAand NASA-operated Saildrones, and RAAVEN UAS during ATOMIC.

Data are permanently and publicly available at NCEI.

(<u>https://www.ncei.noaa.gov/archive/accession/ATOM</u> IC-2020